Vol. 44 No. SIG 16(PRO 20) oooooooooooboooooo Dec. 2003

gooog

CalcOO0OOOOOO

O o o of o o o of
0O o o of o o o of

00000000 CalcOOOO0OOO0OO0OOODOOOOOODOODOOOODOOOOCalcO 1
O000o00o0O000oo0O00O00000000000000000000000000Calc0O0O00
000 CalcOO0O0O0OO0DOODODOOOODOOOODOODOOkKODODOOOODOOOODODOO
goooooooooooboOoOoOo00oOoOoooooooooooooooooooboooooooon
oooooO0oO0ooobooO0ooOoO00oOoO0O000o000o0O00000000000000B00C0O0O0
goooooooooooooOOOoO0OCOODOOOOOO0OO0O0O00OOODOOO0O0O0O00O000
ooooooboooooooooobooboooooobOOoOoOooOooOOoOOObOObOOOObOObOOoo
gooooooOoooooOooOooocoOoooOooooooOooooooo

Design and Implementation of Calc Compiler

YOKO HaMADA,t Ri1ISA WATANABE,! NORIKO SAKASHITAt
and KENICHI ASATt

We report on the design and implementation of a compiler for a simple first-order func-
tional language Calc. Calc is equipped with assignable arrays with computing numerical
analysis in mind. After going through lexical analysis and syntax analysis, programs are first
transformed into an intermediate language called k-normal forms. The Calc compiler then
performs ordinary optimizations such as alpha-transformation, elimination of useless variables,
and constant propagation. Furthermore, it performs strong inlining (or partial evaluation)
as an optimization particular to Calc. In code-generation phase, it performs the tail-call op-
timization as well as embedding of array access primitives. Although the structure of this
compiler is rather simple compared to ordinary compilers, it produces fairly efficient code. In
fact, we can execute a numerical simulation program calculating cavity flow with efficiency
comparable to the same program written in C.

ogooi1s060 160000

toooooooo
Ochanomizu University

70



