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Design and Implementation of Calc Compiler

YOKO HaMADA,t Ri1ISA WATANABE,! NORIKO SAKASHITAt
and KENICHI ASATt

We report on the design and implementation of a compiler for a simple first-order func-
tional language Calc. Calc is equipped with assignable arrays with computing numerical
analysis in mind. After going through lexical analysis and syntax analysis, programs are first
transformed into an intermediate language called k-normal forms. The Calc compiler then
performs ordinary optimizations such as alpha-transformation, elimination of useless variables,
and constant propagation. Furthermore, it performs strong inlining (or partial evaluation)
as an optimization particular to Calc. In code-generation phase, it performs the tail-call op-
timization as well as embedding of array access primitives. Although the structure of this
compiler is rather simple compared to ordinary compilers, it produces fairly efficient code. In
fact, we can execute a numerical simulation program calculating cavity flow with efficiency
comparable to the same program written in C.
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