Vol. 45 No. SIG 9(PRO 22) goooooooooboooooooo July 2004

good

Joddooboooobouguooooobuooboaa

O o o of oo o of oo o of
O o o obffto o o of

gooboooooooooboooboooouoooooooooooOoOoObOOoOOOobobOOooOoOon
goooooooooooOoOoboO0OoO0oooO0oOoOo0bOOO0oO0OO0O0O0O0oO00O00O00b00000
0000000000000 000000 OPADDODDOODOOOPAODODOOODO OPADDODOO
0000 coooooooooooooooooooooooooooooooooooooooo
oooOooo0oooOo0OOoO0OO0O0O00O0O0OCOOCOOOO0O0OO0C0O0O0C0OCOOO0O0O00O0O0
g000odooooO0o0oooooooooooooo0oboboO00O0000 try-catchOtry-finally
000 CcOooooo0ooooooooooooooooooooooooooooooooono
00000000000 b0o00000fork-join0000000000O0O0OO0DOOOOOOOOOO
goo0ooooooocOooboooobooo0o0obooOoOoOOOOObOO000DOo0oooooooooo
gooooooooooooboOoOoOoOO0oOOOOOObOOOOOOoOoOoOoOoooooOoOooObOOOoOD
ooooooooo0o0oO0ooOoooOooOooOooooPAODOOOODOOOOOOOLTCOODOO
0Do0oO0oooO0oDDo0o LTCcoo0ooo0o0ooooooo0oooooooooooonn

An Efficient Implementation of Exception Handling
for Fine-grained Multithreaded Languages

HIROKAZU SHOBAYASHI,* SEIJI UMATANI,t MASAHIRO YASUGI,*
TSUNEYASU KoMivAttt and TAIICHI YUASA*

In this presentation we propose an efficient and portable implementation scheme of ex-
ception handling for fine-grained multi-threaded programming languages, and evaluate its
performance. We are implementing an object-oriented parallel language OPA which fea-
tures hierarchically structured synchronization and exception handling using dynamic scope.
OPA compiler translates source code in OPA into C code for portability. The OPA system
employs a value-based suspension check method, and overhead for exception checks can be
eliminated by unifying suspension checks and exception checks. We also propose C code gen-
eration techniques for implementing the try-catch construct and the try-finally construct.
In fine-grained multi-threaded programs, a lot of threads are created, and the nest of fork-join
becomes deeper. Before handling an exception thrown in the course of parallel execution, it
is desired to wait for all threads sharing the goal of the parallel execution to abort or finish
their execution. If we can abort execution of threads that can be aborted as soon as possible,
useless computation is not performed and the total efficiency is improved. In this presentation
we propose techniques for such case. Since OPA is implemented using Lazy Task Creation
(LTC), we also describe the implementation issues on such language systems.

ogooile0 10200000

t0000000o000000oo0oooooooo
Department of Communications and Computer Engi-
neering, Graduate School of Informatics, Kyoto Uni-
versity

tt0000000o000oo0o0Do
Department of Information and Computer Sciences,
Toyohashi University of Technology

82



