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An Efficient Implementation of Exception Handling
for Fine-grained Multithreaded Languages

HIROKAZU SHOBAYASHI,* SEIJI UMATANI,t MASAHIRO YASUGI,*
TSUNEYASU KoMivAttt and TAIICHI YUASA*

In this presentation we propose an efficient and portable implementation scheme of ex-
ception handling for fine-grained multi-threaded programming languages, and evaluate its
performance. We are implementing an object-oriented parallel language OPA which fea-
tures hierarchically structured synchronization and exception handling using dynamic scope.
OPA compiler translates source code in OPA into C code for portability. The OPA system
employs a value-based suspension check method, and overhead for exception checks can be
eliminated by unifying suspension checks and exception checks. We also propose C code gen-
eration techniques for implementing the try-catch construct and the try-finally construct.
In fine-grained multi-threaded programs, a lot of threads are created, and the nest of fork-join
becomes deeper. Before handling an exception thrown in the course of parallel execution, it
is desired to wait for all threads sharing the goal of the parallel execution to abort or finish
their execution. If we can abort execution of threads that can be aborted as soon as possible,
useless computation is not performed and the total efficiency is improved. In this presentation
we propose techniques for such case. Since OPA is implemented using Lazy Task Creation
(LTC), we also describe the implementation issues on such language systems.
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