
Vol. 45 No. SIG 9(PRO 22) IPSJ Transactions on Programming July 2004

Regular Paper

A Type System for Verification of Compiler Optimizations

Yutaka Matsuno† and Hiroyuki Sato††

This paper presents a type theoretical framework for the verification of compiler optimiza-
tions. Though today’s compiler optimizations are fairly advanced, there is still not an ap-
propriate theoretical framework for the verification of compiler optimizations. To establish a
generalized framework, we introduce assignment types for variables, which represent how the
value of variables will be calculated in a program. First we introduce our type system. Second
we prove soundness of our type system meaning that if types of return values are equal in two
programs, the programs are equivalent. Soundness ensures that many structure preserving
optimizations preserve program semantics. Then by extending the notion of type equality to
order relation, we redefine several optimizations and prove that they also preserve program
semantics.

1. Introduction

Compiler optimizations have become essen-
tial parts of high performance computing, and
fairly advanced optimizations have been ap-
plied. However, this makes the verification
of compiler optimizations extremely difficult,
and some advanced optimizing compilers have
been released without formally proving that
they preserve program semantics. Besides prac-
tical problems, the most crucial problem is
that there is still not an appropriate theoret-
ical framework for the verification of compiler
optimizations; the correctness proof for an op-
timization is based on ad-hoc combination of
several proof techniques. To overcome this dif-
ficulty, some previous papers applied existing
theoretical frameworks. However, none of them
seems successful. Reasons are that their frame-
works are so restrictive that only a few opti-
mizations can be defined, or their frameworks
require substantial amount of work even to de-
fine an optimization.

To establish a theoretical framework, first
we back to basics of compiler optimizations.
Allen and Kennedy 1) stated dependences as a
set of constrains which are sufficient to ensure
that program transformations do not change
the meaning of a programs as represented by
the results it computes. These constraints are
not precise; there are cases where dependences
can be violated without changing the program
meaning. However, they capture an impor-

† Department of Frontier Informatics, The University
of Tokyo

†† Information Technology Center, The University of
Tokyo

tant strategy for preserving correctness. There-
fore conventional compilers verify that depen-
dences among variables are preserved by op-
timizations. The process is known as def-use
analysis. The introduction of Static Single As-
signment form (SSA form) 5) has greatly sim-
plified def-use analysis. In modern compilers,
SSA form has become a standard intermediate
form.

In this paper, we formalize the problem of
verifying compiler optimizations by a type sys-
tem which is based on the notion of def-use
analysis in SSA form. The information of def-
use analysis is represented by types for variables
which we call assignment types. An assignment
type is a record of how the value of the variable
is calculated during the execution of program.
For example, if a value is assigned to a vari-
able x by an instruction x = y + z, and y and
z are given types τ1 and τ2 respectively, then
x is given a type (τ1, τ2)+, intuitively meaning
that a value is assigned to x by adding two vari-
ables of types τ1 and τ2. Note that this typing
is only possible in SSA form, because there is
only one assignment to a variable in SSA form.
Sometimes a use-def chain makes a circle, which
means that some variables are recursively cal-
culated in a loop. In such a case their assign-
ment types become recursive types. In Fig. 1,
let types of x1 and x2 be α and β respectively.
A variable whose value is assigned by a φ func-
tion is given a type {l1 : τ1, l2 : τ2} where l1
and l2 are the labels of basic blocks which the
assignments of variables of type τ1 and τ2 come
from. int(0) and int(1) are singleton types 21)

of integer whose values are 0 and 1 respectively.

14

Vol. 45 No. SIG 9(PRO 22) A Type System for Verification of Compiler Optimizations 15

integers i ∈ I
labels l ∈ L

variables x, y, z, . . . ∈ V ar
values v ::= i | x

arithmetic ops aop ::= add | sub | mul
branch ops bop ::= beq | bne | blt | blte | bgt | bgte

branch instructions bins ::= bop x, v, l | jmp l | return x
instructions ins ::= aop x, y, v | mov x, v | ssa x, (l1 : x1, l2 : x2)

instruction sequences I ::= I∅ | ins | ins; I
basic blocks B ::= I | I; bins

programs P ::= l0 : B0, l1 : B1, . . . , ln−1 : Bn−1

Fig. 2 Syntax for intermediate language in SSA form.

Fig. 1 Source and SSA form of a program P where
x1 : α and x2 : β.

Type equations for α and β are:{
α = {L0 : int(0), L1 : β} (1)
β = (α, int(1))+ (2)

Substituting (2) into (1) leads to α = {L0 :
int(0), L1 : (α, int(1))+}, in other words x1
has a recursive type of the form µα.{L0 :
int(0), L1 : (α, int(1))+}. By introducing re-
cursive types for recursive calculation in a loop,
we express clearly the difficulty of loop analy-
sis which has been discussed in the literature of
compiler optimization 1).

Our contributions are as follows.
• We devise a model of computations by a

type system which captures the intuition
behind the wide variety of compiler opti-
mizations.

• We prove soundness of our type system
that if types of return values of the source
and target codes are equal, then they are
equivalent programs. Soundness ensures
that many structure preserving optimiza-
tions such as dead code elimination and
constant propagation preserve program se-
mantics.

• Furthermore, by extending the notion of
type equality to order relation, we redefine
several optimizations, and prove that they

also preserve program semantics.
We believe that our type system is an appropri-
ate theoretical framework for establishing opti-
mization verifying compilers, which automat-
ically verify that their optimization preserve
program semantics.

In Section 2, we give preliminaries for the pa-
per. In Section 3 we define program equiva-
lence. In Section 4, we introduce our type sys-
tem. In Section 5 we state soundness of our
type system. In Section 6, we define constant
folding/propagation and code motion, and state
that they preserve program semantics. Then in
Section 7 we discuss related work and give a
summary in Section 8.

2. Preliminaries

We define a simple assembler-like intermedi-
ate language in SSA form (Fig. 2), which sat-
isfies the following definition of SSA form.

Definition 1 (SSA form) A program is
said to be in SSA form if each of its variables is
defined exactly once, and each use of a variable
is dominated by that variable’s definition.

In order to provide a simple framework this
language has no memory operations and func-
tion calls. We expect that our formalization
can be extended to include such features, and
leave them as future work. We define ordinary
instructions such as add x, y, v which means the
value of (y + v) where v is either a variable or
an integer is assigned to x. Also a pseudo in-
struction ssa x, (l1 : x1, l2 : x2) is defined for
an assignment by φ functions. l1 and l2 are the
labels of the predecessor basic blocks which the
assignments of x1 and x2 come from. Though
labels are not annotated in conventional SSA
form, we annotate labels because the informa-

16 IPSJ Transactions on Programming July 2004

M = (pc, V, (lp, lc)) P [pc] = aop x, y, v V [y] = i M [v] = j

P � M → (pc + 1, V [x �→ (i aop j)], NL(pc, (lp, lc)))

M = (pc, V, (lp, lc)) P [pc] = mov x, v M [v] = i

P � M → (pc + 1, V [x �→ i], NL(pc, (lp, lc)))

M = (pc, V, (li, lc)) P [pc] = ssa x, (l1 : x1, l2 : x2)
P � M → (pc + 1, V [x �→ V [xi]], NL(pc, (li, lc))) (i ∈ {1, 2})

M = (pc, V, (lp, lc)) P [pc] = jmp l

P � M → (L[l], V, (lc, l))

M = (pc, V, (lp, lc)) P [pc] = bop x, v, l V [x] = i M [v] = j i bop j = true

P � M → (L[l], V, (lc, l))

M = (pc, V, (lp, lc)) P [pc] = bop x, v, l L[l] = pc + 1 V [x] = i M [v] = j i bop j = false

P � M → (pc + 1, V, (lc, l))

M = (pc, V, (lp, lc)) P [pc] = return x

P � M → HALT

Fig. 3 Dynamic semantics.

tion of where the assignments come from is im-
portant for the verification. Also for simplicity
we restrict the number of arguments of φ func-
tions by two. Initial values are assigned to vari-
ables x0, y0, A program is represented as
a sequence of instructions, and divided into a
set of basic blocks. The first instruction of each
basic block is labeled by a label l ∈ L. Also
L includes lentry and lexit which are labels for
the entry and exit of a program respectively.
Program execution is modeled as follows. A
machine state M has one of two forms: a ter-
minate state M = HALT or a tuple (pc, V, lp, lc)
where pc is the order of the instruction to be ex-
ecuted, V is a map ☆ of variables to their values,
lp is the label of the predecessor block the pro-
gram execution has passed, and lc is the label
of the current block.
• Initial machine state: M0 = (0, V0, (lentry,

l0)) where V0 maps variables to initial val-
ues.

• Program executions are denoted as P �
(pc, V, (lp, lc)) → (pc′, V ′, (l′p, l

′
c)), which

means that program P can, in one

☆ Let g be a map, Dom(g) be the domain of g; for
x ∈ Dom(g), g[x] is the value of x at g, and g[x → v]
is the map with the same domain as g defined by
the following equation: for all y ∈ Dom(g): (g[x →
v])[y] = if y �= x then g[y] else v.

step, go from state (pc, V, (lp, lc)) to state
(pc′, V ′, (l′p, l′c)).

• If the program reaches the return x in-
struction, the state transfers to HALT state.

Figure 3 contains a one-step operational se-
mantics for instructions where aop is either add,
sub or mul and aop is either +, − or × re-
spectively. M is also defined as a map: if
v ∈ Dom(V) then M [v] = V [v] else M [v] = i
when v is i ∈ I; L is defined as a map from la-
bels to the order of the first instructions of basic
blocks with which they are associated. A func-
tion NL(pc, (lp, lc)) checks whether the next in-
struction is the first instruction of next basic
block, and returns the new pair of previous and
current labels.

Definition 2 (NL(pc, (lp, lc)))

NL(pc, (lp, lc))=
{

(lc, l) ∃l.L[l]=pc + 1
(lp, lc) otherwise

3. Program Equivalence

We define program equivalence based on a
kind of bisimulation 12), which is also a ba-
sic notion of program equivalence defined in
some previous papers 8),15). To verify the equiv-
alence, we check all possible paths that the
source and target programs may take, and ver-
ify that each path in the source program corre-

Vol. 45 No. SIG 9(PRO 22) A Type System for Verification of Compiler Optimizations 17

sponds to a path in the target program and vice
versa. First, such paths are defined as compu-
tation prefixes.

Definition 3 (Computation Prefix) For
a program P , a computation prefix is a se-
quence (finite or infinite)

CP = P � M0 → M1 → M2 → · · ·
where P � Mi → Mi+1 for i = 0, 1, 2,

To verify that the source and target programs
are equivalent, we need to determine which vari-
ables need to be checked that they have the
same values at the end of executions (it can
be said that such variables are observable from
outside of the program). We say such variables
as live variables of program P and define live
variable set LV (P). If a program P ends with
return x, then LV (P) can be {x}.

Definition 4 (Live Variable Set LV(P))
The live variable set of a program P , LV (P) is
the set containing all live variables of P .

Note that an arbitrary variable can be live: it
depends on the calling convention of the com-
piler.

Then we define program equivalence as fol-
lows.

Definition 5 (Program Equivalence)
Assume that there are two programs P and Q
such that LV (P) = LV (Q) which share a label
set L and a variable set V ar.

P ≈ Q
if and only if for each x ∈ LV (P), for any finite
computation prefix CP

CP = P �M0 → M1 → M2 → · · · ins→ M,

where ins ∈ P is an instruction of assignment
to x, there exists a computation prefix CP ′ of
Q

CP ′= Q �M0→ M ′
1 → M ′

2 → · · · ins′
→ M ′

such that ins′ ∈ Q is an assignment to x and
M [x] = M ′[x] holds, and the same with P, Q
interchanged.

Note that the length of CP and CP ′ are not
necessarily equal; ins and ins′ are not neces-
sarily the same instruction.

A program is also represented as a network
of basic blocks. In this paper we require that
the structure of the network is preserved in the
transformation. Optimizations preserving this
property are known as structure preserving op-
timizations in which almost all global optimiza-
tions are included.

Definition 6 (Structural Equivalence)
Two programs

P = l0 : B0, l1 : B1, . . . , ln−1 : Bn−1

Q = l0 : B′
0, l1 : B′

1, . . . , ln−1 : B′
n−1

which share a label set L and a variable set V ar
are structurally equivalent:

P ∼= Q
if and only if for each Bi and B′

i, one of the
following conditions holds.
• Both Bi and B′

i do not end with branch
instructions.

• Both Bi and B′
i end with the same

bop x, v, l where x ∈ V ar, v ∈ V ar if v
is a variable, and l ∈ L.

• Both Bi and B′
i end with the same jmp l

where l ∈ L.
• Both Bi and B′

i end with the same
return x where x ∈ V ar.

This definition does not allow some sim-
ple optimizations e.g. replacing bop x, v, l by
bop 3, v, l when x is proved to be 3 in all
program executions. Extending the notion of
structural equivalence for such optimizations is
easy. For simplicity we state structural equiva-
lence as in Definition 6.

To prove the correctness of structure modify-
ing optimizations (loop unrolling, loop tiling,
loop fusion, etc), this definition needs to be
relaxed. However, because they also exploit
use-def information essentially, our type system
will also play the essential role for the proof
of the correctness of structure modifying opti-
mizations. This is left as future work.

As shown in Definition 6 variables used in
branch instructions are also important. We de-
fine such variables as Control Variables as fol-
lows.

Definition 7 (Control Variable Set
CV (P)) The control variable set for program
P , CV (P) is a set of variables which are used
in branch instructions of P .

4. Type System

4.1 Assignment Types
We define assignment types as in Fig. 4.

Type variables are represented by α, β, �
is the super type of all other types. int(i) is a
singleton type of a variable or an integer whose
value is i. Sometimes we use a notation int(x)
for int(i) when the value of x is i. (τ1, τ2)+,
(τ1, τ2)−, and (τ1, τ2)× are assignment types of
variables to which values are assigned by add,
subtract, and multiply operations respectively.
{l1 : τ1, l2 : τ2} is the type of a variable to
which a value is assigned by an ssa instruction.

18 IPSJ Transactions on Programming July 2004

type variables α, β, γ, . . .
types τ ::= α | � | int(i) | (τ1, τ2)+ | (τ1, τ2)− | (τ1, τ2)×

| {l1 : τ1, l2 : τ2} | µα.{l1 : τ1, l2 : τ2}
type environments Γ ::= · | x : τ | Γ1, Γ2

Fig. 4 Types.

� Γ

� Γ0

� Γ x 	∈ Dom(Γ) α fresh
� Γ, x : α

Γ �P v : τ

� Γ
Γ �P i : int(i) (type-int)

� Γ x : τ ∈ Γ
Γ �P x : τ (type-var)

aop x, y, v ∈ P Γ �P y : τ1, v : τ2

Γ �P x : (τ1, τ2)aop (type-aop)
mov x, v ∈ P Γ �P v : τ

Γ �P x : τ (type-mov)
ssa x, (l1 : x1, l2 : x2) ∈ P Γ �P x1 : τ1, x2 : τ2

Γ �P x : {l1 : τ1, l2 : τ2} (type-ssa)
Γ, x : α,Γ′ �P x : {l1 : τ1, l2 : τ2}
Γ, Γ′ �P x : µα.{l1 : τ1, l2 : τ2} (type-mu)

Γ �P x : τ1 Γ′, x : α,Γ′′ �P y : τ2

Γ ⊕ (Γ′, Γ′′) �P y : τ2[τ1/α] (cut)

Fig. 5 Typing rules.

Variables to which values are assigned by mov
instructions may also have these types. Intu-
itively, an assignment type expresses how the
value of the variable is calculated in a program.
A type environment is defined as a set of type
declaration of variables as usual. We denote
Dom(Γ) for the set of variables whose types are
declared in Γ.

4.2 Type System
The type system is shown in Fig. 5. We ex-

plain the meaning of judgments as follows.
• � Γ

This judgment says that Γ is a valid
type environment. Specially, we define Γ0

as the type environment for initial val-
ues, x0, y0, They are given types
int(i), int(j), . . . in Γ0 if their initial val-
ues are i, j, . . . respectively.

• Γ �P v : τ
This judgment says that v is given a type τ
in a program P under a type environment
Γ.

Γ �P v : τ is derived by the following rules.
Rule (type-int) is applied when v is an inte-
ger. Rule (type-var) is applied when v : τ is

declared in Γ. Rule (type-aop) is applied when
the value is assigned by an arithmetic operation
in a program P . (type-mov) and (type-ssa)
are similar to (type-aop). There are two key
typing rules: (type-mu) and (cut) rule. Intu-
itively (type-mu) means that if a variable x is
given a type {l1 : τ1, l2 : τ2} under the assump-
tion that x itself is given a type variable α, then
x is given a type µα.{l1 : τ1, l2 : τ2}, where the
type declaration x : α is deleted from the type
environment. We restrict the body of µ types
to ssa types. The cut rule corresponds to sub-
stitution for solving type equations as shown in
Section 1. In (cut) rule, ⊕ operation is used
for type environments.

Definition 8 (Γ1 ⊕ Γ2) Assume that Γ1 =
x1 : τ1, x2 : τ2, . . . , Γ2 = x′

1 : τ ′
1, x

′
2 : τ ′

2, . . . ,
and {x′′

1 , x′′
2 , . . . } = {x1, x2, . . . } ∪ {x′

1, x
′
2, . . . }.

Γ1 ⊕ Γ2 = x′′
1 : τ ′′

1 , x′′
2 : τ ′′

2 , . . .

where for each x′′
i if

x′′
i = xj = x′

k and τj = τ ′
k then τ ′′

i = τj

x′′
i = xj = x′

k and τj 	= τ ′
k then τ ′′

i = �
else

Vol. 45 No. SIG 9(PRO 22) A Type System for Verification of Compiler Optimizations 19

add x2, x1, 1 ∈ P

� Γ0 x1 �∈ dom(Γ0) α fresh

� Γ0, x1 : α x1 : α ∈ Γ0, x1 : α

Γ0, x1 : α �P x1 : α, 1 : int(1)
(type-var) and (type-int)

Γ0, x1 : α �P x2 : (α, int(1))+ (D1)
(type-add)

ssa x1, (L0 : x0, L1 : x2) ∈ P

� Γ0 x2 �∈ dom(Γ0) β fresh

� Γ0, x2 : β x2 : β ∈ Γ0, x2 : β

Γ0, x2 : β �P 0 : int(0), x2 : β
(type-int) and (type-var)

Γ0, x2 : β �P x1 : {L0 : int(0), L1 : β} (D2)
(type-ssa)

D1 D2

Γ0, x1 : α �P x1 : {L0 : int(0), L1 : (α, int(1))+} (cut)

Γ0 �P x1 : µα.{L0 : int(0), L1 : (α, int(1))+} (type-mu)

Fig. 6 Type derivation of x1 in Fig. 1.

T (int(i)) = (int(i))
T ((τ1, τ2)aop) = (aop)

↙ ↘
T (τ1) T (τ2)

T ({l1 : τ1, l2 : τ2}) = (ssa)
↙ ↘

l1 : T (τ1) l2 : T (τ2)
T (µα.{l1 : τ1, l2 : τ2}) = T ({l1 : τ1, l2 : τ2}[µα.{l1 : τ1, l2 : τ2}/α])

Fig. 7 Tree structure of types.

x′′
i = xj then τ ′′

i = τj

x′′
i = x′

k then τ ′′
i = τ ′

k

Because only type environments of the form
Γ0 augmented with some type declarations in
which variables are given type variables are
valid (such as Γ0, x : α, y : β, . . .), � never
appears in valid type derivation trees for vari-
ables in a program. As an example of typing,
the type derivation of x1 in Fig. 1 is shown in
Fig. 6 (we assume that x0 is given as an argu-
ment, and Γ0 = x0 : int(0)).

4.3 Type Equality
Because our type system includes recursive

types, type derivations for variables are not
unique. We define type equality by the tree
structure of types, as usual in theories of recur-
sive types 3),16).

We define T (τ) to be the regular (possibly
infinite) tree obtained by completely unfolding
all occurrences of µα.τ to τ [µα.τ/α].

Definition 9 (Regular Trees T (τ))
Regular trees are defined as in Fig. 7. Nodes
are of the form (+),(−), (×), (ssa), or de-

noted by leaves of the form (int(i)). If T (τ1)
and T (τ2) have the same structure, we denote
T (τ1) = T (τ2).

Definition 10 (Type Equality) If T (τ1)
= T (τ2), then τ1 = τ2.
Note that this equality is obviously decidable.

Theorem 1 For any derivations of Γ0 �P

x : τ and Γ0 �P x : τ ′, τ = τ ′.
Proof
Consider if a type τ1 of a variable changes to
τ2 by cut rule. Because (cut) rule only in-
stantiates occurrences of a type variable in τ1,
τ1 = τ2. Also rule (type-mu) does not modify
the tree structure of types. Hence we get the
required result because Γ0 is closed. �

The tree structure shows that our type sys-
tem shares some ideas with several notions e.g.,
def-use analysis and program slicing 20). They
are used in program analysis widely. It can be
said that our type system with tree structure
captures key aspects of computation, which
have been discussed partially by such notions.

20 IPSJ Transactions on Programming July 2004

5. Soundness

The soundness of our type system says that
if types of live variables and control variables of
source and target programs are equivalent, the
programs are equivalent.

Theorem 2 (Soundness) If P ∼= Q,
LV (P) = LV (Q) and
• ∀xi ∈ LV (P).

(Γ0 �P xi : τi ∧ Γ0 �Q xi : τ ′
i ∧ τi = τ ′

i)
• ∀yj ∈ CV (P).

(Γ0 �P yj : τj ∧ Γ0 �Q yj : τ ′
j ∧ τj = τ ′

j)
then P ≈ Q.
To prove soundness, we need to focus on vari-
ables used during the calculation. For prov-
ing soundness we sometimes slice programs for
such variables. The conventional slicing algo-
rithms involve finding the transitive closure of
the data and control dependences of the ap-
propriate node(s) in the program dependence
graph (PDG) of the program. PDG of a pro-
gram is obtained by merging its data and con-
trol dependence graphs, which depict the inter-
statement data and control dependences, re-
spectively, in the program. There are several
techniques for slicing 20). We refer to previous
works of backward slicing with respect to out-
put variables, and assume that a program and
its sliced program for a variable are equivalent
(see Definition 5) for the variable.

Notation 1 The sliced version of a pro-
gram P for a variable x is denoted as Px.
To prove soundness, the following theorem is
required.

Theorem 3 If P ∼= Q and
• ∀yj ∈ CV (P).

(Γ0 �P yj : τj ∧ Γ0 �Q yj : τ ′
j ∧ τj = τ ′

j)
then for any computation prefix of P :

P � M0 → . . .
bins1→ . . .

bins2→ . . .
binsn→ . . .

with binsi (i = 1, 2, . . .) branch instructions,
there is a computation prefix of Q:

Q � M0 → . . .
bins1→ . . .

bins2→ . . .
binsn→ . . .

and conversely.
We prove soundness and Theorem 3 simulta-

neously.
Proof
Note that by P ∼= Q, CV (P) = CV (Q). We
prove soundness by induction on the length of
computation prefix for each x ∈ LV (P) where
Γ0 �P x : τ and prove Theorem 3 by induction
on the number of branch instructions.

Base Case
There are four cases for minimum length of
computation prefix and three cases for the least
number of branches ((2),(3), and (4)). Assume
that these computation prefixes are taken in P .
(1) P � M0

aop y0,z0,v0→ M1

(2) P � M0
jmp l→ M1

(3) P � M0
bop y0,v0,l→ M1

(4) P � M0
return x0→ HALT

In (1), there are two possible type derivation
for x in P : Γ0 �P x0 : int(x0) (x 	≡ y0, in
this case x is an initial value) and Γ0 �P x :
(int(z0), int(v0))aop (otherwise). Because x has
the same type in Q, by considering the type
derivation of x, clearly x has the same value in
both P and Q. In (2), because P ∼= Q, P and
Q are identical. In (3) because P ∼= Q and y0

and v0 are initial values, if P takes the true or
the false branch then Q takes the same branch.
In (4), because P ∼= Q, P and Q are identical.
Induction Step
The case when τ = int(i) is easy. We consider
other cases.
Case 1 τ = (τ1, τ2)+ (similar for other arith-
metic types). In this case a value is assigned
to x by either an add instruction or a mov in-
struction. There are two cases of the last typ-
ing rule: (type-mov) and (type-add) rules.
When (type-mov) is used, the type derivation
is as follows.
mov x, v ∈ P Γ0 �P v : (τ1, τ2)+

Γ0 �P x : (τ1, τ2)+ (type-mov)
In this case the value of x depends on v. We
proceed the proof for v. When a value is as-
signed to x by add instructions in both P and
Q, the type derivation of x in P is (the same as
in Q):
add x, y, v ∈ P Γ0 �P y : τ1, v : τ2

Γ0 �P x : (τ1, τ2)+ (type-add)
Let Py and Qy be sliced programs for y of P and
Q respectively where y ∈ LV (Py) = LV (Qy).
By adding auxiliary basic blocks to either Py or
Qy, Py

∼= Qy. Also the type of y is the same in
Py and Qy. Clearly the length of computation
prefix of y is shorter than that of x. Therefore
by IH, Py ≈ Qy. We consider the case when
v is a variable and denote such v as z (it is
easy when v is an integer). By the same ar-
gument, we can construct Py,z and Qy,z which
are sliced programs of P and Q for y and z re-
spectively where y, z ∈ LV (Py,z) = LV (Qy,z)

Vol. 45 No. SIG 9(PRO 22) A Type System for Verification of Compiler Optimizations 21

such that Py,z ≈ Qy,z. By the property of SSA
form the assignments to y and z dominate the
assignment to x in both P and Q. Therefore
all computation prefixes of P and Q pass the
assignment to y and z. Therefore for any com-
putation prefix of P :

P � M0 → . . .M1 → . . .
assignment to x→ M2

there exists a computation prefix of Q:

Q � M0 → . . . M ′
1 → . . .

assignment to x→ M ′
2

such that M1[y] = M ′
1[y] and M1[z] = M ′

1[z]
before the assignment to x; M2[x] = M ′

2[x]
because of M2[y] = M1[y] = M ′

1[y] = M ′
2[y]

and M2[z] = M1[z] = M ′
1[z] = M ′

2[z] and con-
versely. Hence P ≈ Q.
Case 2 τ = {l1 : τ1, l2 : τ2}. There is a follow-
ing type derivation for x in P (the same as in
Q):
ssa x, (l1 : x1, l2 : x2)∈P Γ0�P x1 : τ1, x2 : τ2

Γ0 �P x : {l1 : τ1, l2 : τ2}
(type-ssa)

where the types of xi (i = {1, 2}) in P and Q
are equal. Assume that for any computation
prefix of P :

P � M0 → . . .
bins1→ . . .

bins2→ . . .
binsk→ . . . ,

there is a computation prefix of Q:

Q � M0 → . . .
bins1→ . . .

bins2→ . . .
binsk→ . . .

and conversely. We slice P and Q for each vari-
able z used in the (k + 1)-th branch instruc-
tion. By IH from Theorem 2, the values of z
in Pz and Qz are equal (because z ∈ CV (P),
and calculated by shorter prefix than that of
x). Hence both computation prefixes pass the
same branch at the (k + 1)-th branch instruc-
tion (this proves Theorem 3). Therefore, for
any computation prefix of P

CP =P �M0→ . . .
binsk→ . . .

ssa x,(l1:x1,l2:x2)→ M

there is a computation prefix of Q,

CP ′=Q�M0 → . . .
binsk→ . . .

ssa x,(l1:x1,l2:x2)→ M ′,
and conversely. If CP and CP ′ pass li : Bi,
there must be assignments of xi in both CP
and CP ′. Because types of xi in P and Q are
equal and they are calculated by shorter prefix,
by IH M [x] = M ′[x] where M [xi] = M ′[xi].
Hence P ≈ Q.
Case 3 τ = µα.{l1 : τ1, l2 : τ2}. In this case
a value may be assigned to x in more than one
time by the same instruction in a computation

prefix (i.e. assigned in a loop):

P �M0→ . . .
assignment to x1

→ . . .
assignment to xi

→ M

where superscripts for x represent iteration
counts. We prove this case by induction on the
iteration counts. We need to prove that for any
computation prefix as above, there is a compu-
tation prefix of Q,

Q�M0 → . . .
assignment to x1

→ . . .
assignment to xi

→ M ′

such that M [x] = M ′[x] and conversely. To
prove this, we also need to consider the case a
branch instruction is executed more than one
time: for any computation prefix of P :

P � M0 → . . .
bins1→ . . .

bins2→ . . .
binsj→ . . .

there is a computation prefix of Q:

Q � M0 → . . .
bins1→ . . .

bins2→ . . .
binsj→ . . . ,

and conversely. We prove this case by induction
on the iteration counts. Base cases for these
cases are already done in previous cases. By the
assumptions of Theorem 2 all types of variables
in LV (P) and CV (P) have the same tree struc-
ture. Therefore Γ0 �Pxi xi : τi ∧ Γ0 �Qxi xi : τ ′

i

for all x ∈ LV (P) and Γ0 �Pyj yj : τ ′′
j ∧Γ0 �Qyj

yj : τ ′′′
j for all y ∈ CV (P) where τi and τ ′

i , and
τ ′′
j and τ ′′′

j have the same tree structure which
are subtrees of the types of x and y respectively.
By proving the theorem for these cases simulta-
neously as shown in Case 2, we get the required
result. �

As a corollary of soundness, it can immedi-
ately be proved that dead code elimination de-
fined in Ref. 8) (denoted as →dce in this paper)
preserves program semantics, because it only
replaces an assignment instruction, the source
and rewritten code are structurally equivalent,
and this replacement is ensured not to affect
the use-def chain of the live variables.

Corollary 1 If P →dce Q, then P ≈ Q.
Also many optimizations which preserve use-def
chains e.g., common subexpression elimination
and value numbering satisfy soundness of our
type system. Note that unlike Refs. 8), 9), our
framework does not require specific definition
of an algorithm to apply an optimization. All
structure preserving optimizations which pre-
serve types are correct.

22 IPSJ Transactions on Programming July 2004

6. Several Optimizations

6.1 Constant Folding and Constant
Propagation

Constant folding rewrites an expression with
constant operands by its evaluated value, thus
improves run-time performance and reduces
code size. Constant propagation propagates
constants assigned to a variable through the
flow graph and substitutes the value for a given
expression at the use of the variable. For exam-
ple, in the following program constant folding
is applied first at (1) and then constant propa-
gation is applied at (2).

a = 3 * 2; (1) -> a = 6;
...

b = a + 4; (2) -> b = 10;
Constant folding/propagation are simple opti-
mizations. However, formally defining them is
not easy because many different versions have
been proposed. In this paper, we redefine an op-
timization by an order relation between types
of live variables (and control variables) before
and after the optimization is applied.

Definition 11 (Optimizing Order)
Optimizing order on the set of types is de-
fined as an order which is compatible with
()+,()−,()× and {}.

In the above program (int(3), int(2))×, which
is the type of a changes into int(6) and
((int(3), int(2))×, int(4))+, which is the type
of b changes into int(10). Constant fold-
ing/propagation is redefined as a program
transformation which changes types in this way.
Definition 12 (Constant Folding/
Propagation)
Assume that P ∼= Q and LV (P) = LV (Q).

P →fp Q
iff
• ∀xi ∈ LV (P).

(Γ0 �P xi : τi ∧ Γ0 �Q xi : τ ′
i ∧ τi �fp τ ′

i)
• ∀yj ∈ CV (P).

(Γ0 �P yj : τj ∧ Γ0 �Q yj : τ ′
j ∧ τj �fp τ ′

j)
where an optimizing order �fp is defined as the
transitive closure of:

(int(i), int(j))aop �fp int(k)

(k = i aop j)
{l1 : int(i), l2 : int(i)} �fp int(i)

The order {l1 : int(i), l2 : int(i)} �fp int(i)
corresponds to a more aggressive constant prop-
agation that “if all reaching definitions of a vari-
able is the same constant, then all occurrences

Fig. 8 An example of constant propagation.

y1=a1+b1;

z1=a1+b1;

a1= . . .;
b1= . . .;

y1=h2;

h3=phi(h1,h2);
z1=h3;

a1= . . .;
b1= . . .;

h1=a1+b1; h2=a1+b1;

Fig. 9 An example of lazy code motion.

of the variable can be replaced by the constant”
as in Fig. 8. In Fig. 8 {l1 : int(4), l2 : int(4)},
that is the type of x1 before transformation
changes into int(4).

There are many versions of constant fold-
ing/propagation which use different algorithms.
In this paper, if they are proved to preserve
above order relations (and structural equiv-
alence), we define them as “constant fold-
ing/propagation”, irrespectively of which algo-
rithms they use.

It can be proved that constant fold-
ing/propagation preserves program semantics
by the same way of soundness.

Theorem 4 If P →fp Q, then P ≈ Q.
6.2 Code Motion
The central idea of code motion is to ob-

tain computationally optimal results by plac-
ing computations as early as possible in a pro-
gram 7). For example, in Fig. 9 the computa-
tion of a1+b1 for the assignment to z1 is hoisted
to the left predecessor block so that the partial
redundancy is eliminated (this kind of place-
ment is called lazy code motion).

In Fig. 9 (τ1, τ2)+, the type of z1 changes
into {l1 : (τ1, τ2)+, l2 : (τ1, τ2)+} (assuming
a1:τ1 and b1:τ2). We redefine code motion as a
program transformation which changes types of
variables as in Fig. 9 (currently we assume that
there are not any critical edges 7) in source pro-

Vol. 45 No. SIG 9(PRO 22) A Type System for Verification of Compiler Optimizations 23

grams). Note that of course this definition does
not subsume all code motions which have been
proposed so far 6),7). To subsume all of them,
more order relations are required.

Definition 13 (Code Motion) Assume
that P ∼= Q and LV (P) = LV (Q).

P →m Q
iff
• ∀xi ∈ LV (P).

(Γ0 �P xi : τi ∧ Γ0 �Q xi : τ ′
i ∧ τi �m τ ′

i)
• ∀yj ∈ CV (P).

(Γ0 �P yj : τj ∧ Γ0 �Q yj : τ ′
j ∧ τj �m τ ′

j)
where an optimizing order �m is defined as the
transitive closure of:

(τ1, τ2)aop�m{l1 : (τ1, τ2)aop, l2 : (τ1, τ2)aop}
(l1 and l2 are the labels of predecessor blocks
of a basic block in which the assignment of the
variable of type (τ1, τ2)aop is in P).

Theorem 5 If P →m Q, then P ≈ Q.
In our framework, proving correctness of an

algorithm for an optimization is reduced to
proving that they preserve a valid optimizing
order. Formally proving correctness of an al-
gorithm is involved. Because our type system
can deal with several optimizations uniformly
by optimizing orders, our framework will give a
clear view for the task.

7. Related Work

There have been many papers for the ver-
ification of compiler optimizations, which are
based on well known theoretical frameworks
e.g., abstract interpretation 4),19), denotational
semantics 2), and temporal logic 8). Lacey, et
al. 8) showed that temporal logic is sufficient to
express data dependence among variables and
conditions for applying optimizations. One of
the merits of 8) is that it defined the notion of
program equivalence clearly, which our defini-
tion of equivalence is based on.

Translation validation 15),17),18),22) is a prac-
tical solution for proving that source and tar-
get codes are equivalent. The strategy of trans-
lation validation is to check whether two pro-
grams are bisimilar on simple operational se-
mantics.

Proving correctness of loop optimizations is
still challenging. Previous works 10),22) only
considered structured loops (i.e., for-loops and
do-loops) and exploited classical techniques.
We believe that the notion of recursive types
which we have introduced is essential for this
problem.

Several type systems have been proposed for
program analysis on low-level languages since
the success of TAL 13) and PCC 14), and rec-
ognized as a promising approach for security
issues for software systems. In our previous
work 11), we extend TAL for static array bound
check elimination.

8. Conclusion and Future Work

In this paper we have proposed a type-
theoretical formalization for the verification of
optimizing compilers. In Section 2, we have
given preliminaries for the paper. In Section 3
we have defined program equivalence. In Sec-
tion 4 we have introduced our type system. In
Section 5 we have proved soundness of our type
system. In Section 6, we have defined con-
stant folding/propagation and code motion and
stated that they preserve program semantics.

There are a lot of things to do for future work
e.g., dealing with arrays. Some of them could
be handled in our current framework. However,
in our study we see that there is a consider-
able algebraic structure in low level languages:
not only usual arithmetic operations, but there
exist additionally ssa operations (it can be re-
garded as “OR” operations) and µ. With the
result of our study that optimizations can be
defined by just order relations on types, for es-
tablishing optimization verifying compilers, we
believe that more algebraic study for low level
languages and compiler optimizations is essen-
tial.

References

1) Allen, R. and Kennedy, K.: Optimizing Com-
pilers for Modern Architectures, Morgan Kauf-
mann Publishers (2001).

2) Benton, N.: Simple relational correctness
proofs for static analyses and program transfor-
mations, 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Lan-
guages, Venice, Italy (2004).

3) Brandt, M. and Henglein, F.: Coinductive
axiomatization of recursive type equality and
subtyping, Hindley, R. (ed.), Proc. 3rd Int’l
Conf. on Typed Lambda Calculi and Applica-
tions (TLCA), Nancy, France, April 2–4, 1997,
Vol.1210, pp.63–81, Springer-Verlag (1997).

4) Cousot, P. and Cousot, R.: Systematic de-
sign of program transformation frameworks by
abstract interpretation, 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages, pp.178–190, Portland,
Oregon, ACM Press, New York, NY (Jan.

24 IPSJ Transactions on Programming July 2004

2002).
5) Cytron, R., Ferrante, J., Rosen, B.K.,

Wegman, M.N. and Zadeck, F.K.: Efficiently
computing static single assignment form and
the control dependence graph, ACM Trans.
Prog. Lang. Syst., Vol.13, No.4, pp.451–490
(Oct. 1991).

6) Kennedy, R., Chan, S., Liu, S.-M., Lo, R., Tu,
P. and Chow, F.: Partial redundancy elimina-
tion in SSA form, ACM Trans. Prog. Lang.
Syst., Vol.21, No.3, pp.627–676 (1999).

7) Knoop, J., Rüthing, O. and Steffen, B.: Op-
timal code motion: Theory and practice, ACM
Trans.Prog.Lang. Syst., Vol.16, No.4, pp.1117–
1155 (July 1994).

8) Lacey, D., Jones, N., Van Wyk, E. and
Frederikson, C.C.: Proving correctness of com-
piler optimizations by temporal logic, Higher-
Order and Symbolic Computation, Vol.17, No.2
(2004).

9) Lerner, S., Millstein, T. and Chambers, C.:
Automatically proving the correctness of com-
piler optimizations, ACM SIGPLAN 2003
Conference on Programming Language Design
and Implementation, San Diego, California,
ACM Press, New York, NY (2003).

10) Mateev, N., Menon, V. and Pingali, K.: Frac-
tal symbolic analysis, ACM SIGARCH 15th
International Conference on Supercomputing,
pp.38–49 (2001).

11) Matsuno, Y. and Sato, H.: Flow analytic type
system for array bound checks, Harland, J.
(ed.), Electronic Notes in Theoretical Com-
puter Science, Vol.78, Elsevier (2003).

12) Milner, R.: Communication and Concurrency,
Prentice-Hall (1989).

13) Morrisett, G., Walker, D., Crary, K. and Glew,
N.: From System F to typed assembly lan-
guage, ACM Trans. Prog. Lang. Syst., Vol.21,
No.3, pp.527–568 (1999).

14) Necula, G.: Proof-carrying code, 24th ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Langauges, pp.106–119, Paris
(Jan. 1997).

15) Necula, G.: Translation validation for an op-
timizing compiler, ACM SIGPLAN 2000 Con-
ference on Programming Language Design and
Implementation, Vancouver, Canada (2000).

16) Pierce, B.C.: Types and Programming Lan-
guages, MIT Press (2002).

17) Pnueli, A., Siegel, M. and Singerman,
E.: Translation validation, Proc. TACAS’98,
LNCS, Vol.1384, pp.151–166, Springer (1998).

18) Rinard, M.: Credible compilers, Technical Re-
port MIT/LCS/TR-776, MIT (1999).

19) Rival, X.: Symbolic transfer function-based
approaches to certified compilation, 31st ACM
SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, Venice, Italy
(2004).

20) Tip, F.: A survey of program slicing tech-
niques, Journal of Programming Languages,
No.3, pp.121–189 (1995).

21) Xi, H. and Harper, R.: Dependently typed as-
sembly language, 6th ACM SIGPLAN Interna-
tional Conference on Functional Programming,
pp.169–180, Florence (Sep. 2001).

22) Zuck, L., Pnueli, A., Fang, Y. and Goldberg,
B.: Voc: A translation validator for optimiz-
ing compilers, Knoop, J. and Zimmermann, W.
(eds.), Electronic Notes in Theoretical Com-
puter Science, Vol.65, Elsevier (2002).

(Received December 20, 2003)
(Accepted February 24, 2004)

Yutaka Matsuno is a Ph.D.
candidate in Department of
Frontier Informatics, the Uni-
versity of Tokyo. He was born in
1977, and received his BEng and
MSc degrees from the University
of Tokyo in 2001 and 2003 re-

spectively. His major research interests include
lambda calculus, type system and compiler op-
timizations.

Hiroyuki Sato received BSc,
MSc and DSc from the Uni-
versity of Tokyo in 1985, 1987
and 1990 respectively. He is
currently an associate profes-
sor of the University of Tokyo
(Information Technology Cen-

ter/Department of Frontier Informatics). His
major interests include compiler optimization
and algebraic methods in program semantics.

