
Vol. 46 No. SIG 1(PRO 24) IPSJ Transactions on Programming Jan. 2005

Regular Paper

Verification of Concurrent Programs

Using the Coq Proof Assistant: A Case Study

Reynald Affeldt,† Naoki Kobayashi†† and Akinori Yonezawa†

We show how to model and verify a concurrent program using the Coq proof assistant.
The program in question is an existing mail server written in Java. The approach we take
is to use an original library that provides a language for modeling, a logic, and lemmas for
verification of concurrent programs. First, we report on the modeling of the mail server.
Using the language provided by the library, we build a model by (1) translating the original
program and (2) building appropriate abstractions to model its environment. Second, we
report on the verification of a property of the mail server. We compare this library-based
approach with an alternative approach that directly appeals to the Coq language and logic for
modeling and specification. We show that the library-based approach has many advantages.
In particular, non-functional aspects (communications, non-determinism, multi-threading) are
handled directly by the library and therefore do not require complicated modeling. Also, the
model can be directly run using existing compilers or virtual machines, thus providing us with
a certified implementation of the mail server.

1. Introduction

Mechanical verification of programs is impor-
tant to guarantee their correctness. Among
the tools for such verifications, proof assistants
are particularly attractive, because they com-
bine inductive reasoning with automation, what
makes them more widely applicable, compared
to fully automated tools such as model check-
ers 7).

Proof assistants cannot in general be used di-
rectly for program verification. The main rea-
son is that programs may use programming con-
structs the proof assistant is unaware of. For in-
stance, verification of concurrent programs in a
proof assistant based on the λ-calculus requires
an additional machinery to handle typical con-
currency concepts such as non-determinism.

We have been developing a library 2) to en-
able mechanical verification of concurrent pro-
grams in the Coq proof assistant. This li-
brary (called applπ, which stands for “applied
π-calculus”) provides a modeling language, a
specification language, and lemmas for verifica-
tion of realistic concurrent programs.

This paper reports on the modeling and ver-
ification of a concurrent program using the
applπ library. More precisely, we model an ex-
isting mail server 17) and we verify that it cor-

† Department of Computer Science, The University of
Tokyo

†† Department of Computer Science, Tokyo Institute
of Technology

rectly handles requests from clients. In fact,
we have already performed this verification, but
using a different approach 1) that directly ap-
peals to the Coq language and logic for mod-
eling and verification. Our main contribution
is to show the advantages of using the applπ
library for the verification of concurrent pro-
grams. In particular, we illustrate that mod-
eling is simplified because typical concurrency
concepts (communications, non-determinism,
multi-threading) are handled by the library and
does not require complicated modeling. In ad-
dition, it is possible to run the model using ex-
isting compilers or virtual machines, thus pro-
viding us with a certified implementation of the
mail server. We believe that these advantages
reinforce confidence in the verification.

This paper is organized as follows. In Sec-
tion 2, we give an overview of the Coq proof
assistant and the applπ library. In Section 3,
we describe our case study. In Section 4, we ex-
plain how we model the original program into
a concurrent model written with the applπ li-
brary. In Section 5, we explain how we model
the environment of the program. In Section 6,
we report on the mechanical verification in it-
self. In Section 7, we conclude and list related
and future work.

2. Preliminaries

2.1 The Coq Proof Assistant
The Coq proof assistant is the implementa-

tion of a typed λ-calculus (namely the Cal-

110

Vol. 46 No. SIG 1(PRO 24) Verification of Concurrent Programs Using Coq: A Case Study 111

culus of Inductive Constructions 12)) that can
be used to represent datatypes, functions, and
predicates, and therefore encode, among others,
computer languages and proof systems. In this
paper, we use Coq for both implementation and
notation. In this section, we give an overview
of the Coq proof assistant. Intuitively, it can
be thought as an ML-like language with a rich
type system.

In Coq, datatypes are represented by induc-
tive types. For example, natural numbers are
defined as follows:
Inductive nat : Set :=

O : nat

| S : nat -> nat.

This definition introduces the type of natural
numbers nat, which is itself of type Set, a Coq
built-in type for datatypes. O and S are the con-
structors for natural numbers; observe that S is
functional. The intent is that the constructor O
represents the natural 0, (S O) represents the
natural 1, etc.

Records are represented by a syntax similar
to most programming languages. For example,
two-dimensional points can be defined as fol-
lows:
Record point : Set := pt{

x: nat;

y: nat}.

pt is the constructor for two-dimensional
points, and x and y are their projection func-
tions.

Functions are represented by λ-abstractions.
For example, the function that computes the
predecessor of a natural number can be defined
by case analysis as follows:
Definition pred [n:nat] := Cases n of

O => O

| (S m) => m

end.

where [n:nat] is the Coq syntax for λn :nat.
Predicates are represented by inductive types

or functions whose resulting type is the Coq
built-in type Prop. For example, the following
predicate defines even natural numbers:
Inductive even : nat -> Prop :=

base : (even O)

| step : (n:nat)(even n) -> (even (S (S n))).

The constructor base represents the fact that O
is an even number, and the constructor step let
us construct, from any even number n, the proof
that the natural (S (S n)) is an even number.
Intuitively, (n:nat) can also be thought as uni-
versal quantification.

Proof goals are stated by the keyword Lemma.
For example, the following proof goal states a
property of the pred function:
Lemma pred_even : (n:nat)(even n) ->

(even (pred (pred n))).

Once a proof goal is stated, Coq enters an inter-
nal loop where the user is prompted to prove the
goal interactively by means of pre-existing lem-
mas. Upon completion of the proof, the lemma
is saved in Coq and is reusable for further proof
developments.

2.2 The applπ Library
applπ 2) is a Coq library that enables verifica-

tion of concurrent programs. It provides (1) a
modeling language, (2) a specification language
(or logic, for short), and (3) a collection of lem-
mas. Using this library, it is possible to ver-
ify concurrent programs using the following ap-
proach:
(1) Write a model of the concurrent program

using the applπ language.
(2) Write the properties of the concurrent

program using the applπ logic.
(3) Prove that the property holds of the

model using the lemmas of the library.
In the following, we give an overview of the con-
tents of the applπ library.

The applπ modeling language is a Coq encod-
ing of a minimal concurrent language based on
the π-calculus 11) that it extends with datatypes
and functions, like the Pict programming lan-
guage 14). The applπ modeling language defines
two syntactic entities: channels and processes.
Intuitively, processes interact with each other
by exchanging values over channels.

Channels are implemented by the functional
type chan. For some Coq datatype T, the type
(chan T) represents the type of channels that
carry data of type T. For instance, (chan nat)
represents the type of channels that carry nat-
ural numbers.

The syntax of processes is implemented by
the inductive type proc. It defines a set of con-
structors that each represents a basic process:
• zeroP represents a terminated process.
• (inP c Q), where c is a channel and Q is a
function, represents a process that waits for
some value v along the channel c and behaves
as the process (Q v) after reception.
• (rinP c Q) intuitively represents infinitely
many (inP c Q) processes in parallel. rinP
stands for replicated inputs and corresponds
to multi-threading.
• (outP c v Q) represents the process that

112 IPSJ Transactions on Programming Jan. 2005

(sat ISANY P) always true
(sat (NEG f) P) iff (sat f P) is false
(sat (OR f g) P) iff (sat f P) or (sat g P) is true
(sat (OUTPUTS c v f) P) iff P has a subprocess (outP c v Q) such that (sat f Q)
(sat (INPUTS c f) P) iff P has a subprocess (inP c Q) such that (sat f (Q v)) for any v
(sat (CONSISTS f g) P) iff P can be decomposed into P1 and P2 with (sat f P1) and (sat f P2)
(tsat (STAT f) P) iff (sat f P)
(tsat (NEGT f) P) iff (tsat f P) is false
(tsat (ORT f g) P) iff (tsat f P) or (tsat g P) is true
(tsat (MAYEV f) P) iff for some execution, we eventually have (tsat f P)
(tsat (MUSTEV f) P) iff for any execution, we eventually have (tsat f P)

Fig. 2 Informal semantics of applπ logic.

(outP c v P)|(inP c Q)|(inP c R)
c���

����� c
���

�����

P|(Q v)|(inP c R) P|(inP c Q)|(R v)
Fig. 1 Example of communications between

processes.

emits some value v along the channel c and
then behaves as the process Q.
• (parP P Q) represents the parallel compo-
sition of processes P and Q.
• (nuP Q) represents a process that creates
some private channel c and then behaves as
(Q c).

We define InAtom and OutAtom as abbreviations
for input and output processes whose continu-
ation is zeroP.

The semantics of the applπ modeling lan-
guage is a binary relation between processes
that formalizes in particular the notion of
communication between processes. In this
paper, we informally represent communica-
tions using a diagram notation. For ex-
ample, the possible communications inside
the process (parP (outP c v P) (parP (inP
c Q) (inP c R))) are depicted in Fig. 1 (the
constructor parP is written | to save space).

The second part of the applπ library is a logic
for specification of applπ programs. This logic
consists of:
• a set of state formulas including proposi-
tional and spatial formulas 4),
• a satisfaction relation between state formu-
las and processes noted sat,
• a set of temporal formulas similar to tem-
poral logics 6),
• another satisfaction relation between tem-
poral formulas and processes noted tsat☆.
☆ The existence of two satisfaction relations is to pre-

vent temporal formulas from being used inside spa-
tial formulas. This is required to guarantee the
soundness of some important lemmas 3).

Fig. 3 SMTP model.

The informal semantics of formulas is given in
Fig. 2.

The last part of the applπ library is a col-
lection of lemmas for verification. We defer
overview of these lemmas to Section 6.2, where
our case study will provide us with a concrete
illustration.

3. The SMTP Model

In this section, we explain the SMTP model
on which the mail server is based. This model
is defined in the RFC 821 15).

The mail server consists of several parts, as
depicted in Fig. 3. The SMTP receiver receives
mails from other mail servers and mail clients
using the SMTP protocol and stores received
mails in a mail queue, implemented by a file
system. The SMTP sender extracts mails from
the mail queue and sends them to other mail
servers or mail clients using the SMTP protocol.
In this paper, we are interested in the SMTP
receiver part.

The SMTP protocol is depicted in Fig. 4. An
SMTP protocol session consists of commands
and some mail contents sent to the mail server,
that sends back replies. The client starts a ses-
sion by sending the HELO command; the server
replies with its identity and creates an envelope.
The client sends the MAIL command to set the
return path of the envelope with the address
of the mail sender. The client then sends one
or more RCPT commands to add addresses to

Vol. 46 No. SIG 1(PRO 24) Verification of Concurrent Programs Using Coq: A Case Study 113

Fig. 4 SMTP commands.

the list of recipients of the envelope. The client
eventually sends the DATA command, followed
by the mail contents and terminated by a “dot”.
At any moment, it can reset the session using
the RSET command, abort using the ABORT
command, sends a dummy command NOOP,
or closes the session with the QUIT command.
For each command, the server answers with an
appropriate message, possibly reporting an er-
ror.

4. Modeling of the Mail Server

In this section, we explain how we model
the mail server written in Java using a con-
current program written in the applπ model-
ing language. Intuitively, modeling consists in
translating Java datatypes and control struc-
tures into the applπ modeling language. This
is facilitated by the fact that the applπ mod-
eling language provides (1) Coq datatypes and
control structures which are very close to their
Java counterparts, and (2) concurrency primi-
tives to handle directly communications, non-
determinism, and multi-threading (as seen in
Section 2.2). In the following, we comment on
the main aspects of this translation.

4.1 Datatypes
The mail server defines a number of datatypes

that we directly translate into Coq inductive
types. For example, the mail server defines con-
stants to implement SMTP commands, like the
HELO command:

static final int cmd_helo = 0;

Other SMTP commands are similarly im-
plemented by the constants cmd mail from,
cmd rcpt to, cmd data, cmd rset, cmd abort,
cmd noop, cmd quit, and cmd unknown (for un-
known commands). We represent these con-
stants in Coq using the following inductive
type:
Inductive SMTP_cmd : Set :=

cmd_helo: String -> SMTP_cmd

| cmd_mail_from: String -> SMTP_cmd

| cmd_rcpt_to: String -> SMTP_cmd

| cmd_data: String -> SMTP_cmd

| cmd_noop: SMTP_cmd

| cmd_rset: SMTP_cmd

| cmd_quit: SMTP_cmd

| cmd_abort: SMTP_cmd

| cmd_unknown: SMTP_cmd.

Similarly, we represent SMTP replies using an
inductive type (we have elided one part of the
definition to save space):
Inductive ReplyMsg : Set :=

rep_ok_helo: ReplyMsg

| ...

and mails saved by the mail server by a record:
Record Mail: Set := mail{

domain: String;

rev: Rfc821_path;

fwd: (list Rfc821_path);

body: String}.

where the fields domain, rev, and fwd corre-
spond to the envelope (as seen in Section 3) and
the field body corresponds to the mail contents.

4.2 Communications
In the mail server, communications are imple-

mented by means of the java.io package. For
example, the input stream of SMTP commands
is implemented by an instance of a subclass of
the class java.io.InputStream:

PushbackInputStream from_client;

Similarly, the output stream of SMTP replies
is implemented by an instance of a subclass of
the class java.io.OutputStream:

PrintStream to_client;

Input and output operations in the mail server
are implemented by calls to adequate meth-
ods. For example, the method that receives
an SMTP command from the input stream is
implemented by the read method:
int get_cmd() throws IOException {

...

int b = from_client.read();

...

}

Similarly, the method that sends the SMTP
reply following the HELO command is imple-
mented by the println method:
void reply_ok_helo() throws IOException {

to_client.println

("250 " + hostname + " hello");

}

Translation to applπ communication primitives
is direct. We represent input and output
streams by channels of the appropriate type:
Definition InStream := (chan SMTP_cmd).

Definition OutStream := (chan ReplyMsg).

and input and output operations by input and

114 IPSJ Transactions on Programming Jan. 2005

Original Java Program:
void work() throws IOException,

Smtpdialog_bug,

Mailqueue_fatal_exception {

...

get_helo();

int msg_no = 0;

while (!quit) {

do_rset();

if (!get_mail_from()) continue;

if (!get_rcpt_to()) continue;

get_data(msg_no++);

}

...

}

applπ Model:
Definition work

[i:InStream; o: OutStream] : (chan Mail)->proc :=

[tofs:(chan Mail)]

let st = initial_state in

(nuP [heloc:(chan STATE)]

(nuP [mailc:(chan STATE)]

(nuP [rcptc:(chan STATE)]

(parP (rinP heloc (get_helo_def heloc mailc))

(parP (rinP mailc (get_mail_def mailc rcptc))

(parP (rinP rcptc (get_rcpt_def mailc rcptc))

(OutAtom heloc st))))))).

Fig. 5 Mail server main loop.

output processes:
Definition get_cmd [c:InStream; cont:

SMTP_cmd -> proc] := (inP c cont).

Definition reply [r:ReplyMsg; c:OutStream;

cont: proc] := (outP c r cont).

Definition reply_ok_helo :=

(reply rep_ok_helo).

We have seen above how to model communi-
cations between the mail server and a client.
Similarly, communications between the mail
server and the file system are modeled by a
channel of type (chan Mail) and correspond-
ing input and output processes.

4.3 Server State
The mail server features a number of vari-

ables (fields of Java objects) that capture its
state. To represent these variables, we intro-
duce a representation of the state of the mail
server using a record that is intended to be
passed around following the flow of execution:
Record STATE : Set := smtp_state{

to_client: OutStream;

in_stream: InStream;

queue_dir: File;

buf: Buffer;

to_fs : (chan Mail);

server_name: String;

from_domain: String;

rev_path: Rfc821_path;

fwd_paths: Rfc821_pathlist;}.

The fields in stream and to client contain
the channels used for communication with the
client. The fields queue dir and buf represent
respectively the directory and the file that im-
plement the mail queue. The field to fs con-
tains the channel for communication with the
file system. The field server name contains an
identifier that the mail server uses for SMTP

replies. The fields from domain, rev path, and
fwd paths correspond to the envelope being
built.

4.4 Control Structures
The mail server appeals to a wide variety

of control structures. Basic control structures
such as conditionals are easily translated into
case analyses. However, non-terminating loops
cannot be represented directly in Coq (they are
rejected because they make proof checking un-
decidable). In the following, we explain how we
translate the main loop of the mail server into
the applπ modeling language. The idea is to im-
plement it using communications with respect
to replicated inputs.

The main loop of the mail server (Fig. 5, on
the left) waits for incoming requests and, upon
reception of an HELO command, it enters a
loop in which subsequent commands are pro-
cessed. This processing of subsequent SMTP
commands is ensured by methods get helo,
get mail from, get rcpt to, and get data.

We represent the main loop of the mail server
by means of replicated inputs that exchange the
state of the mail server through a set of private
channels: heloc, mailc, and rcptc (Fig. 5, on
the right). These replicated inputs are writ-
ten in such a way that they emulate the flow
of control of the original program. It should be
observed that, even though we use replicated
inputs, the resulting process represent a single
thread of computation. (Multiple threads of
computation will appear when composing the
mail server with its environment, see next sec-
tion.)

Each method called from the main loop of the
mail server is modeled in a systematic way as a
process. We illustrate this modeling using the

Vol. 46 No. SIG 1(PRO 24) Verification of Concurrent Programs Using Coq: A Case Study 115

Original Java Program:
void get_helo() throws IOException {

while (true) {

...

int cmd = get_cmd();

String arg = get_arg();

switch(cmd) {

case cmd_unknown:

reply_unknown_cmd(); break;

case cmd_abort:

reply_ok_quit(); quit = true;

return;

case cmd_quit:

reply_ok_quit(); quit = true;

return;

case cmd_rset:

do_rset();

reply_ok_rset(); break;

case cmd_noop:

reply_ok_noop(); break;

case cmd_helo:

if (do_helo(arg)) return;

else break;

case cmd_rcpt_to:

reply_no_mail_from(); break;

default:

reply_no_helo(); break;

}

}

}

applπ Model:
Definition get_helo_def

[heloc: (chan STATE); mailc: (chan STATE)] :

STATE -> proc :=

[st:STATE](get_cmd (in_stream st)

[c:SMTP_cmd](get_arg (in_stream st)

[_:unit]

Cases c of

cmd_unknown =>

(reply_unknown_cmd (to_client st) (OutAtom heloc st))

| cmd_abort =>

(reply_ok_quit (to_client st) succ)

| cmd_quit =>

(reply_ok_quit (to_client st) succ)

| cmd_rset =>

(reply_ok_rset (to_client st) (OutAtom heloc st))

| cmd_noop =>

(reply_ok_noop (to_client st) (OutAtom heloc st))

| (cmd_helo arg) =>

(do_helo arg st

[x:bool;st:STATE]

if x then (OutAtom mailc st) else (OutAtom heloc st))

| (cmd_rcpt_to b) =>

(reply_no_mail_from (to_client st) (OutAtom heloc st))

| _ =>

(reply_no_helo (to_client st) (OutAtom heloc st))

end)).

Fig. 6 Function to handle HELO commands.

example of the get helo Java method.
The Java method get helo (Fig. 6, on the

left) tries to fetch incoming HELO commands,
replies appropriately, and redirects the flow of
control to other methods. It is essentially a
switch statement.

We represent the Java method get helo by
means of the process get helo def (Fig. 6, on
the right). The switch statement is translated
into a case analysis. The control flow is emu-
lated by means of communications: break state-
ments are replaced by communications along
the heloc channel, return statements are re-
placed by communications along the mailc
channel, etc. Each method call in the origi-
nal program is translated to a call to the cor-
responding function resulting from the transla-
tion. Finally, successful termination is modeled
by the presence of a dummy value along a spe-
cial channel resultc:
Variable resultc : (chan unit).

Definition succ := (OutAtom resultc tt).

(The statement Variable declares a global
variable in Coq. tt is the only element of type
unit.)

5. Modeling of the Environment

In order to verify that the mail server cor-
rectly handles client requests, we need to make
some hypotheses on its environment. In partic-
ular, we assume that we perform the verifica-
tion in presence of a correct client and a correct
file system. The network communications and
the host computer are also part of the environ-
ment of the mail server. In general, we cannot
expect network communications and the host
computer to be reliable.

In this section, we show how to model a cor-
rect mail client and a correct file system and
the hypotheses of unreliable network communi-
cations and of an unreliable host computer.

5.1 Network Errors
We model network errors by the presence of

a dummy value along a special channel IOexnc:
Variable IOexnc : (chan unit).

Network errors may occur during communica-
tions between the mail server and the mail
client, and between the mail server and the file
system. We therefore use the special channel
IOexnc in the specification of the client and of

116 IPSJ Transactions on Programming Jan. 2005

Inductive val [s:InStream] : proc->Prop :=

say_helo: (P:proc)(c: SMTP_cmd)

(valid_cmd_helo c) ->

(val_after_helo s P) ->

(val s (outP s c P))

| say_quit: (val s (OutAtom s cmd_quit))

| say_abort: (val s (OutAtom s cmd_abort))

| say_skip: (P:proc)(c: SMTP_cmd)

~(valid_cmd_helo c) ->

~c=cmd_quit -> ~c=cmd_abort ->

(val s P) ->

(val s (outP s c P))

| say_io_error: (P:proc)

(val s P) ->

(val s (outP IOexnc tt P))

with val_after_helo [s:InStream] :

proc->Prop :=

...

Fig. 7 Specification of the input stream.

the file system, as explained below.
5.2 Client Specification
A client is correct if it emits valid streams

of SMTP commands, as specified by the RFC
821 15). This requirement amounts to specifying
the set of valid streams of SMTP commands.
We render this specification by means of the
predicate val in Fig. 7.

Informally, the predicate val can be read
as follows. The client emits valid streams of
SMTP commands if:
• after emitting a valid HELO command it
still emits valid streams of SMTP commands,
as defined by the predicate val after helo
(constructor say helo),
• it emits a QUIT or ABORT command (con-
structors say quit and say abort),
• it emits any other command such that the
rest of the emission is still valid (constructor
say skip).

The constructor say io error does not corre-
spond to the definition of validity of streams of
SMTP commands, we add it to take into ac-
count the possibility for a network error.

Similarly, we take into account the possibility
for a network error prior to emission of SMTP
replies. This is rendered by the predicate ack
in Fig. 8.

The constructor ack rep corresponds to
the usual situation where the SMTP reply
is sent to the client, and the constructor
ack rep io error corresponds to the excep-
tional situation where a network error prevents
the emission of the SMTP reply.

Inductive ack : OutStream -> proc -> Prop :=

ack_rep : (y:OutStream)(P:ReplyMsg -> proc)

((x:ReplyMsg)(ack y (P x))) -> (ack (inP y P))

| ack_rep_io_error : (y:OutStream)(P:proc)

(ack y P) -> (ack y (outP IOexnc tt P)).

Fig. 8 Specification of the output stream.

We pack above val and ack predicates into
a single valid client predicate that specifies
correct clients. Similarly, we define a predicate
valid fs that specifies correct file systems.

5.3 System Failures
An unreliable host computer is modeled by

the non-deterministic possibility for a a fail-
ure. A failure is modeled by the presence of
a dummy value along a special channel failc:

Variable failc : (chan unit).

A failure may occur at any moment. We model
this non-determinism by a process that non-
deterministically output a dummy value along
the above special channel:
Definition may_fail := (nuP [x:?]

(parP (InAtom x)

(parP (OutAtom x tt)

(inP x [_:?](OutAtom failc tt))))).

(The question mark ? in Coq automatically in-
fers the corresponding type.) The possible re-
ductions of this non-deterministic failure gener-
ator are depicted in Fig. 9.

6. Formal Verification

6.1 Goal Statement
We are interested in verifying that the mail

server modeled in Section 4 executed under
the environment modeled in Section 5 correctly
handles incoming streams of SMTP commands.
In other words, we want to verify that, for any
possible execution, the process formed by the
parallel composition of a correct client, a cor-
rect file system, (the model of) the mail server,
and a non-deterministic failure generator re-
sults in successful termination, a network error,
or a system failure. Observe that the resulting
process has multiple threads of computation.

The property informally stated above can be
formally written using the applπ logic as fol-
lows:
Definition reports_succ_or_error :=

(MUSTEV (STAT

(OR (OUTPUTS resultc tt ISANY)

(OR (OUTPUTS IOexnc tt ISANY)

(OUTPUTS failc tt ISANY))))).

(Special channels resultc, IOexnc, and failc
are used to observe respectively successful ter-

Vol. 46 No. SIG 1(PRO 24) Verification of Concurrent Programs Using Coq: A Case Study 117

(InAtom x)|(OutAtom x tt)|(inP x [:?](OutAtom failc tt))
x ����

������ x
����

�����
(inP x [:?](OutAtom failc tt))
︸ ︷︷ ︸

nofailure

(InAtom x)|(OutAtom failc tt)
︸ ︷︷ ︸

failure

Fig. 9 Reductions of the failure generator.

Lemma valid_protocol:

(client:InStream->OutStream->proc)

((i:?)(o:?)(valid_client (client i o))) ->

(fs:(chan Mail)->proc)

((tofs:?)(valid_fs (fs tofs))) ->

(is_set resultc&(IOexnc&(failc&nilC))) ->

let P = (resultc&(IOexnc&(failc&nilC)))#

(nuP [i:InStream]

(nuP [o:OutStream]

(nuP [tofs:(chan Mail)]

(parP (client i o)

(parP (work i o tofs)

(parP (fs tofs)

(may_fail))))))) in

(tsat reports_succ_or_error P).

Fig. 10 Goal statement.

mination, network error, and failures.)
Let us write P for the process formed by the

parallel composition of a correct client, a cor-
rect file system, the mail server, and a non-
deterministic failure generator. The proof goal
can be stated as follows:
Lemma valid_protocol: ...

(tsat reports_succ_or_error P).

The complete statement is given in Fig. 10.
(Symbols nilC and & respectively represent the
empty list and cons cells.)

6.2 Formal Proof
We have formally proved using Coq the goal

stated above. The proof is by induction on the
predicate val (excerpt in Fig. 7). It requires
3927 commands using the applπ library (for a
400 lines model and 200 lines specification).

An important aspect of the formal proof is
how we deal with interleaving sequences of com-
munications. Since the mail server runs in par-
allel with the failure generator, there are several
possible execution paths that only differ by the
moment when the failure generator is scheduled
for execution. The proliferation of such differ-
ent possible execution paths is harmful because
they considerably augment the number of sub-
goals of the formal proof. This situation is an
instance of the state-space explosion problem.

The applπ library provides lemmas that en-
able partial order reduction to deal with the

state-space explosion problem. We illustrate
the basic idea of partial order reduction with
the following example. Let us consider some
process P in which two communications along
channels c and d are enabled, such that both
communications can be executed in whatever
order to reach the same process Q:

P
c�

�
���� d

��

���
�

P1
d

��

���
�

P2
c�

�
����Q

To verify a formula of the form (MUSTEV f) in
this situation, it is often sufficient to explore
only one execution path. More generally, par-
tial order reduction reduces the number of ex-
ecution paths to be explored for the purpose
of verification to a subset representative of all
the possible orderings of communications. The
applπ library provides lemmas that enable par-
tial order reduction for the applπ language and
its logic 2),3).

Lemmas from the applπ library that enable
partial order reduction are particularly useful
to verify the mail server. Let us consider the
fragment of the state space of the whole sys-
tem depicted in Fig. 11. The initial process is
shortened to client|work|fs|may fail to save
space. From the initial process, it is possible
to perform either (1) a communication along
channel i through which the client sends a first
SMTP command to the mail server, leading to
the process client′|work′|fs|may fail, or (2)
one of the two communications along channel x
enabled by the non-deterministic failure genera-
tor. Lemmas from the applπ library tell us that
we can safely ignore the execution paths start-
ing with the failure generator (dotted lines in
Fig. 11), and resume verification from the pro-
cess client′|work′|fs|may fail.

6.3 Discussion
The size of the formal proof is large but can

be substantially reduced. In fact, prior to the
case study presented in this paper, we had al-
ready verified the same mail server using a dif-
ferent approach 1). The basic idea of this ap-
proach was to model the mail server using only

118 IPSJ Transactions on Programming Jan. 2005

client|work|fs|may fail

i									

��									 x x

client′|work′|fs|may fail

o

��

x

		

 x�������������

�����������������������
client|work|fs|nofailure

i

client|work|fs|failure
i

client′′|work′′|fs|may fail client′|work′|fs|nofailure client′|work′|fs|failure
Fig. 11 Effect of partial order reduction on verification of the mail server.

functional constructs provided by the Coq lan-
guage. The formal proof that the mail server
correctly handles client requests was almost
four times smaller (1,059 commands). However,
it appears that both approaches lead to essen-
tially the same proof tree thanks to partial or-
der reduction. Therefore, the overhead induced
by the applπ library is not a fundamental issue
and can be alleviated by improving automation.

Despite this overhead, the verification of con-
current programs using the applπ library is
still a satisfactory approach because it handles
multi-threading explicitly and because it is pos-
sible to extract a runnable concurrent program
from the model. The latter was not possible
with our previous model 1) because it was pol-
luted with functional constructs whose purpose
was only the modeling of non-determinism. In
contrast, modeling of non-deterministic failures
in the applπ model does not interfere with
the modeling of the original program. Conse-
quently, it is possible to execute the code of the
model as it is.

To execute the code of the model, it is possi-
ble to write a virtual machine to interpret the
applπ modeling language. However, the extrac-
tion facility of Coq provides a more effective so-
lution. This extraction facility turns Coq pro-
grams into ML programs (OCaml, Haskell, etc.)
by associating to each Coq inductive type a cor-
responding ML datatype, to each Coq function
a corresponding ML function, etc. In partic-
ular, the concurrency primitives of the applπ
modeling language are extracted in the form of
the constructors of the following ML datatype
(we use OCaml syntax for concreteness):
Coq < Extraction proc.

type proc =

| ZeroP

| InP of Obj.t * (Obj.t -> proc)

| RinP of Obj.t * (Obj.t -> proc)

| OutP of Obj.t * Obj.t * proc

| ParP of proc * proc

| NuP of (Obj.t -> proc)

where the type Obj.t corresponds to channels

(this is because we have only provided Coq with
the type of channels, not their implementation).
The idea to execute the extracted OCaml code
is to pre-process it to replace each call to one
of the constructor above by a call to an OCaml
function that implements the appropriate se-
mantics. In other words, given some (param-
eterized) type channel and a set of functions
zeroP, inP, etc. that implement the semantics
of the applπ modeling language, we have a com-
plete mechanism to run models.

7. Conclusion

In this paper, we have explained how one
can verify an existing concurrent program us-
ing a Coq library. More precisely, we gave an
overview of the verification of an existing mail
server written in Java using the applπ library.
First, we introduced the Coq proof assistant
and the applπ library. Second, we explained
how to model the mail server into an applπ
program. Third, we explained how to model
the environment of the mail server, including
modeling of system errors. Last, we reported
on the formal proof that the mail server cor-
rectly handles client requests. We compared
the results of verification with an alternative
approach and observed that (1) the overhead
induces by the applπ library can potentially
be eliminated through better automation, and
that (2) the applπ model is more satisfactory
because in particular it can be run as it is.
This case study shows that the applπ library
provides us with a complete solution to write,
verify, and run concurrent programs in the Coq
interface.

8. Related Work

The issue of verification of concurrent pro-
grams in proof assistants has been addressed
through formalization of the UNITY formal-
ism 5),8),13). This work also includes vari-
ous verifications of non-trivial concurrent pro-
grams. The originality of our case study is
that we verify an existing implementation and

Vol. 46 No. SIG 1(PRO 24) Verification of Concurrent Programs Using Coq: A Case Study 119

discuss for that purpose several reusable tech-
niques for modeling.

There exist several encodings of the π-
calculus in proof assistants with accompanying
libraries 9),10),16). This work essentially focuses
on verification of meta-properties of the pure
π-calculus. In comparison, the applπ library is
built above an applied version of the π-calculus
and we focus on verification of properties of pro-
grams.

In this paper, we used a proof assistant to ver-
ify a concurrent program. Model checking is an
alternative approach 7) that could have equally-
well applied to verification of the mail server.
The advantage of proof assistants is that they
can handle directly infinite state-spaces thanks
to induction, contrary to model checkers that
are limited to finite state-spaces (unless one
resorts to appropriate abstraction techniques).
This is the reason why we investigate the us-
age of proof assistants to verify concurrent pro-
grams.

9. Future Work

We plan to tackle the issue of reducing the
size of formal proofs by improving automation
in the applπ library and combining interactive
proofs with model checking for the applπ mod-
eling language and its logic.

Acknowledgments This work is partially
supported by a research project funded by
Japanese Ministry of Education and Science’s
research program “e-Society.”

References

1) Affeldt, R. and Kobayashi, N.: Formaliza-
tion and verification of a mail server in
Coq, Okada, M., Pierce, B., Scedrov, A.,
Tokuda, H. and Yonezawa A. (Eds), Interna-
tional Symposium on Software Security, Tokyo,
Japan, November 8–10, 2002, Vol.2609 of
Lecture Notes in Computer Science, pp.217–
233, Springer (Feb. 2003). Coq scripts avail-
able at: http://web.yl.is.s.u-tokyo.ac.jp/
~affeldt/mail-system.tar.gz.

2) Affeldt, R. and Kobayashi, N.: A Coq li-
brary for verification of concurrent programs,
4th International Workshop on Logical Frame-
works and Meta-Languages (LFM 2004), Cork,
Ireland, July 5, 2004, pp.66–83. Prelimi-
nary proceedings available at: http://cs-www.
cs.yale.edu/homes/carsten/lfm04/. Formal
proceedings are to appear in Electronic Notes
in Theoretical Computer Science, Elsevier. Coq
documentation available at: http://web.yl.

is.s.u-tokyo.ac.jp/\~{}affeldt/applpi/.
3) Affeldt, R. and Kobayashi, N.: Partial or-

der reduction for verification of spatial prop-
erties of pi-calculus processes, 11th Interna-
tional Workshop on Expressiveness in Concur-
rency (EXPRESS 2004), London, UK, August
30, 2004, pp.113–127. Preliminary proceedings.
Formal proceedings are to appear in Electronic
Notes in Theoretical Computer Science, Else-
vier.

4) Cardelli, L. and Gordon, A.D.: Anytime,
anywhere: modal logics for mobile ambients,
27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL
2000), Boston, Massachusetts, USA, January
19–21, 2000, pp.365–377, ACM Press (2000).

5) Chetali, B.: Formal verification of concurrent
programs using the Larch Prover. IEEE Trans-
actions on Software Engineering, Vol.24, No.1,
pp.46–62 (1998).

6) Clarke, E.M., Grumberg, O. and Peled, D.A.:
Model Checking, MIT Press (2000).

7) Clarke, E.M. and Wing, J.M.: Formal meth-
ods: state of the art and future directions, ACM
Computing Surveys, Vol.28, No.4, pp.626–643
(1996).

8) Heyd, B. and Crégut, P.: A modular coding of
UNITY in Coq, von Wright, J., Grundy, J. and
Harrison, J. (Eds), Theorem Proving in Higher
Order Logics, Vol.1125 of Lecture Notes in
Computer Science, pp.251–266, Springer (Aug.
1996).

9) Hirschkoff, D.: Mise en œuvre de preuves de
bisimulation, Ph.D. thesis, École Nationale des
Ponts et Chaussées (1999).

10) Honsell, F., Miculan, M. and Scagnetto, I.: π-
calculus in (co)inductive type theory, Theoret-
ical Computer Science, Vol.253, No.2, pp.239–
285 (2001).

11) Milner, R.: Communicating and Mobile Sys-
tems: the π-calculus, Cambridge University
Press (1999).

12) Paulin-Mohring, C.: Inductive definitions in
the system Coq: Rules and properties, Bezem,
M. and Groote, J.F. (Eds), 1st International
Conference on Typed Lambda Calculi and Ap-
plications (TLCA 1993), Utrecht, The Nether-
lands, March 16–18, 1993, Vol.664 of Lec-
ture Notes in Computer Science, pp.328–345,
Springer (1993).

13) Paulson, L.C.: Mechanizing a theory of pro-
gram composition for UNITY, ACM Transac-
tions on Programming Languages and Systems,
Vol.23, No.5, pp.626–656 (2001).

14) Pierce, B.C. and Turner, D.N.: Pict: A pro-
gramming language based on the pi-calculus,
Plotkin, G., Stirling, C. and Tofte, M. (Eds),

120 IPSJ Transactions on Programming Jan. 2005

Proof, Language and Interaction: Essays in
Honour of Robin Milner, MIT Press (2000).

15) Postel, J.B.: Rfc 821: Simple mail transfer
protocol, available at: http://www.faqs.org/
rfcs/rfc821.html (Aug. 1982).

16) Röckl, C., Hirschkoff, D. and Berghofer, S.:
Higher-order abstract syntax with induction
in Isabelle/HOL: Formalizing the pi-calculus
and mechanizing the theory of contexts, 4th
International Conference on Foundations of
Software Science and Computation Structures
(FOSSACS 2001), Genova, Italy, April 2–6,
2001, Vol.2030 of Lecture Notes in Computer
Science, Springer (2001).

17) Shibayama, E., Hagihara, S., Kobayashi, N.,
Nishizaki, S., Taura, K. and Watanabe, T.:
AnZenMail: A secure and certified e-mail sys-
tem, Okada, M., Pierce, B., Scedrov, A.,
Tokuda, H. and Yonezawa, A. (Eds), In-
ternational Symposium on Software Security,
Keio University, Tokyo, Japan, November 8–
10, 2002, Vol.2609 of Lecture Notes in Com-
puter Science, Springer (Feb. 2003).

(Received July 2, 2004)
(Accepted September 21, 2004)

Reynald Affeldt was born
in 1976, graduated in 2000 from
the École Nationale Supérieure
des Mines de Nancy (France),
and received his M.S. and D.S.
degrees in Computer Science
from The University of Tokyo in

2001 and 2004 respectively. He is currently a
researcher in the Graduate School of Informa-
tion Science and Technology at the University
of Tokyo. His main interests are partial evalua-
tion, proof assistants, and process calculi. He is
a member of the Japanese Society of Software
Science and Technology.

Naoki Kobayashi was born
in 1968, and received his B.S.,
M.S., and D.S. degrees in Com-
puter Science from The Univer-
sity of Tokyo in 1991, 1993, and
1996, respectively. He was a re-
search associate and a lecturer

in the Graduate School of Science at The Uni-
versity of Tokyo from 1993 to 2001. In 2001,
he became an associate professor in the Gradu-
ate School of Science at the Tokyo Institute of
Technology. In October 2004, he became pro-
fessor in the Graduate School of Information
Sciences at Tohoku University. His current ma-
jor research interests are in the area of princi-
ples of programming languages. In particular,
he is interested in type systems and static anal-
ysis of functional and concurrent programming
languages. He is a member of the Association
for Computing Machinery, the Information Pro-
cessing Society of Japan, and the Japanese So-
ciety of Software Science and Technology.

Akinori Yonezawa received
his Ph.D. degree in Computer
Science from the MIT in 1977.
He is currently professor in the
Department of Computer Sci-
ence at The University of Tokyo.
His current major research inter-

ests are in the areas of concurrent/parallel com-
putation models, programming languages, dis-
tributed computing, and software security. He
was a member of the Scientific Advisory Board
of the German National Research Institute of
Computer Science, served as an associate edi-
tor of the ACM Transactions of Programming
Languages and Systems (TOPLAS), and was a
member of the editorial boards of IEEE Com-
puter and IEEE Concurrency. He also acted as
the president of the Japanese Society of Soft-
ware Science and Technology. In 2000, he was
appointed by the Prime Minister to be a mem-
ber of the Reformation and Deregulation Com-
mittee and the chairman of its Education Sub-
committee for three years. He is a fellow of the
ACM as well as the Japanese Society of Soft-
ware Science and Technology.

