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Aspect-orientation is a new programming paradigm that can localize a cross-cutting concern
in a single module. This paper proposes a new type of Java bytecode analyzer framework
based on aspect-orientation. It includes several new design and implementation techniques
that are general or specific to the domain of language systems. We also observe that aspect-
orientation improves extensibility, type safety, execution efficiency, and simplicity of the API,
when compared with existing analyzer frameworks based on object-orientation such as Soot.
This paper reports the following: structural extension of elementary objects maintaining type
safety and execution efficiency; separation of a bytecode parser and concrete instruction sets;
a visitor based on the stack-machine model; binary operations that are simple, extensive,
and easy to maintain; and separation of nonfunctional concerns such as verification. We also
observe that AspectJ currently has two limitations: it is not sufficiently expressive to structure
aspects strongly depending on the inner structure; and it does not provide a general approach
to write advice that cannot be described with information of its pointcut only.

1. Introduction

A Java bytecode analyzer framework has a
wide range of applications including bytecode-
level optimizing compilers, ahead-of-time com-
pilers, verifiers, and aspect weavers. It will form
the basis of software development supporting
tools that realize a development methodology
that we are developing.

Soot 20), a popular framework, was created
based on object-orientation. Its characteristic
design policy is its capability of simple exten-
sion. Consequently, it experiences some prob-
lems in separation of concerns, type safety, exe-
cution efficiency, complexity of API, and others.

This problem can be solved using Aspect-
oriented programming (AOP)15), which is a
new programming paradigm for separation
of concerns. AOP can localize and mod-
ularize a cross-cutting concern that conven-
tional (object-oriented, procedural) program-
ming paradigms cannot localize, or modularize,
to a single place in the system. For example, a
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logging process that records a method enter and
exit cannot be realized with object-orientation
unless we insert that process into all methods in
the system. On the contrary, we can easily add
the logging process to the system with aspect-
orientation, to describe a logging aspect, which
is a kind of module.

This paper proposes a new type of Java
bytecode analyzer framework based on aspect-
orientation using AspectJ 14). We also observe
that aspect-orientation improves the separation
of concerns, extensibility, type safety, execution
efficiency, and simplicity of API, when com-
pared with existing analyzer frameworks based
on object-orientation.

Our contributions are the following:
• We propose four techniques on AspectJ:

( 1 ) Direct Extension
( 2 ) Abstract Category
( 3 ) Smart Visitor
( 4 ) Binary Operation

• We assess the effectiveness of these tech-
niques.

• We also observe limitations in the current
AspectJ when we describe a verifier as an
aspect.

The rest of this paper is organized as follows.
Section 2 describes an overview of our bytecode
analyzer framework. Section 3 proposes the

This paper is an extended version of Ref. 23).
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direct extension technique, which is the struc-
tured extension of elementary objects maintain-
ing type safety and execution efficiency. Sec-
tion 4 proposes the abstract category technique,
which is the separation of an extendable byte-
code parser from instruction sets. Section 5
proposes the smart visitor technique, which is a
simple process description of each instruction.
Section 6 proposes the binary operation tech-
nique, which is simpler and more extendable
than double-dispatch. Section 7 discusses prob-
lems of description of a verifier as an aspect.
Section 8 shows assessment of these techniques
and discusses the result. Section 9 discusses
some related works. Section 10 concludes this
paper.

2. Framework Overview

Our framework includes the following parts:
• Bytecode scanner: iterates an instruc-

tion sequence of the bytecode in the class
file. This uses Javassist 2) as a bytecode
reader.

• Bytecode parser: translates the instruc-
tion sequence into a code container, which
contains some basic blocks ; it contains some
instruction objects. This parser builds
an intraprocedural factored control flow
graph 4).

• Instruction visitor: receives an instruc-
tion object and dispatches the process cor-
responding to the instruction.

• Data-flow analyzer: analyzes data-
flow information based on the Mono-
tone framework 17). This supports intra-/
interprocedural analysis. Type checker,
which determines types of variables in the
program code, is one of its applications.

3. Direct Extension: Extensions to
Elementary Objects

It is often remarked that aspect-oriented pro-
gramming improves separation of concerns. We
point out that the most effective example of this
fact is that of elementary objects of a frame-
work, such as instruction objects.

For example, consider adding a new feature to
an analyzer derived from a framework: a simple
approach is to add fields or methods to elemen-
tary objects to store necessary information.

However, traditional object-oriented pro-
gramming languages cannot add fields or meth-
ods to elementary objects structurally. For that
reason, they tend to ‘bloat’ chaotically. The

class hierarchy can become deep if a structure
is enforced. In either case, maintainability and
readability are degraded.

Within a framework, the extension of elemen-
tary objects is realized using an indirect ap-
proach, such as table or the Visitor Pattern 7),
rather than by direct addition of fields or meth-
ods. For example, elementary objects are ex-
tended by adding tags in Soot. Tags are named.
They may be requested by searching a table us-
ing this name.

The above techniques may sacrifice type
safety or execution efficiency. Soot sacrifices
both of them: the retrieved tag sacrifices type
safety and must be cast downward before it may
be used. Execution is inefficient because of the
need for searching the table.

AspectJ can define fields and methods di-
rectly using classifications as an aspect using
an inter-type member declaration. For exam-
ple, if we add a field or a method necessary for
an analysis, we can define it structurally in an
aspect concerned with the analysis.

Indirect extension mechanisms, such as tags
in Soot, are no longer needed. The type sys-
tem of AspectJ ensures the type safety of added
fields and methods. Execution efficiency is im-
proved when compared to indirect extension be-
cause they are woven into classes directly.

4. Abstract Category: Separation of
the Bytecode Parser and Instruc-
tion Sets

A bytecode parser scans binary class files,
generates instruction objects corresponding to
the byte sequences, and inserts labels. It also
sets the relationships between instructions. It
does so, for example, by using a succeed set,
which is a set of instructions that may be ex-
ecuted after other instructions, except those
throwing exceptions, in a manner similar to
that of a Factored Control Flow Graph 4).

Next, we specifically address setting suc-
ceed sets, which depend on the class of an in-
struction. Instructions are divided into non-
terminator and terminator categories: a suc-
ceed set of a non-terminator includes the next
instruction, while a succeed set of a terminator
does not.

Instructions may also be divided into non-
branch, branch, and switch categories: a suc-
ceed set of a non-branch instruction does not
include any special jump target; a succeed set
of a branch instruction includes one jump tar-
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get; and a succeed set of a switch instruction
includes two or more jump targets.

A succeed set can be determined by clas-
sification, rather than by the instruction set,
but the instruction set determines how a con-
crete instruction class is classified. In ad-
dition, another process, such as one detect-
ing potential exception-throwing instructions
(PEIs)4), may require another classification.
Therefore, we must realize such a classification
using interface because Java is a language
that supports single inheritance and multiple
supertypes.

However, Java does not allow interface to
have concrete methods. Therefore, the pro-
cess of setting succeed sets is distributed among
code sections that contain concrete instruc-
tions.

AspectJ solves this problem. First, we pro-
vide two aspects to the parser. The first as-
pect is addNextToSucc, which adds the next
instruction to the succeed set if the current in-
struction is a non-terminator. The second as-
pect is addBranchTargetToSucc, which adds
the target instruction(s) to the succeed set if
the current instruction is a branch or a switch.
Secondly, we make a concrete instruction class
implement the interface corresponding to the
classification. Lastly, if the order of the suc-
ceed set is important, we can set the priority or-
der using the precedence declaration between
addNextToSucc and addBranchTargetToSucc.
Figures 1 and 2 show example codes of a
parser and an instruction set.

Generally speaking, if there are classifications
into some given classes, and if the classifications
determine the corresponding processes, we can
write simple code so that the classifications and
the processes are represented using interface
and aspects, respectively.

Although multiple inheritance has similar ef-
fects, this approach using aspects has two ad-
vantages: we can add a classification with-
out modifying existing code. In addition, we
can avoid the method conflict problem. For
example, an instruction that is both a non-
terminator and a branch is realized easily in
AspectJ but cannot be realized naturally using
multiple inheritance.

5. Smart Visitor: The Specialized Vis-
itor for the Stack Machine Model

An operation corresponding to a given in-
struction often includes common processes. For

public class Parser {
public static class Instruction {

void setSucc
(Instruction[] table, int pc) {}

...
}
public static interface Terminator {}
public static interface Branch {...}
public static interface Switch {...}
static aspect addNextToSucc {

pointcut addNextToSucc(Instruction inst,
Instruction[] table, int pc)
: call(void Instruction.setSucc

(Instruction[], int))
&& target(inst) && args(table, pc)
&& !target(Terminator);

before(Instruction inst,
Instruction[] table, int pc)
: addNextToSucc(inst, table, pc) {
...

}
}
static aspect addBranchTargetToSucc {

pointcut addBranchTargetToSucc
(Instruction inst,
Instruction[] table, int pc)
: call(void Instruction.setSucc

(Instruction[], int))
&& target(inst) && args(table, pc)
&& target(Branch);

before(Instruction inst,
Instruction[] table, int pc)

: addBranchTargetToSucc(inst,
table, pc) {

...
}
...

}
}

Fig. 1 Bytecode parser using AspectJ.

import Parser.*;

public class Aload extends Instruction {...}
public class Return extends Instruction

implements Terminator {...}
public class Ifeq extends Instruction

implements Branch {...}
public class Goto extends Instruction

implements Terminator, Branch {...}
public class Tableswitch extends Instruction

implements Terminator, Switch {...}
...

Fig. 2 Java bytecode instruction set example.

example, because Java bytecode is based on the
stack machine model, operations such as push
or pop are commonly included in the operations
corresponding to each instruction.

Therefore, we provide a Smart Instruction
Visitor as part of our framework, based on
the Java bytecode model, which is a domain-
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public abstract class InstructionVisitor {
... // S1
protected void push(Object value) {}
protected void push2(Object value) {

push(value);
}
...
protected void pushInt(Object value) {

push(value);
}
...
protected void pushDouble(Object value) {

push2(value);
}
...
protected Object pop() {

return null;
}
...
protected void store
(int index, Object value) {}

...
protected Object load(int index) {

return null;
}
... // S2
public static abstract aspect Pointcuts {

pointcut intBinaryOperator
(InstructionVisitor v,
Instruction inst,
Object value1, Object value2)
: execution
(Object InstructionVisitor+
.at(Instruction+, Object, Object))

&& target(v)
&& args(inst, value1, value2)
&& args(Idiv, Object, Object)
&& ...;

...
} // S3
protected Object at
(Iload inst, Object loadedValue) {

return loadedValue;
}
protected Object at
(Idiv inst,
Object value1, Object value2) {
return null;

}
... // S4
static aspect InsertCode {

private abstract void Instruction.at
(InstructionVisitor v);

...
private void Iload.at
(InstructionVisitor v) {

Object value
= v.loadInt(this.index);

value = v.at(this, value);
v.pushInt(value);

}
private void Idiv.at
(InstructionVisitor v) {

Object value2 = v.popInt();
Object value1 = v.popInt();
Object result
= v.at(this, value1, value2);

v.pushInt(result);
}
...

}
}

Fig. 3 The smart instruction visitor.

specific variant of the Visitor Pattern 7). The
programmer has access to four basic operations
(push, pop, load, store) and the processes cor-
responding to each instruction. The program-
mer does not need to write all of these and can
override only those necessary.

We provide variations of basic operations
corresponding to different types because Java
bytecode is a typed language. For example,
pushInt corresponds to the type int. We also
provide push and pop operations that handle
values using appropriate types for getfield,
putstatic, etc. Moreover, we provide varia-
tions for basic operations corresponding to 32-
and 64-bit types to satisfy the Java bytecode
specification. Finally, we provide variations of
push and pop corresponding to either two 32-
bit types or one 64-bit type, for dup2, etc.

Our framework describes the process corre-
sponding to each instruction as a method which
is supplied an instruction object and zero or
more arguments, and which returns a zero or
one result. For example, a process correspond-
ing to the instruction idiv is defined as a
method that is given an instruction object and
two division values; moreover, it returns a re-
sult value object.

It is effective to define pointcuts for methods
corresponding to instructions that have com-
mon features. This allows the methods to be
defined structurally from various viewpoints.

Figure 3 shows an implementation of the
Smart Instruction Visitor. Basic operations,
various pointcuts, processes corresponding to
instructions and inner processes, are defined
from S1, S2, S3, and S4, respectively.

The basic behavior is as follows: Methods re-
ceiving a Visitor are first defined using inter-
type method declarations (S4). The corre-
sponding basic operations and processes are
called in these methods. For example, the in-
ner method of idiv calls popInt, twice. The
process corresponding to idiv is called with
the instruction object and the returned values;
pushInt is called with the returned value.

We provide default implementations of ba-
sic operations and processes that correspond to
each instruction. Relationships between vari-
ations of basic operations are represented as
an invocation from more constrained variation
methods to less constrained (S1). Therefore, all
a programmer must do is to override the neces-
sary methods.
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Fig. 4 The type property space for java.

6. Binary Operation: Simple and Ex-
tensible Implementation

We must implement the binary operation of
properties to realize a data flow equation as a
framework. In type checking, for example, we
must calculate the least upper bound (∪) of the
type property at the merge points 17).

Figure 4 shows a lattice representing the
property space for type checking 16). Bottom
⊥ represents an initial value. Therefore, the
least upper bound of property P and ⊥ is P
(⊥∪ P = P ∪⊥ = P ). Top � in type checking
indicates untyped. The least upper bound of
property P and � is � (� ∪ P = P ∪ � = �).

Next, the least upper bound of the same
primitive type, such as int, is the type and
the least upper bound of a different primitive
type is untyped. For example, Pint ∪ Pint =
Pint, Pint ∪ Pfloat = �. Note that the
rule of top and bottom precedes this rule, i.e.
Pint ∪ ⊥ = ⊥.

Next, the least upper bound of the object
type is a common ancestor. For example,
PFileInputStream ∪ PBufferedInputStream
= PInputStream. Note that the rules for bot-
tom, top, and primitive types precede this rule.
Moreover, the least upper bound of an object
type is a class with zero or more interfaces be-
cause Java provides single inheritance of class,
but multiple subtyping of interfaces.

Finally, the least upper bound of null and
the primitive type are untyped; the least upper
bound of null and the object type are the ob-
ject type. Note that the rule of bottom precedes
this rule.

public class PrimitiveType extends Property {
public Property meet(Property p) {

if(p instanceof Bottom) {
return this;

}
if(p instanceof Untyped) {

return p;
}
if(p instanceof ...) ...
...

}
}

Fig. 5 Implementation of the primitive type property
using instanceof.

Consider the implementation of binary op-
erations with a least upper bound based on
these rules. A naive implementation may use
instanceof. For example, Fig. 5 shows the im-
plementation of a primitive type property, but
this implementation is less extensible and main-
tainable. If we add a new type property, we
must modify all meet methods, which calculate
the least upper bounds. Moreover, if we change
the order of precedence of the rules, we must
swap the order of if in some methods.

Next, consider implementation using double-
dispatch. Figure 6 shows a binary opera-
tion using double-dispatch. The behavior of
this operation is somewhat complicated. When
the method meet is called, it calls the method
with* corresponding to the class of the receiver
this. For example, if the receiver is Bottom,
it calls the method withBottom. The receiver
and the argument of the call are swapped. This
realizes binary operations by defining processes
that correspond to each class of receiver and the
argument of meet.

The advantage of double-dispatch is that
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public abstract class Property {
public abstract
Property meet(Property p);

protected abstract
Property withBottom(Bottom p);

protected abstract
Property withUntyped(Untyped p);

protected abstract
Property withPrimitiveType
(PrimitiveType p);

...
}
public class Bottom extends Property {

public Property meet(Property p) {
p.withBottom(this);

}
public Property withBottom(Bottom p) {

return p;
}
public Property withUntyped(Untyped p) {

return p;
}
public Property withPrimitiveType
(PrimitiveType p) {
return p;

}
...

}
public class Untyped extends Property {

public Property meet(Property p) {
p.withUntyped(this);

}
public Property withBottom(Bottom p) {

return this;
}
public Property withUntyped(Untyped p) {

return this;
}
public Property withPrimitiveType
(PrimitiveType p) {
return this;

}
...

}
public class PrimitiveType
extends Property {
public Property meet(Property p) {

p.withPrimitiveType(this);
}
public Property withBottom(Bottom p) {

return this;
}
public Property withUntyped(Untyped p) {

return p;
}
public Property withPrimitiveType
(PrimitiveType p) {
...

}
...

}

Fig. 6 Implementation of the type property using
double-dispatch.

maintainability is improved because each
method is simplified. However, the problems
remain, as we must modify all property classes
to add a new type property. We also must mod-
ify many classes to swap the precedence order
of the rules. Moreover, we need to write the
same process as many methods, such as the im-
plementation of Bottom and Untyped.

AspectJ solves these problems simply (see
Fig. 7). Actual processes are implemented us-
ing around without proceed in the coordina-
tor aspect. For example, BottomCoordinator
describes the process of involving the bot-
tom and something else. Moreover, the pro-
cess of combining different types is described
in a combination coordinator. For example,
a process of involving a combination of ob-
ject types and primitive types is described in
ObjectAndPrimitiveCoordinator.

Next, coordinators are sorted in precedence
in topological order of lattice from the bottom.
A combination coordinator precedes the coor-
dinator of each property. The content of the
method meet in the class Property is meaning-
less except when throwing an exception, when
it is called with an unexpected combination of
properties.

This implementation solves the above prob-
lems. If we add a new type property, we must
only write a coordinator and give the appropri-
ate precedence order. If we must write a special
behavior for combination with other properties,
we must only write an appropriate combination
coordinator. If we change the order of prece-
dence, we must only modify the precedence.
Moreover, we do not need to write the same
process in many methods.

7. The Verifier as an Aspect

Our framework provides a bytecode verifier
using a parser and a type checker. One advan-
tage of aspect-oriented programming is its abil-
ity to unify the cross-cutting concern of non-
functional features such as verification. We
have actually implemented the verifier in this
manner.

An overview of our current implementation
of the verifier is as follows. Figure 8 shows a
section of the verifier code.

We can divide this into parsing-time verifi-
cation and type-checking-time verification sub-
sections. The parsing-time verification sub-
section includes the pointcut insertLabel
and the after advice of insertLabel. The
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public aspect Coordinator {
declare precedence: BottomCoordinator,

...
ObjectAndPrimitiveCoordinator,
ObjectTypeCoordinator,
PrimitiveTypeCoordinator,
...
UntypedCoordinator;

}
public abstract class Property {

public Property meet(Property p) {
throw new RuntimeException
("unsupported property:"
+ this + ", " + p);

}
}
public abstract aspect PropertyCoordinator {

pointcut meet(Property p1, Property p2)
: execution(
Property Property+.meet(Property+))

&& target(p1) && args(p2);
}
public class Bottom extends Property {}
public aspect BottomCoordinator
extends PropertyCoordinator {
Property around(Property p)

: meet(Property, p)
&& target(Bottom) {
return p;

}
Property around(Property p)

: meet(p, Property)
&& args(Bottom) {
return p;

}
}
...
public class ObjectType extends Property {}
public aspect ObjectTypeCoordinator
extends PropertyCoordinator {
Property around
(ObjectType p1, ObjectType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
// calculate least upper bounds on types

}
}
...
public aspect ObjectAndPrimitiveCoordinator
extends PropertyCoordinator {
Property around
(ObjectType p1, PrimitiveType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
return new Untyped();

}
Property around
(PrimitiveType p1, ObjectType p2)
: meet(Property, Property)
&& target(p1) && args(p2) {
return new Untyped();

}
}

Fig. 7 Implementation of the type property using
AspectJ.

public aspect Verifier {
pointcut insertLabel(Instruction inst, int pc)
: call(void Instruction
.insertLabel(Instruction[], int))

&& target(inst) && args(Instruction[], pc);
after(Instruction inst, int pc)
throwing (IndexOutOfBoundsException e)
: insertLabel(inst, pc) {
throw new VerifyException(
"The target branch is out of bounds: "
+ pc + ":" + inst);

}
pointcut stackUnderFlow()
: call(Object LinkedList.removeFirst())
&& within(TypeChecker);

after() throwing (NoSuchElementException e)
: stackUnderFlow() {
throw new VerifyException
("stack under flow");

}
pointcut stackOverFlow(LinkedList stack)
: call(void LinkedList.addFirst(Object))
&& target(stack)
&& within(TypeChecker);

before(LinkedList stack)
: stackOverFlow(stack) {
int maxStack = ...; // how can we get?
if(stack.size() >= maxStack) {

throw new VerifyException
("stack over flow:" + maxStack);

}
}

}

Fig. 8 Implementation of the verifier.

parser calls the method insertLabel when
it finds a branch instruction. If the
branch refers to a location outside the
bounds of the code, insertLabel throws an
IndexOutOfBoundsException. Advice of the
verifier catches the exception and rethrows a
VerifyException.

The type-checking-time verification sub-
section includes the stackUnderFlow and
stackOverFlow parts. The TypeChecker class
extends our dataflow analyzer framework and
uses LinkedList in the Java class library as
the operand stack.

In this design and implementation, we have
found that AspectJ has two problems currently
at least.
• The dependence problem: AspectJ is

not sufficiently expressive to structure as-
pects in order to avoid to depend on inner
structure strongly.

• The additional information problem;
AspectJ cannot ensure to append addi-
tional information safely and generally.

7.1 The Dependence Problem
In our implementation, the verifier depends
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strongly on the inner structure of the parser
and the type checker. Therefore, not only must
we modify the verifier whenever we modify the
parser or type checker, but we cannot reuse the
verifier with, for example, another instruction
set.

This problem is partially solved using aspect
structuring, i.e., dividing the verifier into parts
that are dependent and independent of instruc-
tion sets, and parameterizing the dependent
part. However, AspectJ cannot currently sepa-
rate the verifier in this manner. Abstract point-
cuts are useful, but they are insufficient to per-
form this separation.

Parametric introductions 10), which areinter-
type introductions parameterized target classes,
may solve this problem partially. This solution
is as follows:
( 1 ) Define generic aspects that insert verifi-

cation code to the abstract parser and
type checker.

( 2 ) Parameterize the aspects to the concrete
parsers and type checkers using connec-
tor aspects.

However, it is successful only in the case that
the abstract parser and type checker can be de-
fined sufficiently well, that is, if we cannot ex-
tract an abstraction of parsers and type check-
ers, we also cannot define generic aspects. In
this case, we have found that verification code
is too heterogeneous to define generic aspects.

7.2 The Additional Information Prob-
lem

We designed our framework to separate an
analyzer from the target bytecode, i.e., the an-
alyzer should not hold any analyzing state in-
formation about the target bytecode; the target
bytecode should hold all of this analyzing state
information. The operand stack then belongs
to the target.

When the list is empty and the method
removeFirst is called, the LinkedList throws
a NoSuchElementException. Therefore, the
pointcut and the advice of stackUnderFlow
catches the exception and then rethrows a
VerifyException.

In contrast, implementation of the process of
stackOverFlow engenders a problem when at-
tempting to retrieve the maximum stack size.
The advice of stackOverFlow can access the
operand stack and this join point. We may ex-
tract information about the type checker classes
from this join point. However, according to our
design policy, the type checker classes hold no

code information, such as the maximum stack
size.

On the other hand, the operand stack orig-
inally does not hold the maximum stack size
because it is an instance of LinkedList in the
Java class library. If we wish to add the maxi-
mum stack size to the stack, we must establish
the maximum stack size of the list in advance.
It is difficult to ensure this setting for general
cases.

It may not be possible to provide advice with
information only from a pointcut. For exam-
ple, we cannot provide advice to detect the
overflow of the operand stack naturally because
its pointcut gives only an operand stack object
as a parameter. In addition, the object does
not provide a method to retrieve the maximum
stack size defined in each method.

These shortcomings may be solved by defin-
ing advice and an inter-type field declaration
by adding information about the corresponding
method to the stack object. However, this is a
specific and ad hoc approach. Moreover, this
cannot ensure to set the maximum stack size of
the operand stack on the all control-flow path.

This problem may be solved in the following
way:
• Introduce a rich pointcut that ensure to set

additional information on the all control-
flow path.

• Compose the rich pointcut from the exist-
ing pointcut such as if pointcut in AspectJ
and/or pcflow 13).

• Define the rich pointcut using pointcut de-
scription languages such as Refs. 3) and 9)

First, we cannot found such an existing rich
pointcut. Second, we cannot compose the rich
pointcut from the existing pointcut because
there is no pointcut that captures setting code
information on the all control-flow path to use
it for verification.

Last, we found that Josh 3) is too low expres-
sive to write the rich pointcut. Josh has only
basic reflection mechanism. We found defining
the rich pointcut need control/data flow analy-
sis mechanism.

8. Assessment

In this section, in order to evaluate the ef-
fectiveness of our implementation techniques
of AspectJ, we compare two bytecode frame-
works and specializers written in Java and As-
pectJ 22). Note that both implementation can-
not be compared directly because we have im-
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Table 1 Code size (line number) and file number comparison.

framework specializer
technique name Java AspectJ Java AspectJ
Direct Extension 676/159 0/0 503/4 1027/9

Abstract Category –/– –/– –/– –/–
Smart Visitor 2453/162 1571/1 1300/5 143/4

Binary Operation 181/1 506/2 0/0 0/0

plemented the framework and the specializer
written in AspectJ not from the ones written
in Java but from scratch.

Table 1 shows code size and file number in
these specializers and our framework in which
we use the proposed techniques. The data of
the abstract category is not available because
we have not implemented by the abstract cate-
gory completely, yet.

The direct extension technique in Java is sim-
ple visitor applied only to instruction classes. A
concern on instruction visitor in framework is
spread among all concrete instruction classes,
because each instruction class must have a
method accept. Moreover, because it cannot
be applied to other classes, the classes in spe-
cializer using it are only 4. On the other hand,
the direct extension technique in AspectJ can
be applied not only to instruction visitor but
also other classes. Plus, it eliminates the code
size of both the framework and the specializer.

The smart visitor technique includes the di-
rect extension technique because it is realized
by the simple visitor. The visitor concern in
the framework written in Java is spread among
instructions and its code size tends to be large.
On the other hand, in the framework written
in AspectJ, the visitor concern is only in one
module, and its code size is reduced. The smart
visitor technique is more effective in the special-
izer. The code size of the specializer is elimi-
nated drastically.

The binary operation technique, however, en-
larges the code size, though the data flow an-
alyzer in the framework written in AspectJ is
more expressive than the one written in Java
because of the technique.

9. Related Work

9.1 Bytecode Analyzers
Joeq 21) is an extensible virtual machine and

compiler infrastructure. It has many sophisti-
cated features and can be used as a bytecode
analyzer framework.

Joeq provides the Visitor framework, en-
abling a simple analyzer implementation. Joeq

can realize an analyzer by overriding the defined
methods in advance for some situations, such as
field accesses in an instance. Therefore, a pro-
grammer cannot unify arbitrary methods with
the same behavior. On the contrary, our Smart
Instruction Visitor can realize an analyzer us-
ing pointcuts, which can be defined freely by a
programmer without performance penalty.

Joeq also provides a dataflow framework in
which the binary operations of properties are
defined in the centralized dataflow problem
class. Whaley does not show an implementa-
tion detail for binary operations. It would be
complicated for some analyzers, such as a type
analyzer.

Although OVM 18) is specialized for a virtual
machine, its design policy can apply a byte-
code analyzer. The main advantage of OVM
is its memory efficiency; the OVM intermedi-
ate representation (OvmIR) uses the Flyweight
Pattern 7). In contrast, our current implemen-
tation requires more memory than OVM.

OVM also adopts the Runabout Pattern 8),
making it more extensible, but giving it worse
execution performance than the Visitor Pattern
approach. This tradeoff is unavoidable when
using Java and Java-based languages such as
AspectJ. OVM focuses on the customization of
the intermediate representation, so OVM has
opted for extensibility and the Runabout ap-
proach. Nevertheless, we choose to optimize
performance by using the Visitor approach be-
cause the main target of our framework is Java
bytecode.

Ideally, our approach should be mixed: in the
early stage of development, we should take the
Runabout approach. When the specifications
of the intermediate representations are almost
fixed, we should switch to the Visitor approach.
To ease the switch, we will need an automatic
code translator to convert from the Runabout
to the Visitor.

9.2 Aspect-oriented Design and Im-
plementation

Coady and Kiczales refactor FreeBSD operat-
ing system using AspectC 5). They found and
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refactor tangled code of page daemon activa-
tion, prefetching, disk quotas, and blocking in
device drivers. They also evaluate that the ex-
tracted aspect is robust through system evolu-
tion. Because their approach is based on exist-
ing large system, its evaluation is more scientific
than ours. However, because we have built the
framework from scratch, we can design the fun-
damental architecture using the advantages of
AspectJ.

Ségura-Devillechaise, et al. have built an
aspect-oriented web cache system 19). They dis-
cuss how aspect-orientation refines web caches
and prefetching, and propose dynamic native-
code-based weaving system. Their aspects are
more course-grained than ours, and are at-
tached and detached as modules.

Colyer and Clement have built large-scale
middleware for distributed system 6). They
categorize cross-cutting concerns into homoge-
neous and heterogeneous. They propose sev-
eral techniques on homogeneous cross-cutting
concerns and systematic refactoring process on
heterogeneous cross-cutting concerns.

Harbulot and Gurd report separation of con-
cerns in scientific computing 12). They try
to separate computation algorithm and paral-
lelization, especially loop. They also propose
aspect-oriented refactoring techniques.

Bodkin and Almaer report many techniques
that are found through development of aTrack,
which is a web-based bug tracking tool 1). The
techniques is more fine-grained than our tech-
niques. For example, they propose an exception
handling technique in AspectJ, which contains
only one advice.

9.3 Design Patterns
We can refine our techniques to design pat-

terns for AspectJ if we show their general ap-
plicability.

Hannemann 11) discusses how to describe the
Gang-of-Four (GoF) design patterns 7) in As-
pectJ. Although he proposes new implementa-
tion of GoF patterns, he does not propose new
patterns that cannot be described without as-
pect orientation.

10. Conclusions and Future Work

We have built a Java bytecode analyzer
framework that uses aspects. Thereby, we ob-
served five advantages. Firstly, we realized ex-
tensions of elementary objects structurally and
maintained type safety and execution efficiency.
Secondly, we implemented a bytecode parser

that is independent of any single concrete in-
struction set. Thirdly, we simplified the de-
scription of processes for each instruction us-
ing the Smart Instruction Visitor based on the
stack machine model. Fourthly, we realized bi-
nary operations that are simple, extensive, and
easy to maintain. Finally, we unified the de-
scription of a cross-cutting concern of a wide
ranging nonfunctional features such as verifica-
tion.

Furthermore, we observed that AspectJ cur-
rently has two limitations: it is not sufficiently
expressive to structuralize aspects deeply on the
basis of their inner structure; it does not pro-
vide a general approach to write advice that
cannot be described with its pointcut only.

In the future, we will build a bytecode trans-
lator framework based on aspect-oriented soft-
ware development. It will allow us to build
many applications, including a bytecode-level
optimizing compiler.
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