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Lightweight Nested Functions
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The SC language system was developed to provide a transformation-based language ex-
tension scheme for SC languages (extended/plain C languages with an S-expression-based
syntax). Using this system, many flexible extensions to the C language can be implemented
by means of transformation rules over S-expressions at low cost, mainly because of the pre-
existing Common Lisp capabilities for manipulating S-expressions. This paper presents the
LW-SC (Lightweight-SC) language as an important application of this system, featuring
nested functions (i.e., functions defined inside other functions). A function can manipu-
late its caller’s local variables (or local variables of its indirect callers) by indirectly calling a
nested function of its callers. Thus, many high-level services with “stack walk” can be easily
and elegantly implemented by using LW-SC as an intermediate language. Moreover, such ser-
vices can be implemented efficiently because we designed and implemented LW-SC to provide
“lightweight” nested functions by aggressively reducing the costs of creating and maintaining
nested functions. The GNU C compiler also provides nested functions as an extension to C,
but our sophisticated translator to standard C is more portable and efficient for occasional
“stack walk.”

1. Introduction

The C language is often indispensable for de-
veloping practical systems. Furthermore, ex-
tended C languages are sometimes suitable for
elegant and efficient development. A language
extension can be implemented by modifying a C
compiler, but in some cases it can also be done
by translating an extended C program into C.
We developed the SC language system 8),10) to
facilitate such transformation-based language
extensions. SC languages are extended/plain C
languages with an S-expression-based syntax,
whose extensions are implemented by transfor-
mation rules over S-expressions. Thus it is pos-
sible to reduce implementation costs mainly be-
cause of the ease with which S-expressions can
be manipulated by using Lisp.

The fact that C has low-level operations (e.g.,
pointer operations) enables many flexible ex-
tensions to be implemented by using the SC lan-
guage system. But without taking “memory”
addresses, C lacks an ability to access variables
sleeping in the execution stack, which is re-
quired for implementation of high-level services
with “stack walk” such as capturing a stack
state for check-pointing and scanning roots for
copying GC (garbage collection).
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A possible solution to this problem is to sup-
port nested functions. A nested function is
a function defined inside another function. A
function can manipulate its caller’s local vari-
ables (or local variables of its indirect callers)
sleeping in the execution stack by indirectly
calling a nested function of its callers.

This paper presents an implementation of
an extended SC language, named LW-SC
(Lightweight SC), which features nested func-
tions☆. Many of the above-mentioned high-
level services with “stack walk” can be easily
and elegantly implemented by using LW-SC as
an intermediate language. Moreover, such ser-
vices can be implemented efficiently because we
designed and implemented LW-SC to provide
“lightweight” nested functions by aggressively
reducing the costs of creating and maintaining
nested functions. Though the GNU C com-
piler 15) (GCC) also provides nested functions
as an extension to C, our sophisticated transla-
tor to standard C is more portable and efficient
for occasional “stack walk.”

Note that, though this paper presents an im-
plementation using the SC language system,
our technique is not limited to it.

☆ We have previously reported the implementation of
LW-SC as an example of a language extension using
the SC language system 10). This paper discusses
further details of LW-SC itself.
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Fig. 1 Code translation phases in the SC language system.

2. The SC Language System

This section explains those aspects of the SC
language system necessary for the specification
and implementation of LW-SC. More details
are available in our past papers 8),10).

2.1 Overview
The SC language system, implemented in

Common Lisp, deals with the following S-
expression-based languages:
• SC-0, the base SC language, and
• extended SC languages,

and consists of the following three modules:
• the SC preprocessor,which includes SC files

and handles macro definitions and expan-
sions,

• the SC translator,which interprets transfor-
mation rules for translating SC code into
another SC, and

• the SC compiler,which compiles SC-0 code
into C.

Figure 1 shows code translation phases in
the SC language system. Extended SC code
is translated into SC-0 by the SC translators,
and then translated into C by the SC compiler.
Before each translation phase with a transfor-
mation rule-set is applied, preprocessing by the
SC preprocessor is performed. Extension im-
plementers can develop a new translation phase
simply by writing new transformation rules.

2.2 The SC Preprocessor
The SC preprocessor handles the following

SC preprocessing directives to transform SC
programs:
• (%include file-name)

corresponds to an #include directive in C.
The file file-name is included.

• (%defmacro macro-name lambda-list
S-expression1· · ·S-expressionn)

evaluated as a defmacro form of Com-
mon Lisp to define an SC macro. After

the definition, every list in the form of
(macro-name · · ·) is replaced with the re-
sult of the application of Common Lisp’s
macroexpand-1 function to the list. The
algorithm to expand nested macro applica-
tions complies with the standard C specifi-
cation.

• (%defconstantmacro-name S-expression)
defines an SC macro in the same way as
a %defmacro directive, except that every
symbol which is eq to macro-name is re-
placed with S-expression after the defini-
tion.

• (%undef macro-name)
undefines the specified macro defined by
%defmacros or %defconstants.

• (%ifdef symbol list1 list2)
(%ifndef symbol list1 list2)
If the macro specified by symbol is defined,
list1 is spliced there. Otherwise, list2 is
spliced.

• (%if S-expression list1 list2)
S-expression is macro-expanded, and then
the result is evaluated by Common Lisp. If
the return value is eql to nil or 0, list2 is
spliced there. Otherwise, list1 is spliced.

• (%error string)
interrupts the compilation with an error
message string .

• (%cinclude file-name)
file-name specifies a C header file. The
C code is compiled into SC-0 and the re-
sult is spliced there. SC programmers
can use library functions and most of the
macros, such as printf and NULL, de-
clared/#defined in C header files☆.

☆ In some cases such a translation is not obvious.
In particular, it is sometimes impossible to trans-
late #define macro definitions into %defmacro or
%defconstant. We have discussed this problem else-
where 9).
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2.3 The SC Translator and Transfor-
mation Rules

A transformation rule for the SC translator
is given by the syntax:

(function-name pattern parm2 · · · parmn)
-> expression,

where a function function-name is defined as
an ordinary Lisp function. When the function
is called, the first argument is tested to deter-
mine whether it matches pattern. If it matches,
expression is evaluated by the Common Lisp
system, and its value is then returned as the
result of the function call. The parameters
parm2 · · · parmn, if any, are treated as ordinary
arguments.

A list of transformation rules may include two
or more rules with the same function name. In
these cases, the first argument is tested to deter-
mine whether it matches each pattern, in writ-
ten order, and the result of the function call is
the value of expression if there is a match.

It is permissible to abbreviate

(function-name pattern1 parm2 · · · parmn)
-> expression

. . .
(function-name patternm parm2 · · · parmn)
-> expression

(all the expressions are identical and only pat-
terns are different from each other) to

(function-name pattern1 parm2 · · · parmn)
. . .

(function-name patternm parm2 · · · parmn)
-> expression.

The pattern is an S-expression consisting of one
of the following elements:
(1) symbol

matches a symbol that is eq to symbol.
(2) ,symbol

matches any S-expression.
(3) ,@symbol

matches any list of elements longer than 0.
(4) ,symbol[function-name]

matches an element if the evaluation result
of (funcall #’function-name element) is
non-nil.

(5) ,@symbol[function-name]
matches list (longer than 0) if the eval-
uation result of (every #’function-name

list) is non-nil.
The function function-name can be what is de-
fined as a list of transformation rules or an ordi-
nary Common Lisp function (a built-in function
or a function defined separately from transfor-
mation rules).

In evaluating expression, the special variable
x is bound to the whole matched S-expression
and, in all the cases except (1), symbol is bound
to the matched part in the S-expression.

An example of such a function definition can
be given as follows☆:

(EX (,a[numberp] ,b[numberp]))
-> ‘(,a ,b ,(+ a b))

(EX (,a ,b))
-> ‘(,a ,b ,a ,b)

(EX (,a ,b ,@rem))
-> rem

(EX ,otherwise)
-> ’(error)

The application of the function EX can be ex-
emplified as follows:

(EX ’(3 8)) → (3 8 11)
(EX ’(x 8)) → (x 8 x 8)
(EX 8) → (error)
(EX ’(3)) → (error)
(EX ’(x y z)) → (z)

Each set of transformation rules defines one or
more (in most cases) function(s). A piece of
extended SC code is passed to one of the func-
tions, which generates transformed code as the
result.

Internally, transformation rules for a function
are compiled into an ordinary Common Lisp
function definition (defun). The output can
be loaded by the load function, which makes
it easy for programmers to test some parts of
transformation rule-sets in an interactive envi-
ronment.

2.4 The SC Compiler and the SC-0
Language

We designed the SC-0 language as the final

☆ In consideration of symmetry between expressions
and patterns, it is more pertinent to describe
‘(,a[numberp] ,b[numberp]) with a backquote.
However, this notation rule leads to the inconve-
nience that programmers have to put backquotes
before most patterns. We preferred shorter descrip-
tions, and have therefore adopted the notation with-
out backquotes.
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(def (sum a n) (fn int (ptr int) int)
(def s int 0)
(def i int 0)
(do-while 1

(if (>= i n) (break))
(+= s (aref a (inc i))))

(return s))

Fig. 2 An SC-0 program.

int sum (int* a, int n) {
int s=0;
int i=0;
do{
if ( i >= n ) break;
s += a[i++];

} while(1);
return s;

}

Fig. 3 C program equivalent to Fig. 2.

target language for translation by transforma-
tion rules. It has the following features:
• an S-expression-based, Lisp-like syntax,
• the C semantics; actually most C code can

be represented in SC-0 in a straightforward
manner☆, and

• practicality for programming.
Figure 2 shows an example of such an SC-0

program, which is equivalent to the program in
Fig. 3.

In practice, the SC compiler is imple-
mented as a transformation rule-set de-
scribed above, which specifies transformation
from S-expressions into strings (instead of S-
expressions).

3. Language Specification of LW-SC

LW-SC has the following features as exten-
sions to SC-0:
• Nested function types:

(lightweight type-expression-list)
is added to the syntax for type-expression.

• Calling nested functions: In function-
call expressions ((expression-list)), the
type of the first expression is permitted to
be any nested function pointer type other
than the ordinary function pointer type.

• Defining nested functions: In places
where variable definitions are allowed, ex-
cept at the top level, definitions of nested
functions are permitted in the following
form:
(def (identifier-list)

☆ Except for some features such as -> operators, for
constructs, and while constructs. These are imple-
mented as language extensions to SC-0 using the SC
language system itself.

(def (h i g) (fn int int (ptr (lightweight int int)))
(return (g (g i))))

(def (foo a) (fn int int)
(def x int 0)
(def y int 0)
(def (g1 b) (lightweight int int)
(inc x)
(return (+ a b)))

(= y (h 10 g1))
(return (+ x y)))

(def (main) (fn int)
(return (foo 1))

Fig. 4 An LW-SC program.

(lightweight type-expression-list)
block-item-list)

(the syntax is almost the same as that of
ordinary function definitions, except for the
difference between the keywords fn and
lightweight.)

A nested function can access the lexically
scoped variables in the creation-time environ-
ment and a pointer to it can be used as a
function pointer to indirectly call the closure.
For example, Fig. 4 shows an LW-SC program.
When h indirectly calls the nested function g1,
it can access a parameter a and local variables
x, y sleeping in foo’s frame.

4. GCC’s Implementation of Nested
Functions

GCC also features nested functions, and the
specification of nested functions in LW-SC is
almost the same as that in GCC. As in GCC
(but unlike closure objects in modern languages
such as Lisp and ML), nested functions of LW-
SC are valid only when the owner blocks are
alive. But unlike GCC, pointers to nested func-
tions are not compatible with those to top-
level functions. However, such limitations are
insignificant for the purpose of implementing
most high-level services with the “stack walk”
mentioned in Section 1.

GCC’s implementation of nested functions
causes high maintenance/creation costs, for the
following reasons:
• In creating nested functions, there is a cost

for initializing. To initialize an address-
taken nested function, GCC uses a tech-
nique called trampolines 2). A trampoline is
a code fragment generated on the stack at
runtime to indirectly enter the nested func-
tion with a necessary environment. The
cost of runtime code generation is high, and
for some processors such as SPARC, it is
necessary to flush some instruction caches
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for the runtime-generated trampoline code.
• Local variables and parameters of a func-

tion generally may be assigned to regis-
ters if the function contains no nested func-
tion. But an owner function of GCC’s
nested functions must keep the values of
these variables in the stack so that the
nested functions can access them, usually
via a static chain. Thus, the owner function
must perform memory operations to access
these variables, which means that the cost
of maintaining nested functions is high.

LW-SC overcomes the former problem by trans-
lating the nested function into a lazily initial-
ized pair (on the explicit stack) of the ordinary
function pointer and the frame pointer, and the
latter by saving the local variables to the “ex-
plicit stack” lazily (only on calls to nested func-
tions), as is shown in the following section.

5. Implementation of LW-SC

We implemented LW-SC described above by
using the SC language system, that is, by writ-
ing transformation rules for translation into SC-
0, which is finally translated into C.

5.1 Basic Ideas
The basic ideas for implementing nested func-

tions by translation are summarized as follows:
• After transformation, all definitions of

nested functions can be moved to be top-
level definitions.

• To enable the nested functions to access lo-
cal variables of their owner functions, an
explicit stack is employed in C other than
the (implicit) execution stack for C. The
explicit stack mirrors values of local vari-
ables in the execution stack, and is referred
to when local variables of the owner func-
tions are accessed.

• To reduce the costs of creating and main-
taining nested functions, operations to fix
inconsistency between two stacks are de-
layed until nested functions are actually in-
voked.

Function calls/returns and function defini-
tions in LW-SC should be appropriately trans-
formed in accordance with these ideas.

5.2 Transformation
LW-SC programs are translated in the follow-

ing way to realize the ideas described in Sec-
tion 5.1.
(a) Each generated C program employs an ex-

plicit stack of the type mentioned above
in memory. This shows a logical execution

stack, which manages local variables, callee
frame pointers, arguments, return values of
nested functions (of LW-SC), and return
addresses.

(b) Each function call to an ordinary top-level
function in LW-SC is transformed into the
same function call in C, except that a spe-
cial argument is added which saves the
stack pointer to the explicit stack. The
callee first initializes its frame pointer with
the stack pointer, next shifts the stack
pointer by its frame size, and then executes
its body.

(c) Each nested function definition in LW-
SC is moved to the top level in C. In-
stead, a structure object, which contains
the pointer to the nested function that was
moved and the frame pointer of the owner
function, is stored on the explicit stack.
Note that initialization of the structure is
delayed until nested functions are invoked
to reduce the costs of creating nested func-
tions.

(d) Each function call to a nested function
in LW-SC is translated into the following
steps:
1. Push arguments passed to the nested

function and the pointer to the struc-
ture mentioned above in (c) to the ex-
plicit stack.

2. Save the values of the all local variables
and parameters, and an integer corre-
sponding to the current execution point
(return address), into the explicit stack,
then return from the function.

3. Iterate Step 2 until control is returned
to main. The values of local variables
and parameters of main are also stored
on the explicit stack.

4. Referring to the structure which is
pointed to by the pointer pushed at
Step 1 (the one in (c)), call the
nested function whose definition has
been moved to the top level in C. The
callee first obtains its arguments by
popping the values pushed at Step 1,
then executes its body.

5. Before returning from the nested func-
tion, push the return value to the ex-
plicit stack.

6. Reconstruct the execution stack by
restoring the local variables, the param-
eters, and the execution points, with
the values saved in the explicit stack
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Fig. 5 Details of an indirect call to a nested function g1 in Fig. 4.

at Step 3 (the values may be changed
during the call to the nested function),
to return to (resume) the caller of the
nested function.

7. If necessary, get the return value of the
nested function pushed at Step 5 by
popping the explicit stack.

Note that a callee (a nested function) can
access the local variables of its owner func-
tions through the frame pointers contained
in the structure that have been saved at
Step 1.

For example, Fig. 5 shows the state transi-

tion of the two stacks☆, in the case of Fig. 4,
from the beginning of the execution until the
end of the first indirect call to a nested function
g1. (Each number in the figure corresponds to
the step of the nested function call described in
(d).) Notice that the correct values of the local
variables are saved in the explicit stack during
the execution of the nested function and in the
C stack at other times.

☆ “The C stack” here simply contains the set of local
variables and parameters, whose values are stored
not only in the stack memory but also in registers.
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5.3 Transformation Rules
To implement the transformation described

above, we wrote transformation rules. The en-
tire transformation is divided into the follow-
ing four phases (rule-sets) for simplicity and
reusability of each phase:
(1) The type rule-set: adds type information

to all the expressions of an input program.
(2) The temp rule-set: transforms an input

program in such a way that no function
call appears as a subexpression (except as
a right-hand side of an assignment).

(3) The lightweight rule-set: performs the
transformation described in Section 5.2.

(4) The untype rule-set: removes the type
information added by the type rule-set
from expressions to generate correct SC-0
code.

The following subsections present the details
of these transformation rule-sets.

5.3.1 The type rule-set
Transformation by the temp rule-set and the

lightweight rule-set requires type information
on all expressions. The type rule-set adds such
information. More specifically, it transforms
each expression into (the type-expression ex-
pression).

Figure 6 shows the (abbreviated) transfor-
mation rule-set. Tp0 is applied to an input pro-
gram (e.g., that in Fig. 7) to obtain a trans-
formed program (e.g., that in Fig. 8). Tp1
receives declarations and renews the dynamic
variables which save the information about de-
fined variables, structures, etc. Tpe actually
transforms expressions referring to the dynamic
variables.

5.3.2 The temp rule-set
A function call appearing as a subexpression

such as (g x) in (f (g x)) makes it difficult to
add some operations just before/after the func-
tion call. The temp rule-set prevents such func-
tion calls from appearing.

Because some temporary variables are needed
for the transformation, their definitions are in-
serted at the head of the function body. For
example, the program in Fig. 9 is transformed
into the program in Fig. 10 by means of this
rule-set.

Figure 11 shows the (abbreviated) temp
rule-set. The actual transformation is per-
formed by Tmpe, which returns a 3-tuple of
• a list of the variable definitions to be in-

serted at the head of the current function,
• a list of the assignments to be inserted just

(Tp0 (,@declaration-list) )
-> (progn

...
(let (*str-alist* *v-alist* *lastv-alist*)
(mapcar #’Tp1 declaration-list)))

;;;;; declaration ;;;;;
(Tp1 (,scs[SC-SPEC] ,id[ID] ,texp ,@init))
-> (progn

(push (cons id (remove-type-qualifier texp))
*v-alist*)

‘(,scs ,id ,texp ,@(mapcar #’Tpi init)))
(Tp1 (,scs[SC-SPEC] (,@id-list[ID])

(fn ,@texp-list) ,@body))
-> (let* ((texp-list2

(mapcar #’rmv-tqualifier texp-list))
(*v-alist* (cons (cons (first id-list)

‘(ptr (fn ,@texp-list2)))
*v-alist*))

(new-body nil))
(let ((b-list

(cmpd-list (cdr id-list)
(cdr texp-list2))))

(setq new-body
(let((*v-alist* (append b-list *v-alist*))

(*str-alist* *str-alist*))
(mapcar #’Tpb body))))

‘(,scs (,@id-list)
(fn ,@texp-list),@new-body))

...
(Tp1 ,otherwise)
-> (error "syntax error")
;;;;;;; body ;;;;;;
(Tpb (do-while ,exp ,@body))
-> (switch ,(Tpe exp)

,@(let ((*v-alist* *v-alist*)
(*str-alist* *str-alist*))

(mapcar #’Tpb body)))
...
(Tpb ,otherwise)
-> (let ((expression-stat (Tpe otherwise)))

(if (eq ’$not-expression expression-stat)
(Tp1 otherwise)

expression-stat))
;;;;; expression ;;;;;
(Tpe ,id[ID])
-> ‘(the ,(assoc-vartype id) ,id)
...
(Tpe (ptr ,exp))
-> (let ((exp-with-type (Tpe exp)))

‘(the (ptr ,(cadr exp-with-type))
(ptr ,exp-with-type)))

(Tpe (mref ,exp))
-> (let* ((exp-with-type (Tpe exp))

(exp-type (cadr exp-with-type)))
‘(the ,(deref-type exp-type)

(mref ,exp-with-type)))
(Tpe (,fexp[EXPRESSION] ,@arg-list))
-> (let* ((fexp-with-type (Tpe fexp))

(fexp-type (cadr fexp-with-type))
(type-fn (cadr fexp-type)))

‘(the ,(cadr type-fn)
(call (the ,type-fn

,(caddr fexp-with-type))
,@(mapcar #’Tpe arg-list))))

(Tpe ,otherwise)
-> ’$not-expression

Fig. 6 The type rule-set (abbreviated).

before the expression, and
• an expression with which the current ex-

pression should be replaced.
Tmp and Tmp2 combine the tuples appropriately
and finally Tmp0 returns the transformed code.
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(def (g x) (fn int int)
(return (* x x)))

(def (f x) (fn double double)
(return (+ x x)))

(def (h x) (fn char double)
(return (f (g x))))

Fig. 7 Example of a program to which the type rule-
set is applied (before transformation).

(def (g x) (fn int int)
(return (the int

(* (the int x) (the int x)))))

(def (f x) (fn double double)
(return (the double

(+ (the double x) (the double x)))))

(def (h x) (fn char double)
(return (the double

(call (the (fn double double) f)
(the int (call (the (fn int int) g)

(the double x)))))))

Fig. 8 Example of a program to which the type rule-
set is applied (after transformation).

(def (g x) (fn int int)
(return

(the int
(+ (the int

(= (the int x) (the int 3)))
(the int

(call (the (fn int int) g)
(the int x)))))))

Fig. 9 Example of a program to which the temp rule-
set is applied (before transformation).

(def (g x) (fn int int)
(def tmp1 int)
(def tmp2 int)
(the int

(= (the int tmp1)
(the int

(= (the int x) (the int 3)))))
(the int

(= (the int tmp2)
(the int

(call (the (fn int int) g)
(the int x)))))

(return
(the int

(+ (the int tmp1) (the int tmp2)))))

Fig. 10 Example of a program to which the temp
rule-set is applied (after transformation).

5.3.3 The lightweight rule-set
Now the transformation described in Sec-

tion 5.2 is realized by the lightweight rule-
set. Figure 12 shows the (abbreviated)
lightweight rule-set which is related to the
transformation of “ordinary function” calls and
“nested function” calls. In the code, esp is
a special parameter added to each function,
which keeps the stack top of the explicit stack.
Efp is a special local variable added to each

(Tmp0 (,@decl-list))
->(progn

...
(let ((*used-id* (get-all-id x))

(*prev-continue* nil))
(mapcar #’Tmp1 x)))

;;;; declaration ;;;;;
(Tmp1 (,scs[SC-SPEC]

(,@id-list[ID]) (fn ,@texp-list) ,@body))
-> (let* ((tmpbody (Tmp2 body))

(newdecl (first tmpbody))
(newbody (second tmpbody)))

‘(,scs (,@id-list)
(,fntag ,@texp-list) ,@newdecl ,@newbody))

...
;;;;; body ;;;;;
(Tmp2 (,@item-list))
-> (let* ((tmpitemlist (mapcar #’Tmp item-list))

(decl-list (apply #’append
(mapcar #’first tmpitemlist)))

(prev-stat (apply #’append (mapcar
#’(lambda (x) ‘(,@(second x) ,(third x)))

tmpitemlist))))
(list decl-list prev-stat))

(Tmp (do-while ,exp ,@body))
->(let* ((tmpexp (Tmpe exp))

(*prev-continue* (second tmpexp))
(tmpbody (Tmp2 body)))

(list (append (first tmpexp) (first tmpbody))
nil

(do-while ,(third tmpexp)
,@(second tmpbody) ,@*prev-continue*)))

(Tmp (return ,@exp))
-> (if (null exp)

‘(nil nil (return))
(let ((tmpexp (Tmpe (car exp))))

‘(,(first tmpexp) ,(second tmpexp)
(return ,(third tmpexp)))))

...
(Tmp ,otherwise)
->(let ((tmpe-exp (Tmpe otherwise)))

(if (eq ’$not-expression tmpe-exp)
(list (list (Tmp1 otherwise)) nil)
tmpe-exp))

;;;;; expression ;;;;;
(Tmpe (the ,texp (call ,fexp ,@arg-list)))
-> (case texp

((void)
... )

(otherwise
(let*
((tmpexps (comb-list (mapcar #’Tmpe arg-list)))
(tempid (generate-id "tmp"))
(tmp-decl1 ‘(def ,tempid ,texp))
(tmp-decl
(append (first tmpexps) ‘(,tmp-decl1)))

(tmp-set1 ‘(the ,texp (= (the ,texp ,tempid)
(the ,texp (call ,fexp ,@(third tmpexps))))))

(tmp-set
(append (second tmpexps) ‘(,tmp-set1))))

(list tmp-decl tmp-set ‘(the ,texp ,tempid)))))
(Tmpe (the ,texp (+ ,exp1 ,exp2)))
-> (let ((op (caaddr x))

(t-exp1 (Tmpe exp1)) (t-exp2 (Tmpe exp2)))
(list ‘(,@(first t-exp1) ,@(first t-exp2))

‘(,@(second t-exp1) ,@(second t-exp2))
‘(the ,texp (,op ,(third t-exp1)

,(third t-exp2)))))
...

Fig. 11 The temp rule-set (abbreviated).

function, which acts as the (explicit) frame
pointer of the function. Lwe-xfp transforms
accesses to local variables into accesses to the
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;;;; Due to the temp rule-set, a function call expression must appear in either of the following forms
;;;; as a statement expression:
;;;; * (= variable function-call-expression)
;;;; * (= function-call-expression).

;;; ‘‘Ordinary function’’ call
(Lwe (the ,texp0 (= (the ,texp1 ,id) (the ,texp (call (the (fn ,@texp-list) ,exp-f) ,@exp-list)))))
(Lwe (the ,texp (call (the (fn ,@texp-list) ,exp-f) ,@exp-list)))
-> (let (...)

...
(let* (...)

(list nil decl-list
(cons ’(= new-esp esp) prev-list)
‘(while ‘(and (== (= ,(Lwe-xfp ‘(the ,texp1 ,id))

(call ,fexp new-esp ,@(cdr tmpid-list)))
(special ,texp0))

(!= (= (fref efp -> tmp-esp) (mref-t (ptr char) esp))))
;; Save the values of local variables to the frame.
,@(make-frame-save *current-func*)
...
;; Save the current execution point.
(= (fref efp -> call-id)
,(length (finfo-label-list *current-func*)))

;; Return from the current function
;; (In main, call the nested function here instead of taking the following steps).
,(make-suspend-return *current-func*)
;; Continue the execution from here when reconstructing the execution stack.
(label ,(caar (push (cons (generate-id "L_call" *used-id-list*) nil)

(finfo-label-list *current-func*)))
nil)

;; Restore local variables from the explicit stack.
,@(make-frame-resume *current-func*)
...
(= new-esp (+ esp 1))))))

;;; ‘‘Nested function’’ call
(Lwe (the ,texp0 (= (the ,texp1 ,id) (the ,texp (call (the (lightweight ,@texp-list) ,exp-f) ,@exp-list)))))
(Lwe (the ,texp (call (the (lightweight ,@texp-list) ,exp-f) ,@exp-list)))
-> (let (...)

...
(list ’() fp-decl ’()

‘(begin
...
(= argp (aligned-add esp (sizeof (ptr char))))
;; Push the arguments passed to the nested function
,@(mapcar (compose #’(lambda (x) ‘(push-arg ,(second x) ,(third x) argp))

#’Lwe-xfp)
(reverse exp-list))

;; Push the structure object that corresponds to the frame of the nested function to the explicit stack.
(= (mref-t (ptr closure-t) argp) ,xfp-exp-f)
...
;; Save the values of local variables to the frame.
,@(make-frame-save *current-func*)
(= (fref efp -> argp) argp)
(= (fref efp -> tmp-esp) argp)
;; Save the current execution point.
(= (fref efp -> call-id)

,(length (finfo-label-list *current-func*)))
;; Return from the current function (In main, call the nested function here instead of the following steps).
,(make-suspend-return *current-func*)
;; Continue the execution from here after the function call finishes.
(label ,(caar (push (cons (generate-id "L_call" *used-id-list*) nil)

(finfo-label-list *current-func*)))
nil)

;; Restore local variables from the explicit stack.
,@(make-frame-resume *current-func*)
;; Get the return value (if necessary).
,@(when assign-p

‘( (= ,(Lwe-xfp ‘(the ,texp1 ,id))
(mref-t ,texp1 (fref efp -> argp))) )) )))

Fig. 12 The lightweight rule-set (abbreviated).

explicit stack.
“Ordinary function” calls and “nested func-

tion” calls can be statically distinguished by
the functions’ types, because ordinary function
types are incompatible with lightweight nested
function types.

The transformation of each operation is per-
formed as follows (the rules unrelated to func-
tion calls are omitted in the figure):
Calling ordinary functions: The function

call is performed as a part of the condi-

tional expression of the while statement,
where the stack pointer is passed to the
callee as an additional first argument. If
the callee procedure finished normally, the
condition becomes false and the body of
the while loop is not executed. Other-
wise, if the callee returned for a “nested
function” call, the condition becomes true.
In the body of the while loop, the values
of local variables are saved to the explicit
stack, an integer that corresponds to the
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current execution point is also saved to the
explicit stack ((fref efp -> call-id)),
and then the current function temporarily
exits. This function is re-called in order
to reconstruct the execution stack after the
execution of the nested function. The con-
trol is then transferred to the label placed
next to the return by a goto statement,
which is added in the head of the function.
The values of local variables are then re-
stored from the explicit stack and the func-
tion call in the conditional expression of the
while statement is restarted. The assign-
ment (= new-esp (+ esp 1)) at the end
of the while block sets a flag at the LSB
of the explicit stack pointer that indicates
reconstruction of the execution stack.

Calling nested functions: The arguments
passed to the nested function and the clo-
sure structure (which contains the nested
function pointer and the frame pointer of
its owner function) are pushed to the ex-
plicit stack. Then, as in an “ordinary func-
tion” call, the values of local variables and
the executing point are saved, the current
function exits, and the execution point is
restored by goto after the steps for calling
the nested function. The values of local
variables are then restored and the return
value of the nested function, if one exists,
is taken from the top of the explicit stack.

Returning from functions: Returns from
ordinary function need no transformation.
On the other hand, returns from nested
functions must be transformed in order to
push the return value to the explicit stack,
and simply to return 0 so as to indicate
that the execution of the function finished
normally.

Function definitions: The following steps
are added before the functions’ body:
• initialization of the frame pointer of

the explicit stack (efp) and the stack
pointer (esp),

• judgment as to whether reconstruction
of the execution stack is required or
not and, if it is required, execution of
goto to the label corresponding to
(fref efp -> call-id), and

• popping of parameters from the ex-
plicit stack, in the case of nested func-
tions.

The transformation also involves adding
the parameter esp that receives the explicit

(UTp0 ,decl-list)
-> (UTp decl-list)
(UTp (the ,texp ,exp))
-> (Utp exp)
(UTp (call ,@exp-list))
-> (mapcar #’Utp exp-list)
(UTp (,@lst))
-> (mapcar #’UTp lst)
(UTp ,otherwise)
-> otherwise

Fig. 13 The untype rule-set.

stack pointer, adding some local variable
definitions, and adding a structure defini-
tion that represents the function’s frame in
the explicit stack and is referred to by efp.

5.3.4 The untype rule-set
The output code transformed by the

lightweight rule-set is not valid SC-0 code be-
cause it contains type information. The untype
rule-set removes such information and gener-
ates valid SC-0 code. The rule-set is very sim-
ple; it only needs to search (the . . .) forms re-
cursively and to remove type information. Fig-
ure 13 shows the entire untype rule-set.

As an example of a total translation, Ap-
pendix shows the entire SC-0 code generated
from the LW-SC program in Fig. 4.

6. Evaluation

6.1 Creation and Maintenance Cost
To measure the costs of creating and main-

taining nested functions, we employed the fol-
lowing programs with nested functions for sev-
eral high-level services and compared them with
the corresponding plain C programs:
BinTree (copying GC) creates a binary

search tree with 200,000 nodes, with a
copying-collected heap (Fig. 14).

Bin2List (copying GC) converts a binary
tree with 500,000 nodes into a linear list,
with a copying-collected heap (Fig. 15).

fib(34) (check-pointing) calculates the
34th Fibonacci number recursively, with a
capability for capturing a stack state for
check-pointing (Fig. 16).

nqueens(13) (load balancing) solves the
N-queens problem (N=13) on a load-
balancing framework based on lazy parti-
tioning of sequential programs 21),22).

Note that nested functions are never invoked
— that is, garbage collection, check-pointing,
and task creation do not occur — in these mea-
surements, because we measured the costs of
creating and maintaining nested functions.

We measured the performance on a 1.05 GHz
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Table 1 Performance measurements (for the creation and maintenance cost).

Elapsed time in seconds
S: SPARC (relative time to plain C)
P: Pentium C GCC LW-SC XCC CL-SC
BinTree S 0.180 0.263 0.192 0.181 0.249
copying (1.00) (1.46) (1.07) (1.00) (1.38)

GC P 0.152 0.169 0.156 0.150 0.179
(1.00) (1.11) (1.03) (0.988) (1.18)

Bin2List S 0.292 0.326 0.303 0.289 0.318
copying (1.00) (1.12) (1.04) (0.99) (1.09)

GC P 0.144 0.145 0.151 0.146 0.154
(1.00) (1.01) (1.05) (1.01) (1.07)

fib(34) S 0.220 0.795 0.300 0.226 0.361
check- (1.00) (3.61) (1.36) (1.03) (1.64)

pointing P 0.0628 0.152 0.138 0.0751 0.162
(1.00) (2.42) (2.20) (1.20) (2.58)

nqueens(13) S 0.478 1.04 0.650 0.570 1.05
load (1.00) (2.18) (1.36) (1.19) (2.20)

balancing P 0.319 0.428 0.486 0.472 0.544
(1.00) (1.34) (1.52) (1.48) (1.71)

(deftype sht (ptr (lightweight void void)))
(def (randinsert scan0 this n)

(fn void sht (ptr Bintree) int)
(decl i int)
(decl k int)
(decl seed (array unsigned-short 3))
(def (scan1) (lightweight void void)

(= this (move this))
(scan0))

(= (aref seed 0) 3)
(= (aref seed 1) 4)
(= (aref seed 2) 5)
(for ((= i 0) (< i n) (inc i))
(= k (nrand48 seed))
(insert scan1 this k k)))

Fig. 14 The LW-SC program for BinTree.

(deftype sht (ptr (lightweight void void)))
(def (bin2list scan0 x rest)

(fn (ptr Alist) sht (ptr Bintree) (ptr Alist))
(def a (ptr Alist) 0)
(def kv (ptr KVpair) 0)
(def (scan1) (lightweight void void)

(= x (move x))
(= rest (move rest))
(= a (move a))
(= kv (move kv))
(scan0))

(if (fref (mref x) right)
(= rest (bin2list scan1 (fref (mref x) right)

rest)) )
(= kv (getmem scan1 (ptr KVpair_d)))
(= (fref (mref kv) key) (fref (mref x) key))
(= (fref (mref kv) val) (fref (mref x) val))
(= a (getmem scan1 (ptr Alist_d)))
(= (fref (mref a) kv) kv)
(= (fref (mref a) cdr) rest)
(= rest a)
(if (fref (mref x) left)

(= rest (bin2list scan1 (fref (mref x) left)
rest)))

(return rest) )

Fig. 15 The LW-SC program for Bin2List.

UltraSPARC-III and a 3 GHz Pentium 4, using
GCC with -O2 optimizers. Table 1 summa-
rizes the results of performance measurements,

(def (cpfib save0 n)
(fn int (ptr (lightweight void)) int)

(def pc int 0)
(def s int 0)
(def (save1) (lightweight void)
(save0)
(save-pc pc)
(save-int s)
(save-int n))

(if (<= n 2)
(return 1)
(begin
(= pc 1)
(+= s (cpfib save1 (- n 1)))
(= pc 2)
(+= s (cpfib save1 (- n 2)))
(return s))) )

Fig. 16 The LW-SC program for fib(34).

where “C” denotes a plain C program with-
out high-level services, and “GCC” indicates
the use of GCC’s nested functions. “XCC”
indicates the use of XC-cube, which is an ex-
tended C language with some primitives added
for safe and efficient shared memory program-
ming 23). XC-cube also features nested func-
tions with lightweight closures 21),22), which are
implemented at the assembly language level by
modifying GCC directly☆. “CL-SC” (closure
SC) indicates the use of nested functions with
non-lightweight closures. Its implementation is
almost the same as that of LW-SC except that
all local variables and parameters are stored in
the explicit stack.

Since nested functions are created frequently
in fib(34), LW-SC performs well on the SPARC
compared with GCC, where the cost of flushing
instruction caches is significant. On the other

☆ The detail of its implementation will be reported by
a separate paper 24).
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Table 2 Performance measurements (for the invocation cost).

Elapsed time in seconds
C GCC LW-SC XCC CL-SC

QSort SPARC 0.795 0.821 7.04 8.03 0.931
(200,000) (Ratio to C) (1.00) (1.03) (8.86) (10.1) (1.17)

Pentium 0.139 3.44 3.77 3.38 0.186
(Ratio to C) (1.00) (24.7) (27.1) (24.3) (1.33)

Bin2List SPARC — 0.495 0.522 0.495 0.526
copying (GC time) 0.278 0.296 0.279 0.302

GC Pentium — 0.248 0.257 0.249 0.259
(GC time) 0.0647 0.0685 0.0669 0.0714

(def (mod-sort a n d)
(fn void (ptr int) int int)

(def (comp-mod pp pq)
(lightweight int (ptr void) (ptr void))

(return
(if-exp (< (% (mref (cast (ptr int) pp)) d)

(% (mref (cast (ptr int) pq)) d))
1

(if-exp (== (% (mref (cast (ptr int) pp)) d)
(% (mref (cast (ptr int) pq)) d))

0
-1))))

(quicksort a n (sizeof int) comp-mod))

Fig. 17 The LW-SC program of QSort (calling the
sorting function by passing a nested function
comp-mod as a comparator).

hand, LW-SC does not perform so well on the
Pentium 4, where overhead with additional op-
erations in LW-SC is emphasized.

Since several local variables can obtain callee-
save registers in BinTree, LW-SC performs well
on the SPARC, even if function calls (i.e., cre-
ations) are infrequent. This effect is not so sig-
nificant in fib(34), since there are few local vari-
able accesses in the fib function.

LW-SC does not perform well in nqueens(13),
since unimportant variables are allocated to
registers. Since the Pentium 4 has only a
few callee-save registers and performs explicit
save/restore of callee-save registers, which is
implicit with the SPARC’s register window, the
penalty for wrong allocation is serious.

XC-cube performs better than LW-SC,
mainly because it does not employ some of the
additional operations in LW-SC, such as check-
ing flags after returning from ordinary functions
and at the beginning of function bodies (by us-
ing assembly-level techniques such as modify-
ing return addresses). However, the difference
is negligibly small if the body of a function is
sufficiently large.

CL-SC performs worse than LW-SC, since all
local variables and parameters are stored in the
explicit stack and they never acquire registers.

6.2 Invocation Cost
To measure the cost of invoking nested func-

tions, we employ the following programs:
QSort sorts 200,000 integers by using a quick

sort algorithm invoking a nested function
as a comparator, whose owner is the caller
of the sorting function (Fig. 17). In the
plain C program, the comparison function
is defined as an ordinary function where d
is declared as a global variable.

Bin2List (copying GC) works in the same
way as Bin2List in Section 6.1, except that
the garbage collector actually runs and
nested functions are called for scanning the
stack (and therefore there is no plain C
program). The collectors employ a simple
breadth-first (non-recursive) copying GC
algorithm.

Table 2 summarizes the results of perfor-
mance measurements. In LW-SC, the invo-
cation cost is high because it is necessary to
save (restore) the values in the execution stack
upon calling (returning from) nested functions,
which causes bad performance in QSort. What
is worse, the cost of invoking a nested func-
tion increases according to the depth of the
execution stack at the time of the invocation.
To show this clearly, we invoked mod-sort in
Fig. 17 on top of various numbers of intermedi-
ating function calls (Fig. 18). The results show
that the elapsed time increases in proportion to
the stack depth only in LW-SC. We think that
the cost of throwing an exception to an excep-
tion handler may also change, for a similar rea-
son.

CL-SC performs well in QSort because un-
winding and reconstruction of the execution
stack are unnecessary.

Notice that GCC on Pentium performs badly
in QSort. We guess that this is because trampo-
line code placed in a writable data area (not a
read-only program area) prevents the processor
from prefetching instructions.

All implementations show almost the same
performance in Bin2List, even when only GC
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UltraSPARC-III Pentium 4
Fig. 18 Elapsed time in QSort against the number of intermediating function calls.

times are compared. This is because the invo-
cation costs are negligible relative to the other
costs for GC (such as scanning heaps).

These results show that LW-SC works effec-
tively if nested functions are not called very fre-
quently, and that CL-SC works better if they
are called very often. Programmers and com-
piler writers can choose one of these implemen-
tations according to their situation.

7. Related Work

7.1 Compiler-Based Implementations
of Nested Functions

As described above, GCC also features nested
functions, but it is less portable and has high
maintenance/creation costs. XC-cube imple-
ments nested functions with lightweight clo-
sures by modifying the GCC compiler. It per-
forms better, but it also lacks portability.

7.2 Closure Objects in Modern Lan-
guages

Many modern languages such as Lisp and ML
implement closures as first-class objects. These
closure objects are valid after exit of their owner
blocks. In most implementations they require
some runtime support such as garbage collec-
tion, which makes C too inefficient to be used
as an intermediate language to implement high-
level languages.

7.3 Portable Assembly Languages
C−−11),14) also has an ability to access the

variables sleeping in the execution stack by us-
ing the C−− runtime system to perform “stack
walk.” We expect that its efficiency is better
than that of LW-SC, and almost equal to that
of XC-cube. In terms of portability, LW-SC
has the advantage that we can use pre-existing
C compilers.

7.4 High-Level Services
This section lists high-level services, which

are important applications of nested functions,
and the techniques used for their implementa-
tion in previous work.

7.4.1 Garbage Collection
To implement garbage collection, the collec-

tor needs to be able to find all roots, each of
which holds a reference to an object in the
garbage-collected heap. In C, a caller’s pointer
variable may hold an object reference, but it
may be sleeping in the execution stack until
the return to the caller. Even when using di-
rect stack manipulation, it is difficult for the
collector to distinguished roots from other ele-
ments in the stack. For this reason, conserva-
tive collectors 1) are normally used. Conserva-
tive copying collectors can inspect the execution
stack but cannot modify it. Accurate copying of
GC can be performed by using translation tech-
niques based on “structure and pointer”6),7)

with higher maintenance costs.
Figure 15 partially shows how scanning of

roots can be implemented by using nested func-
tions. Getmem allocates a new object in the
heap and may invoke the copying collector with
the nested function scan1. The copying collec-
tor can indirectly call scan1, which effects the
movement (copying) of objects by using roots
(x, rest, a and kv) and indirectly calls scan0
in a nested manner. The actual entity of scan0
may be another instance of scan1 in the caller.
The nested calls are performed until the bottom
of the stack is reached.

7.4.2 Capturing/Restoring Stack
State

Porch 16) is a translator that transforms C
programs into C programs supporting portable
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checkpoints. Portable checkpoints capture
the state of a computation in a machine-
independent format that allows the transfer of
computations across binary incompatible ma-
chines. They introduce source-to-source com-
pilation techniques for generating code to save
and recover from such portable checkpoints au-
tomatically. To save the stack state, the pro-
gram repeatedly returns and legitimately saves
the parameters/local variables until the bottom
of the stack is reached. During restoration,
this process is reversed. Similar techniques can
be used to implement migration and first-class
continuations.

As shown in Fig. 16, the stack state can be
captured without returning to the callers using
nested functions. It uses techniques similar to
those described above for scanning roots.

7.4.3 Multi-threads: Latency Hiding
Concert 13) and OPA 20) use similar transla-

tion techniques to support suspension and re-
sumption of multiple threads on a single pro-
cessor with a single execution stack (e.g., for la-
tency hiding). They create a new child thread
as an ordinary function call and, if the child
thread completes its execution without being
blocked, it simply returns the control to the
parent thread. But in case of the suspension of
the child thread, it legitimately saves its (live)
parameters/local variables into heap-allocated
frames and simply returns the control to the
parent thread. When a suspended thread be-
come runnable, it may legitimately restore nec-
essary values from the heap-allocated frames.

The library implementation of Stack-
Threads 19) provides two special service rou-
tines: switch_to_parent to save the context
(state) of the child thread and transfer the con-
trol to the parent thread, and restart_thread
to restore the context and transfer the control
to the restarted thread. These routines are
implemented in assembly languages by paying
special attention to the treatment of callee-save
registers.

StackThreads/MP 18) allows the frame
pointer to walk the execution stack indepen-
dently of the stack pointer. When the child
thread is blocked, it can transfer the control
to an arbitrary ancestor thread without copy-
ing the stack frames to the heap. Stack-
Threads/MP employs the unmodified GNU C
compiler and implements non-standard control-
flows by using a combination of an assembly
language postprocessor and runtime libraries.

Lazy Threads 5) employs a similar but differ-
ent approach to frame management and thread
suspension. Frames are allocated in a “stack-
let,” which is a small stack for several frames.
A blocked child thread returns the control to
the parent without copying the stack frame to
the heap. When the parent is not at the top of
the stacklet, it first allocates a new stacklet for
allocating a stack frame. Lazy Threads is im-
plemented by modifying the GNU C compiler.

Implementation techniques for multiple
threads using nested functions are described in
Refs. 17) and 8).

7.4.4 Load Balancing
To realize efficient dynamic load balancing

by transferring tasks among computing re-
sources in fine-grained parallel computing such
as search problems, load balancing schemes
which lazily create and extract a task by split-
ting the present running task, such as Lazy Task
Creation (LTC)12), are effective. In LTC, a
newly created thread is directly and immedi-
ately executed like an ordinary call while (the
continuation of) the oldest thread in the com-
puting resource may be stolen by other idle
computing resources. Usually, the idle com-
puting resource (thief ) randomly selects an-
other computing resource (victim) from which
to steal a task.

Compilers (translators) for multithreaded
languages generate low-level code. In the orig-
inal LTC 12), assembly code is generated to di-
rectly manipulate the execution stack. Trans-
lators for both Cilk 4) and OPA 20) generate C
code. Since it is illegal and not portable for C
code to directly access the execution stack, the
Cilk and OPA translators generate two versions
(fast/slow) of code; the fast version code saves
the values of live variables in a heap-allocated
frame upon call (in the case of Cilk) or return
(in the case of OPA) so that the slow version
code can continue the rest of computation based
on the heap-allocated saved continuation.

A message-passing implementation 3) of LTC
employs a polling method where the victim de-
tects a task request sent by the thief and re-
turns a new task created by splitting the present
running task. This technique enables OPA 20),
StackThreads/MP 18), and Lazy Threads 5) to
support load balancing.

We restructured LTC with backtracking,
where callers’ variable are accessed by us-
ing nested functions for infrequent task cre-
ation 21),22).
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8. Conclusion and Future Work

This paper has presented a technique for im-
plementing nested functions for the C language,
employing the SC language system. Since the
implementation is transformation-based, it al-
lows implement high-level services with “stack
walk” to be implemented in a portable way.
Furthermore, such services can be implemented
efficiently because we aggressively reduce the
cost of creating and maintaining nested func-
tions by using “lightweight” closures. Future
work includes actual implementation of high-
level languages with such services (e.g., provid-
ing a garbage-collected heap with a copying col-
lector).
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Appendix

An example of translation from LW-SC
into SC-0

;;; The pointer to the moved ‘‘nested function’’.
(deftype nestfn-t

(ptr (fn (ptr char) (ptr char) (ptr void))))
;;; The structure which contains the pointer to the moved
;;; nested function and the frame pointer of
;;; the owner function.
(deftype closure-t struct
(def fun nestfn-t)
(def fr (ptr void)))

(deftype align-t double)

;;; The auxiliary function for calling nested functions.
(def (lw-call esp) (fn (ptr char) (ptr char))
(def clos (ptr closure-t)

(mref (cast (ptr (ptr closure-t)) esp)))
(return ((fref clos -> fun) esp (fref clos -> fr))))

;;; The frame structure of function h.
(def (struct h_frame)
(def tmp-esp (ptr char))
(def argp (ptr char))
(def call-id int)
(def tmp2 int)
(def tmp int)
(def g (ptr closure-t))
(def i int))

(def (h esp i g)
(fn int (ptr char) int (ptr closure-t))

(def argp (ptr char))
(def efp (ptr (struct h_frame)))
(def new-esp (ptr char))
(def esp-flag size-t (bit-and (cast size-t esp) 3))
(def tmp int)

(def tmp2 int)
(def tmp_fp (ptr closure-t))
(def tmp_fp2 (ptr closure-t))

;; Judge whether reconstruction of the execution stack is
;; required or not.
(if esp-flag

(begin
(= esp (cast (ptr char)

(bit-xor (cast size-t esp) esp-flag)))
(= efp (cast (ptr (struct h_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct h_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
;; Restore the execution point.
(label LGOTO

(switch (fref (mref efp) call-id)
(case 0) (goto l_CALL)
(case 1) (goto l_CALL2)))

(goto l_CALL)))
(= efp (cast (ptr (struct h_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct h_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
;; Call the nested function g.
(begin
(= tmp_fp g)
(= argp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (ptr char))
(sizeof align-t) -1)

(sizeof align-t)))))
;; Push the arguments passed to nested function.
(exps (= (mref (cast (ptr int) argp)) i)

(= argp
(cast (ptr char)

(+ (cast (ptr align-t) argp)
(/ (+ (sizeof int)

(sizeof align-t) -1)
(sizeof align-t))))))

;; Push the structure object that corresponds to
;; the frame of the nested function to
;; the explicit stack.
(= (mref (cast (ptr (ptr closure-t)) argp)) tmp_fp)
;; Save the values of local variables to the frame.
(= (fref efp -> tmp2) tmp2)
(= (fref efp -> tmp) tmp)
(= (fref efp -> g) g)
(= (fref efp -> i) i)
(= (fref efp -> argp) argp)
(= (fref efp -> tmp-esp) argp)
;; Save the current execution point.
(= (fref efp -> call-id) 0)
(return (- (cast int 0) 1))
;; Continue the execution from here after the func-

tion call finishes.
(label l_CALL nil)
;; Restore local variables from the explicit stack.
(= tmp2 (fref efp -> tmp2))
(= tmp (fref efp -> tmp))
(= g (fref efp -> g))
(= i (fref efp -> i))
;; Get the return value.
(= tmp (mref (cast (ptr int) (fref efp -> argp)))))

;; Call the nested function g.
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(begin
(= tmp_fp2 g)
(= argp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (ptr char))
(sizeof align-t) -1)

(sizeof align-t)))))
;; Push the arguments passed to nested function.
(exps (= (mref (cast (ptr int) argp)) tmp)

(= argp
(cast (ptr char)

(+ (cast (ptr align-t) argp)
(/ (+ (sizeof int)

(sizeof align-t) -1)
(sizeof align-t))))))

;; Push the structure object that corresponds to
;; the frame of the nested function to
;; the explicit stack.
(= (mref (cast (ptr (ptr closure-t)) argp))

tmp_fp2)
;; Save the values of local variables to the frame.
(= (fref efp -> tmp2) tmp2)
(= (fref efp -> tmp) tmp)
(= (fref efp -> g) g)
(= (fref efp -> i) i)
(= (fref efp -> argp) argp)
(= (fref efp -> tmp-esp) argp)
;; Save the current execution point.
(= (fref efp -> call-id) 1)
(return (- (cast int 0) 1))
;; Continue the execution from here after
;; the function call finishes.
(label l_CALL2 nil)
(= tmp2 (fref efp -> tmp2))
(= tmp (fref efp -> tmp))
(= g (fref efp -> g))
(= i (fref efp -> i))
;; Get the return value.
(= tmp2 (mref (cast (ptr int)

(fref efp -> argp)))))
(return tmp2))

;;; The frame structure of function foo.
(def (struct foo_frame)
(def tmp-esp (ptr char))
(def argp (ptr char))
(def call-id int)
(def tmp3 int)
(def y int)
(def x int)
(def a int)
(def g10 closure-t))

;;; The frame structure of function g1 .
(def (struct g1_in_foo_frame)
(def tmp-esp (ptr char))
(def argp (ptr char))
(def call-id int)
(def b int)
(def xfp (ptr (struct foo_frame))))

;;; Nested function g1 (moved to the top-level).
(def (g1_in_foo esp xfp0)

(fn (ptr char) (ptr char) (ptr void))
(def new-esp (ptr char))
(def efp (ptr (struct g1_in_foo_frame)))
;; The frame pointer of the owner function.
(def xfp (ptr (struct foo_frame)) xfp0)
(def esp-flag size-t (bit-and (cast size-t esp) 3))
(def parmp (ptr char)

(cast (ptr char)
(bit-xor (cast size-t esp) esp-flag)))

;; Pop parameters from the explicit stack.
(def b int

(exps

(= parmp
(cast (ptr char)

(- (cast (ptr align-t) parmp)
(/ (+ (sizeof int) (sizeof align-t) -1)

(sizeof align-t)))))
(mref (cast (ptr int) parmp))))

(label LGOTO nil)
(= efp (cast (ptr (struct g1_in_foo_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct g1_in_foo_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(inc (fref xfp -> x))
;; Push the return value to the explicit stack.
(= (mref (cast (ptr int) efp)) (+ (fref xfp -> a) b))
(return 0))

(def (foo esp a) (fn int (ptr char) int)
(def efp (ptr (struct foo_frame)))
(def new-esp (ptr char))
(def esp-flag size-t (bit-and (cast size-t esp) 3))
(def x int 0)
(def y int 0)
(def tmp3 int)

;; Judge whether reconstruction of the execution stack is
;; required or not.
(if esp-flag

(begin
(= esp (cast (ptr char)

(bit-xor (cast size-t esp) esp-flag)))
(= efp (cast (ptr (struct foo_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct foo_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(label LGOTO

;; Restore the execution point.
(switch (fref (mref efp) call-id)
(case 0) (goto l_CALL3)))

(goto l_CALL3)))
(= efp (cast (ptr (struct foo_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct foo_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(= new-esp esp)
;; Call the ordinary function h.
(while

(and
(== (= tmp3 (h new-esp 10

(ptr (fref
(cast (ptr (struct foo_frame))

esp)
-> g10))))

(- (cast int 0) 1))
(!= (= (fref efp -> tmp-esp)

(mref (cast (ptr (ptr char)) esp))) 0))
;; Save the values of local variables to the frame.
(= (fref efp -> tmp3) tmp3)
(= (fref efp -> y) y)
(= (fref efp -> x) x)
(= (fref efp -> a) a)
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(= (fref efp -> g10 fun) g1_in_foo)
(= (fref efp -> g10 fr) (cast (ptr void) efp))
;; Save the current execution point.
(= (fref efp -> call-id) 0)
(return (- (cast int 0) 1))
;; Continue the execution from here after
;; the function call finishes.
(label l_CALL3 nil)
;; Restore local variables from the explicit stack.
(= tmp3 (fref efp -> tmp3))
(= y (fref efp -> y))
(= x (fref efp -> x))
(= a (fref efp -> a))
(= new-esp (+ esp 1)))

(= y tmp3)
(return (+ x y)))

;;; The frame structure of function main .
(def (struct main_frame)
(def tmp-esp (ptr char))
(def argp (ptr char))
(def call-id int)
(def tmp4 int))

(def (main) (fn int)
(def efp (ptr (struct main_frame)))
(def new-esp (ptr char))
(def estack (array char 65536)) ; The explicit stack.
(def esp (ptr char) estack)
(def tmp4 int)

(label LGOTO nil)
(= efp (cast (ptr (struct main_frame)) esp))
;; Move the stack pointer by the frame size.
(= esp

(cast (ptr char)
(+ (cast (ptr align-t) esp)

(/ (+ (sizeof (struct main_frame))
(sizeof align-t) -1)

(sizeof align-t)))))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(= new-esp esp)
(while

(and
(== (= tmp4 (foo new-esp 1))

(- (cast int 0) 1))
(!= (= (fref efp -> tmp-esp)

(mref (cast (ptr (ptr char)) esp))) 0))
(def goto-fr (ptr char))
(= (mref (cast (ptr (ptr char)) esp)) 0)
(= (fref efp -> tmp4) tmp4)
;; Execute nested functions.
(= goto-fr (lw-call (fref efp -> tmp-esp)))
(if (== (cast (ptr char) goto-fr)

(cast (ptr char) efp))
(goto LGOTO))

(= new-esp (+ esp 1)))
(return tmp4))
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