
Vol. 47 No. SIG 6(PRO 29) IPSJ Transactions on Programming May 2006

Regular Paper

Efficient and Portable Implementation of Java-style

Exception Handling in C

Seiji Umatani,† Hirokazu Shobayashi,†† Masahiro Yasugi†

and Taiichi Yuasa†

An important issue in implementing high-level programming languages for use by translators
into C is how to support high-level language features not available in C. Java’s exception
handling is one such feature, and translating it into portable C, which only uses C-style control
structures, involves some challenges. Previous studies have proposed ways of translating
the Java-style try-catch construct into C. In this paper, we propose a new scheme for
implementing it in an efficient and portable manner. We use our parallel language OPA, which
is an extended Java language, and its translator. In our scheme, we do not use troublesome
setjmp/longjmp routines for non-local jumps. Instead, we check the occurrences of exceptions
using functions’ return values. Java also has the try-finally construct, mainly used for
cleaning up, which cannot be translated directly into C-style control structures. To implement
it, we developed a new scheme with integer values corresponding to continuation targets.
Compared with other techniques, ours has advantages in both the runtime overhead and the
generated code size. For these two features, using some benchmark programs, we measured
the performance of our scheme and compared it with those of some other schemes.

1. Introduction

Java 6) is an object-oriented language de-
signed by Sun Microsystems that supports
portable code, i.e., bytecode that runs on a va-
riety of platforms. Java’s portability is achieved
by compiling its source programs into a distri-
bution format called a class file. A class file
contains information about the Java class, in-
cluding bytecode that is an architecturally inde-
pendent representation of the instructions asso-
ciated with the class’s methods. A class file can
be executed on any computer supporting the
Java Virtual Machine (JVM). Java’s code mo-
bility, therefore, depends on both architecture-
independent class files and the implicit assump-
tion that the JVM is supported on every client
machine.

Most JVM implementations execute byte-
code through interpretation or Just-In-Time
(JIT) compilation, which compiles the bytecode
into machine code at run time. Thus, Java’s
portability comes at a price, namely, the cost of
interpreting or JIT-compiling the bytecode ev-
ery time the program is executed. This incurs a
significant runtime overhead, which is unneces-
sary in applications running many times with-
out change.

† Department of Communications and Computer En-
gineering, Graduate School of Informatics, Kyoto
University

†† NTT West Co., Ltd.

To overcome these inherent performance
penalties, there are many Java implementations
that pre-compile Java programs (or bytecode)
into machine code 7),8),12),13). Some of these
systems first translate Java programs (or byte-
code) into C code, then compile the C code
into machine code, using existing C compilers.
These systems compile Java programs into ma-
chine code during program development, elimi-
nating the need for interpretation or JIT com-
pilation of bytecode.

Java-to-C translators have several advantages
over interpretation or JIT-compilation. First,
because they can employ optimizing C compil-
ers as their backend, highly efficient executables
can be generated at a low development cost.
Moreover, because they create a C-equivalent
to the Java program, the standard C debugging
and profiling tools can be used for these exe-
cutables. Second, because such an executable
usually includes all the information about the
class files it uses, there is no possibility of an ap-
plication suddenly ceasing to execute because
of a change in available class files. For these
reasons, we believe that ahead-of-time transla-
tion into C is valuable for the development of
efficient Java programs.

In this paper, we use our language OPA 15),16)

(Object-oriented language for PArallel process-
ing), which is an extended Java language. In
order to write parallel programs easily, we re-
move specifications about threads from Java,

1

2 IPSJ Transactions on Programming May 2006

void tryCatchFinally() {
try {

〈try-body code〉
} catch (MyExcep e) {

〈handler code for MyExcep class〉
} finally {

〈finally-body code〉
}

}

Fig. 1 A sample try-catch-finally method.

then add new features such as structured multi-
threading constructs for OPA. OPA is intended
for high-performance parallel processing, and
therefore our OPA implementation translates
OPA programs into C for efficiency.

Java’s exception handling is one of the fea-
tures that does not directly correspond to C-
style control structures; thus, translating it in-
volves some challenges. In Java, exception
handling is described by a try-catch-finally
construct (whose syntax is shown in Fig. 1). In
Java Language Specification 6), it is defined as
follows:

When an exception is thrown, con-
trol is transferred from the code that
caused the exception to the nearest
dynamically-enclosing catch clause of
a try statement that handles the ex-
ception.
A statement or expression is dynam-
ically enclosed by a catch clause if it
appears within the try block of the try
statement of which the catch clause is
a part, or if the caller of the statement
or expression is dynamically enclosed
by the catch clause.
. . .
In situations where it is desirable to en-
sure that one block of code is always
executed after another, even if that
other block of code completes abruptly,
a try statement with a finally clause
may be used.

Java’s try-catch-finally construct:
try{
...

}catch(Excep e){
...

}finally{ ... }
can be separated into two constructs like:
try{ try{

...

}catch(Excep e){ ... }
}finally{ ... }

Therefore, we discuss only the implementation
of try-catch and try-finally in the remain-
der of this paper.

To implement the try-catch construct in
C, we do not use non-local jumps such as
setjmp/longjmp, since this would incur some
undesirable overhead. Furthermore, we imple-
ment the try-finally construct neither by us-
ing an independent subroutine nor by inlining
the finally body at all points where execu-
tion of the finally body is needed. The for-
mer has some overhead for each function call,
while the latter may result in a huge amount of
code, and therefore we propose other schemes
for implementing them. Our schemes do not in-
cur unnecessary runtime overhead and do not
increase its code size superfluously. They also
have portability; that is, the generated C code
can be compiled and executed in environments
where the standard C language is supported.

The rest of this paper is organized as follows.
Section 2 describes our implementation of the
try-catch construct and Section 3 describes
our implementation of the try-finally con-
struct. In Section 4, we describe the results of
benchmark tests for some programs.

2. Implementation of try-catch

In this section, we explain how our OPA
compiler translates try-catch statements and
throw statements into C. In our scheme, we do
not use troublesome setjmp/longjmp routines
for non-local jumps, and the generated C code
fully confirms to the ANSI C standard.

Exceptions are handled through the following
steps:
(1) If an exception can be caught within the

current method, control is transferred to
the corresponding handler code.

(2) Otherwise, the method throws the un-
caught exception toward its caller.

(3) The above steps are repeated until the
exception is caught.

We explain how case (1) is implemented in Sec-
tion 2.1 and case (2) in Section 2.2. Related
work is discussed in Section 2.3.

2.1 Exceptions within a Method
Within the C function that is generated for

a method, the control is transferred to excep-
tion handlers simply by using goto statements
when an exception is raised. For example, the
following code:

Vol. 47 No. SIG 6(PRO 29) Implementation of Java-style Exception Handling in C 3

...;
ex = 〈code for creating Excep1 object〉;
goto CATCH_0;
...;
if(0){
CATCH_0:
if(instanceof(ex, c__Excep1)){

〈code for handler 1 〉
}else if(instanceof(ex, c__Excep2)){

〈code for handler 2 〉
}else{

〈code for rethrowing the exception〉
}

}

Fig. 2 The C code generated for try-catch in our
scheme.

try{
...; throw new Excep1(); ...

} catch(Excep1 e){
〈code for handler 1 〉

} catch(Excep2 e){
〈code for handler 2 〉

}
is translated into the code shown in Fig. 2.
The local variable ex is used for saving the
exception. c__Excep1 is the class descriptor
for the class Excep1, and instanceof() checks
whether ex can be caught by the corresponding
catch clause. If no handler can catch the ex-
ception, the exception is rethrown in the same
manner.

If a throw statement is in the try body of
a try-finally statement, not of a try-catch
statement, its goto target becomes the label
corresponding to the finally clause. Imple-
mentation details of try-finally are explained
later, in Section 3.4.

2.2 Exceptions across Method Call
As mentioned previously, OPA provides sim-

ple and efficient multithreading features. To
achieve efficiency, each thread in OPA normally
executes on the C stack. When the current
thread running on the stack is suspended, its
method frames are allocated in the heap area
and the current states of the stack frames are
saved there. To realize this, each method on
the stack must inform its parent method (caller)
that it has been suspended and its state is saved
into a certain frame in the heap; here, the ad-
dress of the callee’s frame must be known to the
caller, so that method frames within one thread
are organized as a linked list in the heap.

Therefore, a callee must return a pointer
to its own heap frame (if it exists; otherwise
it returns 0) along with the method’s return
value. In OPA, the pointer may be returned
as a return value of a C function call, and the
method’s return value may be stored in another
place:

child_fr = f__foo(pr, ...);
if(child_fr != 0){

〈code for suspension〉
} else {
ret = pr->ret;

}
Here, pr points to the per-processor data area
and the method’s return value is stored in it
(pr->ret). This means that each method call
must be followed by this memory access. To
reduce this overhead, the actual OPA system
returns 16) the method’s return value as a re-
turn value of the C function call, and the
special value SUSPEND (which is selected from
rarely used values, e.g., -5) indicates the sus-
pension of the callee. In such a case, the system
checks further to determine whether a pointer
to the callee frame is stored in a fixed place
(pr->child_fr):

ret = f__foo(pr, ...);
if(ret==SUSPEND && pr->child_fr!=0){

〈code for suspension〉
}

Our scheme involves quite a small overhead, be-
cause the return value of a C function is usually
in a register and, in most cases, the caller exe-
cutes only one additional branch instruction.

The above technique can also be applied for
propagating an exception accross a method call.
That is, if a callee completes abruptly be-
cause of an exception, it returns SUSPEND (and
pr->child_fr is set to any non-zero value), and
the uncaught exception is stored in pr->ex:

ret = f__foo(pr, ...);
if(ret==SUSPEND && pr->child_fr!=0){
if(pr->ex){

〈code for rethrowing the exception〉
}

}

2.3 Related Work
There are three existing schemes for imple-

menting try-catch statements:
• use static try block tables and search these

tables at runtime,
• dynamically create a linked list of try block

data structures using setjmp/longjmp,

4 IPSJ Transactions on Programming May 2006

• use functions with two return values.
The first scheme is used in most JVM inter-

preters and C++ compilers 9). In this scheme,
each exception handler is recorded as a single
entry of the table, specifying the range of offsets
into the JVM code implementing the method
for which the exception handler is active, de-
scribing the type of exception that the excep-
tion handler is able to handle, and specifying
the location of the code that is to handle that
exception. Here, offsets and locations are spec-
ified as program counters, and JVM can eas-
ily interpret these tables and transfer control
to the corresponding handler code. However,
since the program counter is not visible in C,
this scheme is not suitable for Java-to-C trans-
lators. Another approach is to realize our com-
piler as a Java-to-C++ translator. In Section 4,
we measure the performance of C++’s excep-
tion programs and compare it with those of our
scheme in C.

The second scheme is used in C++ 1) and
Ada 5). A linked try-catch data structure is
created when entering a try block, and the
structure is discarded when leaving the try
block. When an exception is raised during the
time that some method is called in a try block,
the callee-save registers must be restored to
their original values. The data structure can
be used to store such information. This scheme
can be applied to Java-to-C translators, but its
disadvantage is that creating and discarding the
data structure incurs some runtime overhead,
even if an exception is never raised.

The third scheme is used in Java2C 2) and the
early implementation of CACAO 10). In this
scheme, a function has two return values: one
for the method’s return value and the other for
an exception, as in our scheme. In CACAO,
an register is exclusively dedicated to storing
an exception. After each method call, the ex-
ception register is checked and, if it is non-
zero, the exception handling code is executed.
In Java2C, instead of reserving the proprietary
register for exception handling, a raised excep-
tion is stored in the thread object of the current
thread. In both cases, unlike our OPA imple-
mentation, the caller always checks the return
value for an exception: CACAO always reserves
one register (which is impossible in portable
C) and Java2C requires some memory accesses
even if an exception is never raised. In contrast,
in our OPA implementation, the caller checks
only the callee’s return value and performs fur-

ther checking (memory accesses) only when the
callee might throw an exception.

3. Implementation of try-finally

In this section, we explain four schemes used
for compiling Java’s try-finally statements
into C. Since all of these schemes except for
ours emulate the JVM’s bytecode implementa-
tion of try-finally statements, we first review
the JVM’s scheme.

The Java Virtual Machine Specification 11)

includes the jsr (Jump SubRoutine) instruc-
tion and the ret (RETurn from subrou-
tine) instruction for the implementation of
try-finally statements. When ‘jsr 〈offset〉’
is executed, control is transferred to that
〈offset〉 from the address of this jsr instruction.
At the same time, the address of the instruc-
tion immediately following this jsr instruction
is pushed onto the operand stack. Note that the
target address specified by the 〈offset〉 must be
within the method that contains this jsr in-
struction. When ‘ret 〈i〉’ is executed, the con-
tents of the local variable 〈i〉 are used for the
return address; that is, they are written into the
JVM’s program counter register and execution
continues there.

For example, a typical try-finally state-
ment is compiled to the code shown in Fig. 3.
The control flow of this code is shown in Fig. 4.
There are four ways for control to pass out-
side of (or escape from) the try statement: by
falling through the bottom of that block, by
raising an exception, by returning, or by ex-
ecuting a break or continue statement. (In
this example, only the former two cases are de-
scribed, but the others can be compiled in a
similar manner.)

1 〈try-body code〉
2 jsr FIN_BODY ; call finally block
3 return ; method return
4 astore_1 ; rethrow handler

; save thrown value
5 jsr FIN_BODY ; call finally block
6 aload_1 ; restore thrown value
7 athrow ; rethrow the value
8 FIN_BODY:
9 astore_2 ; save return address

10 〈finally-body code〉
11 ret 2 ; return from FIN_BODY

Fig. 3 Bytecode generated from a typical
try-finally statement.

Vol. 47 No. SIG 6(PRO 29) Implementation of Java-style Exception Handling in C 5

Fig. 4 Control flow of try-catch-finally code.

When the try body completes normally, a
subroutine call for the finally body is exe-
cuted at line 2. At line 2, the jsr instruction
pushes the address of the following instruction
(return at line 3) onto the operand stack be-
fore jumping. The astore_2 instruction at line
9 saves the address on the operand stack into
local variable 2. The code for the finally block
(line 10) is executed. Assuming that execution
of that code completes normally, the ret in-
struction retrieves the address from local vari-
able 2 and resumes execution at that address.
The method then returns normally at line 3.

If an exception is thrown during the execution
of the try body, since there is no exception han-
dler inside this try-finally statement, control
is transferred to the rethrow handler at lines 4–
7. In this case, the finally body is also called
from line 5 before rethrowing the exception at
line 7. Local variable 1 is used for saving the
exception during the execution of the finally
body.

3.1 Function Call
The first scheme is based on the straightfor-

ward observation that the jsr and ret instruc-
tions of JVM are almost the same as the ma-
chine instructions used by C compilers to trans-
late C’s function calls (e.g., call and ret in-
structions in the IA-32 architecture). (The only
difference between them is that, in JVM, the
target addresses of an jsr instruction must be
within the method that contains this instruc-
tion.) Thus, in Java-to-C translators, it seems
to be natural to realize a try-finally state-
ment with the function definition which con-
tains the corresponding finally body code (in
C) and with calls to this function.

The drawbacks of this scheme arise from the
difference between the jsr instruction and C
function calls. First, a C function call con-
tains a certain amount of runtime overhead:
some register values must be saved into the
C stack at the call and restored at its return,
the stack pointer (and the frame pointer) may
be adjusted, and so on. In addition to these
overheads, if try-catch statements are imple-

void sample(int p) {
int a = 0;
try {
try {

if (p == 0) return;
f(); // may throw an exception

} finally { // at level 1
a += 2;

}
} finally { // at level 0
a += 1;

}
return;

}

Fig. 5 Nested try-finally code.

mented with the two return value schemes de-
scribed in Section 2.3 or our scheme in Sec-
tion 2.2, an exception check must be performed
after each function call, since the function may
throw an exception. Second, in order to ac-
cess local variables of the caller from inside the
callee, their addresses must be passed as pa-
rameters to it. This may prevent these vari-
ables from remaining in registers, thus causing
performance degradation.

3.2 Inline Expansion
To overcome the drawbacks of the function

call scheme described in the previous section,
simply inlining finally bodies at jsr’s call
sites is effective, especially since:
• it can eliminate the function call overhead,
• local variables can be directly accessed

within finally bodies.
This scheme is used in the Java2C 2) translator.

As a simple example, the Java code in Fig. 5
is translated as in Fig. 6 (a). Clearly, the inline
expansion scheme has a considerable disadvan-
tage in terms of code size. Moreover, if a certain
finally body contains several escape points,
all the outer finally bodies are expanded into
these points. For instance, if finally body 1
contains a throw (or return, break, continue)
statement in its middle, the generated code ex-
pands further, as shown in Fig. 6 (b). At a
rough estimate, assuming that the nested level
of try-finally statements is N and that every
finally block contains k escape points, O(kN)
pieces of the expanded finally bodies are in-
cluded in the generated code.

3.3 GCC’s Label Value
The third scheme employs one of the GCC’s

C extensions 3): labels as values. We can obtain

6 IPSJ Transactions on Programming May 2006

(a) Inline expansion

(b) Recursive inline expansion

Fig. 6 Control flow of nested try-finally code.

the address of a label defined in the current
function by using the unary operator ‘&&’, and
we can use label values with the computed goto
statement, ‘goto *〈label val〉’.

Using this extension, GCJ 14) emulates
JVM’s jsr and ret instructions; the control
flow of the code generated by GCJ is the same
as JVM’s. More precisely, ‘jsr 〈target address〉’
is translated as follows:
void *ra0 = &&CONT_0;
goto 〈target label〉;

CONT_0: ...
where CONT_0 is the return address of this code,
i.e., the continuation of jsr. The variable ra0 is
prepared by the compiler for each finally block.
The ret instruction is more straightforward:
goto *ra0;

This scheme is simple and efficient. However, it
has two disadvantages. First, the generated C
code is not portable: it relies on the GCC’s ex-
tension. Consequently, many other optimizing
compilers seem to be unable to compile it.

Second, because the target addresses of com-
puted goto statements cannot be decided at
compile-time, the compiler must assume that
each computed goto statement may jump to
all labels in the current function. Thus, if mul-
tiple finally blocks exist in the same method,
their sets of return addresses are indistinguish-
able from one another. This can have nega-
tive effects on the compiler’s control flow anal-
yses, such as liveness analysis, register alloca-
tion, and so on.

3.4 Our Scheme
The GCJ’s problem is that continuation tar-

gets after the execution of finally blocks can-
not be hard coded into label identifiers (con-
stants). We solved this problem by represent-
ing continuation targets not as label values but
as integer values. Furthermore, after execut-

ing a finally block, we know that the execu-
tion does not need to be resumed at its caller
site (escape point); instead, control is directly
transferred outside of the try-finally state-
ment, where the exact target statement is de-
termined according to the way of escape from
the try block.

For each of the four ways of escape, our
scheme generates the C code as follows:
(1) If the try statement completes normally,

the finally block is executed and con-
trol is simply transferred to the next C
code of the try-finally where the Java
statement following the try-finally is
translated. That is,
try {

〈try-body〉
} finally {

〈finally-body〉
}

is simply translated as
〈C code for try-body〉
FIN_BEGIN:
〈C code for finally-body〉

(2) If a return statement is performed in-
side the try block, the return value is
saved, and then control is transferred to
FIN_BEGIN. After the execution of the
finally block, the function returns with
the saved value.
try {

...; return x; ...
} finally {

〈finally-body〉
}

is translated as
...;
ret = x; goto FIN_BEGIN;
...;

Vol. 47 No. SIG 6(PRO 29) Implementation of Java-style Exception Handling in C 7

FIN_BEGIN:
〈C code for finally-body〉
return ret;

Note that there is a single ret variable in
each function, since it cannot have mul-
tiple return values.

(3) If a break (or continue) statement is
performed inside the try block and if
there are any try-finally statements
within the break (or continue) target
whose try blocks contain the break (or
continue) statement, then any finally
blocks of those try-finally statements
must be executed before control is trans-
ferred to the break (or continue) target.
In our OPA implementation, break and
continue statements are implemented
with labels and gotos. We change these
gotos’ target to the innermost finally’s
FIN_BEGIN. The original target label is
saved (precisely speaking, a non-negative
integer value is assigned for each la-
bel) and used after the execution of all
finally blocks. For instance,

while(true) {
try {
...; break; ...

} finally {
〈finally-body〉

}
}

is translated as
while(TRUE) {
...;
gt = 3; goto FIN_BEGIN;
...;
FIN_BEGIN:
〈C code for finally-body〉
if(gt == 3)
goto L3;

}
L3: ...

where the next statement of the while
loop is labeled as L3.

(4) If an exception is thrown during the
execution of the try block, the excep-
tion is saved, and then control is trans-
ferred to FIN_BEGIN. After the execution
of the finally block, the exception is
rethrown. For instance,
void f() throws Excep {

try {
...; throw new Excep(); ...

} finally {

〈finally-body〉
}

}
is translated as
f_frame *f() {
...;
ex0 = pr->ex; goto FIN_BEGIN;
...;
FIN_BEGIN:
〈C code for finally-body〉
pr->ex = ex0; return SUSPEND;

}

The integer values mentioned above are used
to distinguish all these cases, and also for the gt
variable in the case of break (or continue). An
integer value i is set in the fin_flag variable
before jumping to FIN_BEGIN, and its mean-
ing is interpreted as follows (NORMAL, RETURN,
EXCEP are defined as negative constants):

i) if i = NORMAL, it means that the try block
completes normally.

ii) if i = RETURN, it means that a return
statement is performed.

iii) if i = EXCEP, it means that an exception is
thrown.

iv) if i ≥ 0, a break or continue is performed.
Its target is labeled as ‘Li:’.

Putting all this together, the sample code
in Fig. 5 is translated into the code shown in
Fig. 7, and its control flow is shown in Fig. 8.
It is conceivable that try statements usually
complete normally. Thus, at the end of each
finally block in the generated code, fin_flag
is first compared with NORMAL before being
checked with switch statements in order to
avoid the overhead of executing switch state-
ments.

4. Performance

In this section, we give measurement results
for some programs that are influenced by im-
plementation schemes of the try-catch and
try-finally constructs. The configuration of
the shared-memory parallel computer used for
these measurements is shown in Table 1.

First, we measured the overhead caused by
exception checks, which are necessary for im-
plementing the try-catch construct in OPA.
For comparison, we use two OPA implementa-
tions, one employing our proposed scheme, i.e.,
checking with SUSPEND (“fast”), the other al-
ways checking pr->ex (“slow”). For benchmark
programs, we used four Cilk 4) multithreaded

8 IPSJ Transactions on Programming May 2006

void f__sample(penv *pr, int p){
int a = 0; int fin_flag;
void *ex0, *ex1;
if (p == 0){
fin_flag = RETURN;
goto FIN_BEGIN1:

}
ret = f();
if(ret==SUSPEND && pr->child_fr)
if(pr->ex){

fin_flag = EXCEP;
ex1 = pr->ex;
goto FIN_BEGIN1;

}
fin_flag = NORMAL;
FIN_BEGIN1:
a += 2;
if(fin_flag!=NORMAL){
switch(fin_flag){

case RETURN:
goto FIN_BEGIN0;

case EXCEP:
ex0 = ex1;
goto FIN_BEGIN0;

}
}
FIN_BEGIN0:
a += 1;
if(fin_flag!=NORMAL){
switch(fin_flag){

case RETURN:
return;

case EXCEP:
pr->ex = ex0;
return SUSPEND;

}
}
return;

}
Fig. 7 Code generated by our scheme for

try-finally.

Fig. 8 Control flow of try-finally code generated
by using our scheme.

programs (fib, knapsack, cilksort, matmul)
by porting them into OPA. The results are
shown in the upper part of Table 2. The re-
sults show that our scheme is able to reduce the
overhead for exception checks considerably.

Even in other languages where no suspen-
sion check is carried out after each method
call, our techniques (both “fast” and “slow”)
may be used to implement the try-catch con-

Table 1 Computer settings.

Machine Sun Fire 3800
CPU Ultra SPARC III 750MHz,

8MB L2 cache
Main memory 6GB
Compiler gcc 3.0.3

(with -O3 -mcpu=ultrasparc option)

Table 2 Execution times of try-catch benchmarks
(sec).

fib knapsack cilksort matmul
fast 1.42 7.13 2.35 9.26
slow 1.58 7.26 2.52 9.44
nochk 1.41 5.92 2.31 9.15
fastchk 1.42 6.10 2.37 9.17
slowchk 1.48 6.30 2.43 9.30

Table 3 Comparison of try-catch with C++ (msec).

1 2 4

throw
fast 4.48 5.16 6.24
C++ 1730 2750 4750

no throw
fast 0.88 1.18 1.77
C++ 0.72 0.99 1.52

struct. To estimate the overhead of exception
checks in those languages, we prepared the se-
quential OPA implementation, which does not
generate multithreaded code (e.g., suspension
checks). Using this sequential implementation,
we also measured the overhead caused by ex-
ception checks. The lower part of Table 2
shows the results: “nochk” without exception
checks, “fastchk” with fast version exception
checks, and “slowchk” with slow version excep-
tion checks. From the results, we can show that
the overhead of slow version exception checks in
the sequential implementation is greater than
that of fast version (“exception checks”).

Second, we compared the performance of our
try-catch implementation in C (fast version)
with C++’s try-catch implementation. The
C++ compiler is g++ (gcc) 3.0.3. It uses the
first scheme described in Section 2.3; that is,
an exception table and a hardware PC are em-
ployed. We used a simple try-catch program
that repeatedly throws and catches exceptions
(“throw”). We also used a program which is al-
most the same except that it does not throw any
exception (“no throw”). The results are shown
in Table 3 (1, 2, and 4 indicate the number of
try-catch nestings). In the case of “no throw,”
our scheme is slightly slower than C++ because
of the time spent on exception checks. How-
ever, in the case of “throw”, the C++ program
requires an amount of time about three orders
of magnitude larger than that needed for “no

Vol. 47 No. SIG 6(PRO 29) Implementation of Java-style Exception Handling in C 9

Table 4 Execution times for three try-finally
programs (µsec).

A B C
func 5.57 3.00 427.4
inline 0.49 3.04 86.5
lvalue 1.23 3.01 55.1
intval 1.55 2.95 52.3

throw”, while in our scheme the cost of throw-
ing an exception is relatively low.

Third, we measured the execution time of
three try-finally programs. The behavior of
these programs can be summarized as follows:
prog. A: it does no useful work in the

finally block.
prog. B: it calls a method in the finally

block.
prog. C: it performs a while loop in the

finally block.
We use four OPA implementations: function
call (“func”), inline expansion (“inline”), gcc’s
label value (“lvalue”), and our proposed scheme
(“intval”). The results are shown in Table 4.
From the results, we can show that, in terms of
execution time, the function call scheme clearly
has some disadvantages, especially for programs
A and C. It seems that the cost of accessing
local variables via the pointers to them from
inside the called function is relatively high. In
contrast, the inline expansion scheme achieves
good execution time results. However, it has
some disadvantages in terms of code size. Our
scheme achieves relatively good performance re-
sults in both contexts.

5. Conclusions

In this paper, we have proposed efficient and
portable implementation techniques for Java-
style exception handling in Java-to-C transla-
tors. A Java-style try-catch construct has
been implemented efficiently; it incurs no over-
head except for simple checks, which are al-
ready included in our multithreading imple-
mentation, if an exception is never raised. A
Java-style try-finally construct can be im-
plemented in several ways, and our proposed
scheme has various benefits in terms of its
portability, runtime overhead, and generated
code size.

References

1) Cameron, D., Faust, P., Lenkov, D. and
Mehta, M.: A Portable Implementation of C++
Exception Handling, C++ Technical Confer-
ence, USENIX, pp.225–243 (1992).

2) Chiba, Y.: Implementation of Exception Han-
dling in a Java2C Translator, IPSJ Trans-
actions on Programming, Vol.42, No.SIG11
(PRO 12), pp.14–24 (2001) (in Japanese).

3) Free Software Foundation, Inc.: Using the
GNU Compiler Collection, for gcc 3.4.3 edition
(2004).

4) Frigo, M., Leiserson, C.E. and Randall, K.H.:
The Implementation of the Cilk-5 Multi-
threaded Language, ACM SIGPLAN Notices
(PLDI ’98), Vol.33, No.5, pp.212–223 (1998).

5) Giering, E.W., Mueller, F. and Baker, T.P.:
Features of the Gnu Ada Runtime Library,
TRI-Ada ’94, ACM, pp.93–103 (1994).

6) Gosling, J., Joy, B., Steele, G. and Bracha, G.:
Java Language Specification, Second Edition,
Addison-Wesley Longman Publishing Co., Inc.
(2000).

7) Hsieh, C.-H.A., Conte, M.T., Johnson, T.L.,
Gyllenhaal, J.C. and Hwu, W.W.: Optimiz-
ing NET Compilers for Improved Java Per-
formance, Computer, Vol.30, No.6, pp.67–75
(1997).

8) Hsieh, C.-H.A., Gyllenhaal, J.C. and Hwu,
W.W.: Java Bytecode to Native Code Trans-
lation: The Caffeine Prototype and Prelim-
inary Results, MICRO 29: Proc. 29th An-
nual ACM/IEEE International Symposium on
Microarchitecture, IEEE Computer Society,
pp.90–99 (1996).

9) Koenig, A. and Stroustrup, B.: Exception
Handling for C++, Journal of Object Oriented
Programming, Vol.3, No.2, pp.16–33 (1990).

10) Krall, A. and Grafl, R.: CACAO — A 64-
Bit JavaVM Just-in-Time Compiler, Concur-
rency: Practice and Experience, Vol.9, No.11,
pp.1017–1030 (1997).

11) Lindholm, T. and Yellin, F.: Java Virtual Ma-
chine Specification, Second Edition, Addison-
Wesley Longman Publishing Co., Inc. (1999).

12) Muller, G., Moura, B., Bellard, F. and Consel,
C.: Harissa: A Flexible and Efficient Java Envi-
ronment Mixing Bytecode and Compiled Code,
Proc. Third USENIX Conference on Object-
Oriented Technologies and Systems (COOTS),
pp.1–20 (1997).

13) Proebsting, T.A., Townsend, G.M., Bridges,
P.G., Hartman, J.H., Newsham, T. and
Watterson, S.A.: Toba: Java for Applications
— A Way Ahead of Time (WAT) Compiler,
Proc. Third USENIX Conference on Object-
Oriented Technologies and Systems (COOTS),
pp.41–54 (1997).

14) Tromey, T.: GNU gcj,
http://gcc.gnu.org/java/ (2002).

15) Umatani, S., Yasugi, M., Komiya, T. and
Yuasa, T.: Lazy Normalization Techniques for

10 IPSJ Transactions on Programming May 2006

an Object-Oriented Parallel Language OPA,
IPSJ Transactions on Programming, Vol.45,
No.SIG5 (PRO 21), pp.12–25 (2004) (in
Japanese).

16) Yasugi, M., Umatani, S., Kamada, T., Tabata,
Y., Ito, T., Komiya, T. and Yuasa, T.: Code
Generation Techniques for an Object-Oriented
Parallel Language OPA, IPSJ Transactions
on Programming, Vol.42, No.SIG11 (PRO 12),
pp.1–13 (2001) (in Japanese).

(Received February 21, 2005)
(Accepted July 1, 2005)

Seiji Umatani was born in
1974, and received a B.E. degree
in informatics and mathematical
science, and M.E. and Ph.D. de-
grees in informatics from Kyoto
University, Kyoto, Japan, in
1999, 2001, and 2004, respec-

tively. Since 2004, he has been a research
staff member in the Graduate School of In-
formatics at Kyoto University, and he was ap-
pointed to an assistant professor in 2005. His
current research interest includes programming
languages, compilers, and parallel/distributed
systems. He is a member of the ACM and the
Japan Society for Software Science and Tech-
nology.

Hirokazu Shobayashi was
born in 1979. He received a B.E.
in Information Science in 2002
and the Master of Informatics
degree in 2004, both from Kyoto
University, Kyoto, Japan. He is
currently working at NTT West

Co., Ltd. Shizuoka Branch. His research inter-
ests include programming languages and paral-
lel processing.

Masahiro Yasugi was born
in 1967. He received a B.E. in
electronic engineering, an M.E.
in electrical engineering, and
a Ph.D. in information science
from the University of Tokyo in
1989, 1991, and 1994, respec-

tively. In 1993–1995, he was a fellow of the
JSPS (at the University of Tokyo and the Uni-
versity of Manchester). In 1995–1998, he was
a research associate at Kobe University. Since
1998, he has been working at Kyoto University
as an assistant professor (lecturer) and an as-
sociate professor (since 2003). In 1998–2001,
he was a researcher at PRESTO, JST. His re-
search interests include programming languages
and parallel processing. He is a member of the
ACM and the Japan Society for Software Sci-
ence and Technology.

Taiichi Yuasa received a
Bachelor of Mathematics degree
in 1977, the Master of Mathe-
matical Sciences degree in 1979,
and a Doctor of Science degree
in 1987, all from Kyoto Univer-
sity, Kyoto, Japan. He joined

the faculty of the Research Institute for Mathe-
matical Sciences, Kyoto University, in 1982. He
is currently a Professor at the Graduate School
of Informatics, Kyoto University, Kyoto, Japan.
His current areas of interest include symbolic
computation and programming language sys-
tems. He is a member of the ACM, the IEEE,
the Institute of Electronics, Information and
Communication Engineers, and the Japan So-
ciety for Software Science and Technology.

