
Vol. 48 No. SIG 10(PRO 33) IPSJ Transactions on Programming June 2007

Regular Paper

Sub-Computation Based Transition Predicate Abstraction

Carl Christian Frederiksen† and Masami Hagiya†

The transition predicate abstraction framework developed by Podelski, et al. (2005) cap-
tures size relations over state transitions which can be used to show infeasibility of certain
program computations. In particular, general liveness properties (i.e., properties of infinite
computations) can be verified by reducing the verification problem to one of fair termination
and then proving that all (infinite) fair computations are infeasible. We present an extension
of the algorithm by Podelski, et al. that can be used to improve the precision of transition
predicate abstraction as well as speed up analysis time for programs with well-structured
control-flow. The main key is to identify sub-computations that can be evaluated indepen-
dently of their context. Efficiency is then readily improved by analyzing each sub-computation
in turn, thus avoiding to reanalyze the effect of a given sub-computations for different con-
texts. Further, precision can be improved by using stronger methods for extracting summary
information about a given sub-computation. We present two versions of the sub-computation
based analysis: one for a non-parallel imperative language with loops and recursive proce-
dures, serving as an introduction, and one for the extension of the non-parallel language to a
parallel language with synchronous communication via statically named channels.

1. Introduction

Transition predicate abstraction 11) is in
essence an adaption of size-change termina-
tion 8) to fair termination. By abstracting size
changes of variables over program transitions
the set of infinite computations can be approx-
imated by computing the fix-point of composi-
tion of the abstract transitions for a suitable ab-
stract domain. Termination can then be proven
by demonstrating that all idempotent abstract
transitions in the closure set cause some expres-
sion to progress towards a bound. The exten-
sion to fair termination requires the algorithm
to only consider termination for computations
that satisfy a given fairness requirement speci-
fied as a criterion over the program traces.

We develop the notion of a flow graph
for infinite computations whose strongly con-
nected components identify the proper sub-
computations of a given program. By an-
alyzing each sub-computation in turn (start-
ing with those that do not contain other sub-
computations) a number of advantages are
gained: the closure set can be computed faster
and the set of counter example traces is re-
stricted to sub-computations that can cause a
violation of the fairness requirement. Finally
it is possible to uncover stronger abstract tran-

† Department of Computer Science, Graduate School
of Information Science and Technology, the Univer-
sity of Tokyo

sitions for sub-computations than those gener-
ated by the closure set computation by using
linear programming 6).

The analysis is further improved by com-
puting compositions for “inter-recursion traces”
(corresponding to basic blocks modulo condi-
tionals) prior to the closure set computation,
a technique commonly used for other types
of program analyzes. This both improves on
efficiency and precision: redundant abstrac-
tions for loops are avoided and non-monotone
progress over inter-recursion traces can be cap-
tured by choosing appropriate abstraction func-
tions.

We illustrate the methods with a small, but
complete, running example and demonstrate
the potential improvement in practice by an-
alyzing the example with an implementation
of the algorithm. Finally we present an ex-
tension of the sub-computation based verifica-
tion algorithm to a parallel language with syn-
chronous communication. We propose using
state predicate abstraction to model the com-
munication behavior and to guide the extrac-
tion of transition relations for a given program
sub-computation. This allows the algorithm to
only consider interleavings of sub-computations
of processes that may affect each other’s execu-
tion, thus potentially reducing the size of the
resulting model.

Section 2 introduces the subject language for
the analysis and Section 3 defines transition
predicate abstraction based on linear inequal-

114

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 115

ities. Section 4 introduces a criteria for detect-
ing progress towards a bound and formalizes the
algorithm of Ref. 11). Diving into our contri-
butions, Section 5 introduces the “infinite flow
graph” which identifies the sub-computations,
Section 6 improves analysis speed by abstrac-
tion over “inter-recursion sequences” and Sec-
tion 7 defines a widening operator on transition
predicates to ensure convergence of the closure
set computation. Section 8 proves correctness
of the verification algorithm and reports on ex-
perimental results.

Section 9 proceeds to build up to the parallel
verification algorithm, Section 10 defines a par-
allel language with synchronous communication
and the notion of sub-computations in the par-
allel setting is investigated in Section 11. Sec-
tion 12 introduces state predicate abstraction
which is used in conjunction with “progressive
paths” of Section 13 to extract transition re-
lations in Section 14. Section 15 extends the
idea of “inter-recursion sequences” to the par-
allel setting and the parallel verification algo-
rithm is given in Section 16. Finally Section 17
concludes.

2. Subject Language

The subject language is a simple impera-
tive language with recursive procedures and a
choose construct for guarded commands. The
syntax is given in Fig. 1. In the subsequent
analysis we will assume that each statement in
the subject program has been labeled uniquely
and for technical reasons two distinct labels in
the case of while statements. The label fE

designates the first label in the procedure f
and the label fX designates the last label in
the procedure f, i.e., the label preceding the
return statement. The function next maps a
label to the next label following the control flow.
The set of all labels in program P is denoted
label(P). Finally, the notation stmt l designates
the statement at label l, f(i) designates the ith
parameter of the procedure f and f(R) desig-
nates the return variable for procedure f.
(1) A program store ρ ∈ Store is a mapping

of variables into integer values and the
special value rtn, which serves as a place-
holder for the return value when evaluat-
ing a procedure, ρ : Variables → ZZ ∪
{rtn} written ρ = [x1 �→ v1, . . . , xn �→
vn]. Store updates are written: ρ[x �→ v].

(2) A configuration is a tuple (l, ρ) ∈
Labels × Store.

(3) A program stack s ∈ S is an or-
dered sequence of configurations: s =
(l1, ρ1), . . . , (ln, ρn). In the following we
will sometimes use the shorthand no-
tation s = [(li, ρi)]ni=1 and the opera-
tor ‘:’ for pushing configurations onto a
program stack: [(li, ρi)]n−1

i=1 : (ln, ρn) =
[(li, ρi)]ni=1. The label and store at
the topmost configuration of the stack
s above is given by label(s) = ln and
store(s) = ρn.

(4) The one-step semantics of the lan-
guage, given in Fig. 2, specifies a tran-
sition relation on program stacks, s →
s′. Note that choose statements non-
deterministically selects any of the open
guards for execution. Each operator op
is associated with a function [[op]] : ZZ ×
ZZ → ZZ. For an expression e and a store
ρ evaluation is denoted ρ |=exp e → v
where v is the resulting value.

(5) An initial configuration is a program
stack s1 = (fE , ρ1) where f is the first
procedure definition in the program and
ρ1 specifies the program input.

(6) A computation is a finite or infinite se-
quence of program stacks π = s1 → s2 →
. . . such that s1 is an initial configuration
and si → si+1 for all i ≥ 1.

(7) A program trace is a finite or infi-
nite sequence of program labels τ =
l1 → l2 → . . . such that there exists
a computation realizing the trace: π =
[(l(1,i), ρ(1,i))]

N1
i=1 → [(l(2,i), ρ(2,i))]

N2
i=1 →

. . . where lj is the label of the configura-
tion on top of the jth stack: lj = l(j,Nj)

for all j ≥ 0. Define the trace of π such
that trace(π) = τ .

(8) The control-flow graph cfg(P) of a pro-
gram P is a graph that contains precisely
all the traces in P. The restriction to
the set of labels L ⊆ Labels is the graph
cfg(P)|L := (V ∩ L,E ∩ L × L) where
(V,E) = cfg(P).

3. Extracting Transition Relations

The basis for proving fair termination is to
extract “safe” relations between variables over
transitions in the program that assert how the
values of variables change for the different tran-
sitions in the program. The notion of transi-
tion relations is analogous to that of size-change
graphs 8) which are used to prove termination
for first order functional programs over well-

116 IPSJ Transactions on Programming June 2007

P ::= def 1 . . . def n (Program)
def ::= f(x1, . . . , xk){stmts; l : return xr} (Procedure)

stmts ::= ε | stmt; stmts (Statement Block)
stmt ::= l : stmt | x := e | x := f(x1, . . . , xn) (Statement)

| if(test) {stmtst} else {stmtsf }
| while(test){stmts}
| choose test1 → {stmts1} [] . . . [] testn → {stmtsn}

e ::= v | x | e1 op e2 (Integer Expression)

test ::= T | F (Boolean Constant)
| test1 ∧ test2 | 0 = e | 0 ≤ e | 0 < e (Boolean Expression)

f : Procedure identifiers (f, g, . . .)
x : Variable identifiers (x, y, . . .)
l : Labels identifiers (1, 2, . . .)
v : Integers (ZZ)
op : Binary Operators (ZZ × ZZ → ZZ)

Fig. 1 Program syntax.

[ASN]
ρ |=exp e → v

s : (l, ρ) → s : (next(l), ρ[x �→ v])
(if stmt l = x :=e)

[CALL]
s : (l, ρ)→ s : (next(l), ρ[x �→ rtn]) : (fE , [f(j) �→ ρi(xj)]

k
j=1)

(
if stmt l =
x := f(x1, . . . , xk)

)
[RTN]

s : (l′, ρ′′) : (l, ρ)→ s : (l′, ρ′′[y �→ ρ(x)])

(
if stmt l = return x,
where ρ′′(y) = rtn for some y

)
[IF]

ρ |=exp test → b

s : (l, ρ) → s : (lb, ρ)

(
if stmt l = if(test) {lT : . . . } else {lF : . . . },
where b ∈ {T, F}

)
[WH TRUE]

ρ |=exp test → T

s : (l, ρ) → s : (l′, ρ)
(if stmt l = while(test) {l′ : . . . },)

[WH FALSE]
ρ |=exp test → F

s : (l, ρ) → s : (next(l), ρ)
(if stmt l = while(test) {l′ : . . . },)

[CHOOSE]
ρ |=exp testk → T

s : (l, ρ) → s : (lk, ρ)

 if stmt l =

{
choose test1 → {l1 : . . . }

[] . . .
[] testn → {ln : . . . }

for any k

ρ |=exp x → ρ(x) ρ |=exp v → v
(if v ∈ ZZ)

ρ |=exp e1 → v1, ρ |=exp e2 → v2

ρ |=exp e1 op e2 → [[op]](v1, v2)

Fig. 2 Semantics.

founded data using the following principle: if all
infinite computations strictly decrease the size
of a parameter then no infinite computations
are realizable because they would violate the
well-foundedness assumption on the data do-
main. In the present setting the data domain is
the set of integers which is not well-founded, so
the method for proving infinite computations
to be infeasible is to show progress towards a
bound (in accordance with the transition rela-

tions). For this reason, the transition relations
need to be augmented with a set of invariants
(preconditions) that can be used as bounds.
Definition 3.1. (Transition Relation): A tran-
sition relation is a tuple:
(l → l′, P,R) where l, l′ ∈ Labels, P is a set of
preconditions and R is a set of transition pred-
icates of form:

0 ��p k +
∑n
i=1 kixi (precon.)

x′ ��t k +
∑n
i=1 kixi (trans. pred.)

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 117

dbAccess(r, // number of read locks held
w, // number of write locks held
q) { // number of pending writers

1:2: while(T) {
3: choose 0 = r ∧ 0 = w ∧ 0 < q → { 4: w := 1; // acquire write lock

5: q := updatePending(q,q); }
[] 0 = w ∧ 0 = q → { 6: r := r + 1; } // acquire read lock
[] 0 < w → { 7: w := 0; } // release write lock
[] 0 < r → { 8: r := r− 1; }; }; // release read lock

9: return q }
updatePending(q, i) {
10: i := i− 1;
11: if(0 < i) {

12: choose T → { 13: q := q− 1; } // request timed out
[] T → { 14: }; // request still pending

15: q := updatePending(q, i); }
16: else { q := q− 1; }
17: return q }

Fig. 3 Example program.

where ��p is a relation over ZZ (<, ≤, =), ��t
is a relation over ZZ (<, ≤, =, ≥, >) and
k, k1, . . . , kn ∈ ZZ are integer constants. The
primed variable x′ on the left-hand side of a
transition predicate denotes the value of x after
the transition. The set of all transition rela-
tions is denoted Vinf , and the set of all sets of
preconditions and that of transition predicates
are denoted P and R respectively.

Example: Consider the program in Fig. 3
which will be used as a running example. The
program models management of read/write ac-
cess to a database: multiple read access is per-
mitted, but write access is exclusive. The pro-
cedure dbAccess models a policy for granting
read and write requests by non-deterministically
choosing to execute any of the open guards.
Read requests are granted only if no write re-
quests are pending and no write lock is held.
Write requests are assumed to have been en-
queued and can be granted when no locks are
held on the database. When a write request
is granted, the queue of pending writers is up-
dated by calling updatePending. Write re-
quests can time out, which is modeled by non-
deterministically dropping zero or more pending
write requests. The procedure then finally “de-
queues” the write request that was just granted.
• (8 → 2, ∅, {r′ = r − 1, w′ = w, q′ = q}) is a

transition relation for the transition 8→ 2,
corresponding to the statement r:=r-1.

• (3 → 4, {0 = r, 0 = w, 0 < q}, {r′ =
r, w′ = w, q′ = q}) is a transition relation
for the transition 3 → 4 which selects the
first guard in the choose statement.

Transition relations assert a relation on pro-

gram stacks over certain traces which are en-
coded by a non-deterministic trace automaton.
Definition 3.2. (Trace Automaton): A trace
automaton A is a non-deterministic finite au-
tomaton over the set of program labels, Label.
We write τ = l1 → . . .→ ln ∈ A if there exists
a run l1, l2, . . . , ln of the automaton A. In the
following A1 ◦ A2 denotes the concatenation of
A1 and A2, such that (w1lw2) ∈ A1 ◦A2 for all
(w1l) ∈ A1, (lw2) ∈ A2. When clear from the
context we use the notation l1 → . . . → ln for
the trace automaton that only accepts the trace
l1 → . . .→ ln.
Definition 3.3. (Safety): A transition relation
v is safe for the trace automaton A iff

v = (l→ l′, {0 ��i ki +
∑n
j=1 k(i,j)xj},

{x′i ��i ki +
∑n
j=1 k(i,j)xj})

implies that for any computation π =
[(l(1,i), ρ(1,i))]

N1
i=1 → [(l(2,i), ρ(2,i))]

N2
i=1 → . . . for

which there exists indices a < b such that
l(a,Na) → . . . → l(b,Nb) ∈ A and l = l(a,Na),
l′ = l(b,Nb), the following holds:

∀i : 0 ��i ki +
∑n
j=1 k(i,j)ρ(a,Na)(xj),

∀i : ρ(b,Nb)(xi)
��i ki +

∑n
j=1 k(i,j)ρ(a,Na)(xj).

Example: The two transition relations in
the previous example are safe for the trace au-
tomata 8 → 2 and 3 → 4 respectively. The
statement at label 8 is r := r− 1 so it is safe to
assert that neither w or q change, i.e., w′ = w
and q′ = q. The value of r is decremented by
1, so it is also safe to assert r′ = r − 1. For
the transition from 3 to 4 the guard must nec-
essarily evaluate to true, so it is safe to assert

118 IPSJ Transactions on Programming June 2007

S[[l : x :=e]]ψ, l′ = (l→ l′, Id(l, l′)[∅, x′ = Se[[e]]])
S[[l : if(test){lT . . . } else {lF . . . }]]ψ, lT = (l→ lT, Id(l, lT)[test , ∅])
S[[l : if(test){lT . . . } else {lF . . . }]]ψ, lF = (l→ lF, Id(l, lF)[¬test , ∅])
S[[l : choose test1 → {l1 . . . } [] . . .

[] testn → {ln . . . }]]ψ, li = (l→ li, Id(l, li)[test i, ∅])
S[[l : while(test){lT . . . }]]ψ, l′ =

(A(cfg l→l

′
lT), Id(l, lT)[ψ(l)]) if ψ(l) is defined.

(l→ lT, Id(l, lT)[test , ∅]) if l′ = lT.
(l→ l′, (l→ l′, ∅, ∅)) otherwise

S[[l : x := f(x1, . . . , xn)]]ψ, l′ =

(l→ l′, (l→ l′, ∅, {f(1)′ = x1, . . . , f
(n)′ = xn})) if l′ = fE

(A(cfg l→l′
fE

), Id(l, l′)[ψ(fE)[x′/f(R), x1/f
(1), . . . , xn/f

(n)]]) if ψ(fE) is defined

(A(cfg l→l′
fE

), (l→ l′, ∅, {y′ = y | for all y except x })) otherwise

Se [[e]] =
{

e if e is of form c+
∑n
i=1 cixi otherwise

where
Id(l, l′)[P,R] := (l→ l′, P,R ∪ {y′ = y | ∀(x′ �� k +

∑n

i=1
kixi) ∈ R : y �= x})

A(cfg l→l′
l0

) := (L,L, l, δ, {l′}) for (L, δ) = cfg(P)|{l,l′}∪{l′′ | l0→∗l′′}

Fig. 4 Transition relation analysis.

the guard as a precondition for the transition.
Definition 3.4. (Sub-Computation Bound
Environment): A sub-computation bound en-
vironment is a mapping from labels to precon-
ditions and transition predicates: ψ : Label →
P ×R. The environment ψ is safe iff for all l:
• if l is the label at call x := f(x1, . . . , xn)

and l′ is the following label then (l →
l′, P,R ∪ {y′ = y | y �= x}) is
safe for A(cfg l→l

′
fE) where (P,R) =

ψ(fE)[x′/f(R), x1/f(1), . . . , xn/f(n)] and A
is given in Fig. 4,

• if l is the label at a loop while(test){lT :
. . . } then (l → l′, ψ(l)) is safe for
A(cfg l→l

′
lT).

Safe bounds for procedures and loops can be
computed by using linear programming as de-
scribed in Ref. 6).

Example: For now assume that we can prove
that the overall effect of calling updatePending
at label 5 is a strict decrease in the size of q, i.e.,
ψ = [10 �→ q′ ≤ q−1] is a safe sub-computation
bound environment. Then (5 → 2, ∅, {r′ =
r, w′ = w, q′ ≤ q − 1}) is a safe transition
relation for the transition 5 → 2, correspond-
ing to the statement q:=updatePending(q,q).
Note that evaluation of the statement requires
the procedure updatePending to be evaluated,
so the trace automaton corresponding to the ab-
stract transition must take the procedure body

into account.
The transition relation analysis given in Fig. 4

defines a function S[[l : stmt]]ψ, l′ = (A, v) such
that v is a transition relation for the statement
stmt for a given safe sub-computation bound
environment ψ and v is safe for the trace au-
tomaton A.
Lemma 3.1. For any one-step transition l →
l′ and any safe sub-computation bound environ-
ment ψ, the transition relation v is safe for
the trace automaton A, where (A, v) = S[[l :
stmt l]]ψ, l′.
Definition 3.5. (Composition): Given two
transition relations v1 and v2, where v1 = (l1 →
l′1, P1, R1) and v2 = (l2 → l′2, P2, R2), define
the composition v1 ◦ v2 := (l1 → l′2, P

′′, R′′)
if l′1 = l2, otherwise undefined, where P ′′ is a
set of preconditions and R′′ is a set of transi-
tion predicates. The sets P ′′ and R′′ must be
given such that P ′′ is a consequence of P1 ∪
σ1(R1) ∪ σ2(P2) and R′′ is a consequence of
σ1(R1) ∪ σ2(R2) for some function σ1 that re-
places all occurrences of primed variables with
double primed variables and some function σ2

that replaces unprimed variables with double
primed variables. Suppose v1, v2 are safe for
the trace automata A1, A2 respectively, then
the composition (A1, v1) ◦ (A2, v2) is defined as
(A1, v1) ◦ (A2, v2) := (A1 ◦A2, v1 ◦ v2).
Lemma 3.2. The composition operator ◦ pre-
serves safety: Suppose v1, v2 are safe for

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 119

Input: Set of trace automaton and transition relation pairs W0

Output: Abstract transition program (V, E)
Q := [Id] // queue containing the identity transition relation
V := {Id} ; E := ∅
while(Q �= []) { v:= dequeue(Q)

foreach((A0, v0) ∈ W0) { v′:=(v ◦ v0)
if(v′ /∈ V) { V :=V ∪ {v′}

enqueue(Q, v′) }
E := E ∪ {v A0→ v′} } }

Fig. 5 Closure set computation.

the trace automata A1, A2 respectively and let
(A′, v′) = (A1, v1) ◦ (A2, v2) be their composi-
tion, then v′ is safe for A′.
Proof. Safety of the composition operator
hinges on the correctness of the consequence
relation �. If P1 is a set of preconditions for
computations in A1 then it must also be a set
of preconditions for computations in A1 ◦ A2.
Further, if P2 is a set of preconditions for A2

and R1 is a set of size relations for A1 then
any backwards extrapolation P ′′2 of P2 such that
σ1(R1)∪ σ2(P2) � P ′′2 is also a precondition for
A1◦A2. Finally, if R1 and R2 are sets of size re-
lations for A1 and A2 respectively then any ex-
trapolation R′′ such that σ1(R1)∪σ2(R2) � R′′
is a set of size relations for the composition
A1 ◦A2.

The composition operator can be used di-
rectly to prove fair termination by restricting
the abstraction domain to a finite set of pred-
icates and computing the least fix-point of the
transition relations under the composition op-
erator by the algorithm in Fig. 5, as in Ref. 11).
Theorem 3.1. Given a composition operator
◦ which preserves safety, suppose W0 is a set
of pairs of trace automata and transition re-
lations such that (A, v) ∈ W0 implies v is
safe for A and suppose (V,E) is the output of
the algorithm in Fig. 5 where V is the set of
transition relations and E is the set of edges
between the transition relations, each labeled
with a trace automaton corresponding to some
transition in W0. Then for the graph (V,E)
any v ∈ V is safe for the trace automaton:
Av := (Labels , V ∪ ⋃

e∈E Ve,
⋃
e∈E δ

′
e, Id, {v})

where for each transition e = v′ Ae→ v′′ ∈ E,
such that Ae = (Labels , Ve, δe, v0

e , F), the trans-
fer function δ′e is given by:

δ′e = {v′ ε→ v0
e} ∪ {f ε→ v′′ | f ∈ F} ∪ δe.

Intuitively the automaton Av is the graph
(V,E) where each transition v′ A→ v′′ ∈ E is re-

placed with the automaton A plus ε-transitions
leading from v′ to the initial state in A and from
all accepting states of A to v′′; The initial state
is the Identity transition relation (correspond-
ing to zero length computations) and the single
final state is the transition relation v.

Example: The closure set for the program in
Fig. 3 is given in Fig. 6.

4. Decreasing Expressions

In order to prove infeasibility of infinite com-
putations a notion of “progress” is required. In
the following we use the idea of “Decreasing Ex-
pressions” of Ref. 1), in which Avery describes
an automatic method for generating linear in-
variants for a small sub set of C that is orthog-
onal to our analysis. By using the same defini-
tion of well-foundedness, the method of Ref. 1)
can be readily used to strengthen the precondi-
tions.
Definition 4.1. (Decreasing Expressions):
Given an expression e = k+

∑n
i=1 kixi the tran-

sition relation v = (l → l′, P,R) is said to de-
crease e iff

∀i ∈ {1 . . . n} :
ki > 0 implies (x′i < xi ∈ R ∨

x′i ≤ xi ∈ R),
ki < 0 implies (x′i > xi ∈ R ∨

x′i ≥ xi ∈ R),
∃i ∈ {1 . . . n} :
ki > 0 implies x′i < xi ∈ R,
ki < 0 implies x′i > xi ∈ R.

A transition relation v is well-founded, denoted
well-founded (v), if there exists a precondition
0 < e ∈ P or 0 ≤ e ∈ P such that v decreases
e.
Theorem 4.1. Suppose that the transition re-
lation v = (l → l′, P,R) is safe for the trace
automaton A and suppose there exists a pre-
condition 0 �� e ∈ P such that v decreases
e = k +

∑n
j=1 kjxj, then for any computa-

tion π =

120 IPSJ Transactions on Programming June 2007

W0 = { (2→ 3→ 4→ 5→ 2, (2→ 2, { 0 = r, 0 = w, 0 < q }, { r′ = r, q′ < q})),
(2→ 3→ 6→ 2, (2→ 2, { 0 = w, 0 = q }, { r′ > r, w′ = w, q′ = q})),
(2→ 3→ 7→ 2, (2→ 2, { 0 < w }, { r′ = r, q′ = q})),
(2→ 3→ 8→ 2, (2→ 2, { 0 < r }, { r′ < r, w′ = w, q′ = q})) }

Fig. 6 Closure set for the example program.

[(l(1,i), ρ(1,i))]
N1
i=1 → . . .→ [(l(k,i), ρ(k,i))]

Nk
i=1

for which trace(π) ∈ A: ρ(1,N1) |=exp e → v1
and ρ(k,Nk) |=exp e → vk imply v1 > vk for
some v1, vk.

A liveness verification problem can be stated
as a problem of fair termination, which in turn
can be tested by checking that all fair graphs in
the closure set cause progress towards a bound.

Each abstract transition is checked for fairness
by using the given fairness test.
Definition 4.2. (Fairness Test): Given a
Büchi trace automaton AF which encodes the
set of fair traces a trace automaton A is fair,
denoted fairAF

(A), iff AF ∩A �= ∅.
Note that this definition of fairness implies

that a trace automaton is fair if and only if it
contains a fair trace. The approach taken in

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 121

Input: Program P and fairness test fairAF
.

W0 := {S[[stmt l]]∅, l′ | forall transitions l→ l′ ∈ Labels × Labels}.
compute the closure set (V,E) of W0, as per Fig. 5
foreach idempotent v ∈ V :

if(fairAF
((Av)ω) �⇒ well-founded(v))

return “Requirement Potentially Violated for Av”
return “Requirement is Satisfied”

Fig. 7 Podelski and Rybalchenko’s verification algorithm.

Ref. 11) uses predicates based on just and com-
passionate transitions which avoids the need for
intersecting Büchi automata, thus speeding up
the analysis. The main algorithm of Ref. 11)
can then be formulated as the algorithm in
Fig. 7. However the analysis can be improved
by analyzing while loops and mutually recur-
sive procedures individually. In the following
sections we extend the algorithm to take such
sub-computations into account.
Definition 4.3. (Fair Termination): Given a
fairness test, a program P is said to be fairly
terminating if no infinite computation are fair.
Theorem 4.2. Given a fairness test fairAF

and a safety preserving composition operator
◦, suppose W0 is a set of trace automaton and
transition relation pairs such that (Av, v) ∈W0

implies v is safe for Av and suppose that any
infinite trace l1 → l2 → . . . can be partitioned
by a sequence I1, I2, . . . of indices such that for
any i the subsequence lIi

→ . . . → lIi+1 ∈ Av
for some v. Let (V,E) be the finite closure
set generated by the algorithm in Fig. 5 using
◦. If all idempotent v ∈ V are well-founded if
fairAF

((Av)ω) then the program is fairly termi-
nating.
Theorem 4.3. Given a program P and a fair-
ness test fairAF

on trace automata, if the algo-
rithm in Fig. 7 returns “Requirement is Satis-
fied” then P is fairly terminating.
Proof. The algorithm is almost a direct appli-
cation of Theorem 4.2. Any transition l→ l′ in
the program is abstracted by S[[stmt li]]∅, li+1

so any trace can trivially be partitioned into
subsequences that are accepted by some trace
automaton A where (A, v) ∈ W0 by choosing
I = IN . By Lemma 3.1 for any (A, v) ∈ W0

is generated directly by the transition relation
analysis so v is safe for A by Lemma 3.1. Since
the algorithm was assumed to output “Require-
ment is Satisfied” the closure set computation
of W0 must terminate, so the closure set must
be finite. By Lemma 3.2 the composition oper-
ator ◦ preserves safety, so by Theorem 4.2 the

program is fairly terminating if for all idempo-
tent v ∈ V : fairAF

((Av)ω) ⇒ well-founded(v).
Since this is precisely the condition tested, the
algorithm outputs “Requirement is Satisfied”
only if the program is fairly terminating.

5. Infinite Computations

Any infinite trace eventually lies entirely
within a subset of the program labels, i.e., the
computation “gets stuck” in a sub-computation
from some point onwards. Once a given sub-
computation has been proven to satisfy fair ter-
mination, it need not be considered when ana-
lyzing other computations containing it for fair
termination. In order to identify proper sub-
computations in the program, we define a con-
trol flow graph that separates procedure calls
from procedure returns.

Intuitively, the infinite flow graph models all
possible infinite computation traces in the sub-
ject program. The graph contains a copy of
the control flow-graph for each procedure def-
inition in the program and edges from all call
sites in the program to the initial statement in
the called procedures. In order to model pro-
cedure returns, every statement that contains a
procedure call also introduces a summary edge
that “bypasses” the procedure call.
Definition 5.1. (Infinite Flow Graph): The
infinite flow graph for the program P is defined
as

FLOW inf (P) = (label(P), Einf [[P]])
where Einf is given by Fig. 9 and label(P) is the
set of all labels in P.

The role of lF and lI in the case of while
statements is to split up the loop into a choice
between terminating and non-terminating com-
putations in the loop by forcing the loop to be-
come a strongly connected component in the
infinite flow graph FLOW inf (P).

Example: Consider the program in Fig. 3.
The infinite flow graph FLOW inf (P) is given
by Fig. 8. Note that the return statement
at label 17 has no out-bound edge and that

122 IPSJ Transactions on Programming June 2007

Einf [[def 1, . . . , def n]] =
⋃n

i=1
Einf [[def i]]

Einf [[f(x1, . . . , xn) {stmts}]] = Einf [[stmts]]fX

Einf [[l1 : stmt1; l2:stmt2]]l′ = Einf [[l1:stmt1]]l2 ∪ Einf [[l2:stmt2]]l′
Einf [[l: x :=e]]l′ = {(l, l′)}
Einf [[l: x := f(x1, . . . , xn)]]l′ = {(l, l′), (l, fE)}
Einf [[l: return x]]l′ = ∅
Einf [[l

F :lI : while(test) {lT: stmtT}]]l′ = {(lF , l′), (lF , lT), (lI , lT)} ∪ Einf [[lT: stmtT]]lI
Einf [[l: if(test) {lT: stmtT} else {lF: stmtF}]]l′ =

{(l, lT), (l, lF)} ∪ Einf [[lT: stmtT]]l′ ∪ Einf [[lF: stmtF]]l′
Einf [[l: choose test1 → {l1: stmt1} [] . . . [] testn → {ln: stmtn}]]l′ =⋃n

i=1
({(l, li)} ∪ Einf [[li: stmti]]l

′)

Fig. 9 Computing the flow-graph for infinite computation traces.

Fig. 8 FLOW inf (P) for the example program.

the while loop at labels 1 and 2 is imple-
mented as a choice between infinite computa-
tion in the while loop and computations that
eventually reach label 9. The strongly connected
components are thus {2, 3, 4, 5, 6, 7, 8} and
{10, 11, 12, 13, 14, 15} modeling infinite compu-
tations of the while loop in dbAccess and
updatePending, respectively.

The infinite flow graph captures all infinite
computation traces in the following sense:
Lemma 5.1. For any infinite computation
π with trace(π) = τ there exists an infinite
trace τ ′ in FLOW inf (P) such that τ ′ is a sub-
sequence of τ .

The strongly connected components (SCC)
in the infinite flow graph identify precisely all
possible infinite computations: For any infi-
nite computation there exists an SCC such that
the computation trace only visits labels in the
SCC from some point onwards, modulo sub-
computations. A strongly connected compo-
nent in the infinite flow graph is either a single
while loop or contains a set of mutually recur-
sive procedures. A while loop that does not
contain procedure calls cannot reach any other
initial labels than that of the while loop (mod-
ulo sub-computations), since while loops are
well nested.

6. Inter-Recursion Traces

Recursion is only possible using procedure
calls or while loops, so the number of tran-
sition sequences that do not contain procedure
calls or while loops is bounded and the compo-
sition of the corresponding transition relations

can be computed without restrictions on the
domain of the transition relations. Such traces
correspond to basic blocks modulo branching
for conditionals. The closure set computation
can be faster if the composition of the transition
relations over the “inter-recursion traces” have
been computed prior to the closure set compu-
tation. Another advantage is that by working
with a more precise abstraction domain (cer-
tain types of) non-monotone progress can be
handled.
Definition 6.1. (Cut-Point Labels): Given a
strongly connected component c in the infinite
flow graph FLOWinf (P), define the set of cut-
point labels Lcpt(c) in c such that l ∈ Lcpt (c)
iff
• l is the label at a while loop, or
• l = fE for some procedure f belonging to

the set of mutually recursive procedures in
c.

The set Lcpt (c) captures FLOWinf (P) over c
in the following sense:
Lemma 6.1. For any SCC c and any infinite
computation π for which trace(π) = l1 → l2 →
. . . and li ∈ c from some point onwards (∃i0 ∈
IN : ∀i > i0 : li ∈ c), there exists an infinite
set of indices I ⊆ IN such that li ∈ Lcpt (c) for
all i ∈ I.

The length of any sequence of labels
l1, l2, . . . , ln in c where l1 and ln are cut-point
labels and li is non-cut-point for 1 < i < n
is bounded for any program, since iteration is
not possible without while loops or recursive
procedure calls. Thus it is possible to com-
pute the composition of the corresponding tran-
sition relations in finite time using the infinite
abstract domain Vinf , since convergence is en-
sured by the fact that the length of the sequence
is bounded.
Definition 6.2. (Inter-Recursion Trace): For
a given set of cut-point labels Lcpt (c), an inter-
recursion trace is a trace l1 → . . . → ln in c

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 123

where l1 and ln are cut-point labels and li is
non-cut-point for all 2 ≤ i ≤ n− 1.
Definition 6.3. (Composition): Given a trace
l1 → . . .→ ln define:

S[[l1 → . . .→ ln]]ψ
:= (S[[l1 : stmt l1]]ψ, l2) ◦ . . .

◦(S[[ln−1 : stmt ln−1]]ψ, ln)
Example: Consider again the program in

Fig. 3: The set of cut-point labels for the SCC
c = {2, 3, 4, 5, 6, 7, 8} of FLOW inf (P) is given
by Lcpt(c) = {2} since label 2 occurs at a while
loop. The set of inter-recursion traces is then:

AW := 2→ 3→ 4→ 5→ 2,
AR := 2→ 3→ 6→ 2,
RW := 2→ 3→ 7→ 2,
RR := 2→ 3→ 8→ 2.

The corresponding transition relations are given
by:

(AW, (2→ 2, {0 = r, 0 = w, 0 < q },
{r′ = r, q′ ≤ q− 1 })),

(AR, (2→ 2, {0 = w, 0 = q },
{r′ = r + 1, w′ = w, q′ = q })),

(RW, (2→ 2, {0 < w },
{r′ = r, q′ = q })),

(RR, (2→ 2, {0 < r },
{r′ = r− 1, w′ = w, q′ = q })).

7. Convergent Transition Relations

In order to ensure convergence of the closure
set computation, it is necessary to restrict the
domain of the transition predicates. In partic-
ular, the domain of transition predicates is re-
stricted to only contain predicates over a single
unprimed variable and single primed variable.
Definition 7.1. (Convergent Transition Rela-
tions): Let the finite transition relation domain
Vcon be defined as the set of transition relations
of form:
• y′ < x or y′ ≤ x for any y′ and x (decrease,

non-increase),
• y′ = x for any y′ and x (equality),
• y′ > x or y′ ≥ x for any y′ and x (increase,

non-decrease),
• 0 < k+

∑n
i=1 kixi for any k, k1, . . . , kn (pre-

condition),
• 0 = k+

∑n
i=1 kixi for any k, k1, . . . , kn (pre-

condition),
let αcon : Vinf → Vcon be an abstraction op-
erator such that v � αcon(v) for any v ∈ Vinf

and let αcon be the extension to trace automa-
ton & transition relation pairs: αcon((A, v)) =
(A,αcon(v)). Finally let ◦con be a safety pre-
serving composition operator which does not in-
troduce new preconditions modulo permutations

of variables.
We make the following observations on Vcon

and ◦con :
Lemma 7.1. If V ⊆ Vcon is a finite set of
transition relations then the closure set {v1 ◦con
. . . ◦con vn | ∀i ∈ [1, n]; vi ∈ V } under the com-
position operator is also finite.
Lemma 7.2. If the transition relation v is safe
for the trace automaton A then αcon(v) is also
safe for A.
Proof. Follows trivially since v � αcon(v) by
definition.

Lemma 7.1 ensures that the closure set will
be finite (and thus computable) and Lemma 7.2
ensures safety of projection into the domain
Vcon . The closure set can be computed using
the simple work list algorithm given in Fig. 5.

The above operators are not uniquely defined.
In our experiments it suffices to use the fol-
lowing operators, though more accurate oper-
ators can be implemented for increased pre-
cision. The abstraction operator αcon is im-
plemented by replacing transition predicates of
form y′ �� k+x with y′ ��′ x (if possible for some
��′) and discarding any other transition predi-
cates. Given two transition relations v := (l →
l′, P,R) and v′ := (l′ → l′′, P ′, R) the conver-
gent composition operator ◦con is implemented
by computing (l → l′′, P ′′, R′′) := αcon(v ◦ v′)
and replacing P ′′ with P in order to avoid in-
troducing any new preconditions.

8. Verification Algorithm

The overall structure of the sub-computation
based algorithm, given in Fig. 10, is to first
identify the sub-computations of the subject
program and process each in bottom-up order.
Due to the need for the closure set computa-
tion to converge, size-change termination can
only handle non-monotone progress by track-
ing changes in size up to some arbitrary con-
stant, or by using a widening operator. Non-
monotone progress is handled in a natural way
over inter-recursion traces by using two levels of
abstraction: one for the inter-recursion traces
and one more limited abstraction that ensures
convergence of the closure set computation. A
set of transition relations is extracted using the
more precise abstractions which then are com-
posed to yield abstractions over inter-recursion
traces. The closure set is computed for the pro-
jection of the inter-recursion traces into the con-
vergent abstract domain and the well-founded
transition relations are identified. A potential

124 IPSJ Transactions on Programming June 2007

Input: Program P and fairness test fair .
decompose FLOW inf (Pgm) into a set of strongly connected components C
ψ := ∅
foreach c ∈ C in bottom-up order:

W0 := {αcon (S[[l1 → . . .→ ln]]ψ) | for all inter-recursion traces (l1 → . . .→ ln) ∈ c}
compute the closure set (V,E) of W0, as per Fig. 5 using ◦con
foreach idempotent v ∈ V :

if(fairAF
((Av)ω) �⇒ well-founded(v))

return “Requirement Potentially Violated for Av”
compute safe bounds ψ0 for c.
ψ := ψ ∪ ψ0.

return “Requirement is Satisfied”

Fig. 10 Sub-computation based verification algorithm.

1: while(x>0) {
2: if(a>0) {3: a=a+1}

else {4: a=a-1}
5: if(b>0) {6: b=b+1}

else {7: b=b-1}
8: if(c>0) {9: c=c+1}

else {10: c=c-1}
11: x=x-1; }

Fig. 11 Program with exponentially many traces.

violation is reported if any fair transition rela-
tion in the closure set is not well-founded. If
no violations were detected, a safe abstraction
is computed for the sub-computation just ana-
lyzed and added to the sub-computation bound
environment for use when analyzing other com-
putations.
Theorem 8.1. Given a program P and a fair-
ness test fair on trace automata, if the algo-
rithm in Fig. 10 returns “Requirement is Satis-
fied” then P is fairly terminating.

8.1 Expected Efficiency
The additional preprocessing steps of the sub-

computation based algorithm can be imple-
mented in polynomial time, with the exception
of composition over inter-recursion traces. Con-
sider the program in Fig. 11.

Since label 1 is a cut-point label, the algo-
rithm computes the set of abstractions for dif-
ferent traces from label 1 to label 1, which is
exponential in the number of transitions. How-
ever note that Podelski and Rybalchenko’s algo-
rithm in Fig. 7 would simply compute the com-
position of these traces in the closure set com-
putation instead, so the sub-computation based
algorithm is not less efficient. By comput-
ing the composition over inter-recursion traces
prior to the closure set computation, the sub-
computation based algorithm avoids comput-
ing abstractions for redundant loops from a la-

τ1 = 1→ 2→ 3→ 5→ 6→ 8→ 9→ 11→ 1
τ2 = 2→ 3→ 5→ 6→ 8→ 9→ 11→ 1→ 2
...
τ11 = 11→ 1→ 2→ 3→ 5→ 6→ 8→ 9→ 11

Fig. 12 Traces capturing the same loop.

bel inside the while-loop back to itself. For
instance the traces in Fig. 12 all capture the
same loop through the while-loop, so it suffices
to consider just one of them.

Size-change termination has been proven to
be PSPACE complete 8) and since transition
predicate abstraction uses the size-change ter-
mination principle to test infeasibility of infi-
nite computations, the verification algorithm is
also (at least) in PSPACE. The preprocessing
steps can be computed in polynomial time (with
the above caveat), so the preprocessing over-
head becomes insignificant for sufficiently large
programs.

In general significant improvements in effi-
ciency can be expected for programs with long
inter-recursion traces and highly hierarchical it-
eration/recursion. Consider the programs in
Fig. 13. In both programs the simple algo-
rithm would take a whole-program approach
by extracting transition relations for all transi-
tions in the program and computing the closure
set once for a large number of transitions. In
contrast the sub-computation based algorithm
would isolate the sub-computations and ana-
lyze each in turn, thus computing many clo-
sure sets, each for a small number of transitions.
Since the closure set computation scales poorly
in the number of transition relations, the latter
approach will be more efficient.

8.2 Experimental Results
The verification algorithm in Fig. 10 has

been implemented in Haskell. Table 1

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 125

1: while(x>0) { f(x) { 1: if(x<=0) {2: } else {3: f(x-1)+g(x) }
2: while(a>0) {3: a=a-1 } 4: return x; }
4: while(b>0) {5: b=b-1 } g(y) { 5: if(y<=0) {6: } else {7: g(y-1)+h(y) }
6: while(c>0) {7: c=c-1 } 8: return y; }
8: x=x-1; h(z) { 9: if(z<=0) {10: } else {11: h(z-1)+1 }
} 12: return z; }

Fig. 13 Nested while-loops and recursive procedures.

Table 1 Experimental results.

Algorithm Transition Relations
Extracted Inter-recursion Closure set ¬well-founded

Simple 22 - 971 17
Sub-Comp. 20 6 27 3
{2, . . . , 8} 10 4 25 3
{10, . . . , 15} 10 2 2 0

shows the results running both Podelski and
Rybalchenko’s algorithm in Fig. 7, as well as the
sub-computation based algorithm, on the run-
ning example in Fig. 3. The columns summarize
the number of transition relations produced by
the analyzer at each stage in verification algo-
rithms.
• “Extracted”: The number of transition re-

lations extracted for single-step transitions
in the program.

• “Inter-recursion”: The number of transi-
tion relations generated by composing the
“extracted” transitions corresponding to a
given inter-recursion trace (only relevant
for the sub-computation based analysis ☆).

• “Closure set”: The number of transition
relations in the closure set.

• “¬well-founded”: The number of transi-
tions in the closure set that are not well-
founded and thus must be tested for fair-
ness.

While both algorithms initially extract about
20 transitions relations, the closure set com-
puted by the simple algorithm is considerably
larger than for the sub-computation based al-
gorithm, which also leads to a larger num-
ber of transition relations that must be tested
against the liveness requirement. This demon-
strates the efficiency gain obtained by the sub-
computation based algorithm. Note that verifi-
cation of the running example requires the algo-
rithm to prove that the updatePending proce-
dure strictly decreases the size of the first argu-
ment — a case which only the sub-computation
based algorithm is able to handle. Increased

☆ Denoted by “-” in the table.

precision can relatively easily be demonstrated
with simple programs, but unfortunately time
constraints did not allow for additional experi-
ments.

9. Extension to Parallel Programs

One method for analyzing liveness properties
of parallel programs is to compute the paral-
lel composition of the processes in the program
and then apply Podelski’s algorithm to the re-
sulting program. Unfortunately this approach
is not well-suited for handling recursive proce-
dures and can cause a combinatorial increase
in size of the resulting model and thus the time
needed for verification. In this section we out-
line an extension of the sub-computation based
approach to a language with a fixed number
of parallel processes and synchronous (block-
ing) communication via statically named chan-
nels. While the concept of “sub-computations”
is clear in a sequential language, the inter-
pretation is less clear for a parallel language
since processes cannot in general be analyzed
in isolation. In order to extend the meth-
ods of the previous sections to a parallel lan-
guage, one must define “sub-computations” for
parallel programs and provide a means of ex-
tracting transition relations for them. Our ap-
proach is to only analyze interleavings of sub-
computations (in the sense of Section 5) that
can communicate with each other and thus can
potentially affect each other’s execution. In this
way unnecessary combinatorial increase of the
size of the model can be avoided, e.g., sub-
computations that do not communicate can be
analyzed in isolation.

126 IPSJ Transactions on Programming June 2007

P ::= prc1 . . . prck, def 1 . . . def n (Program)
prc ::= process p = f(v1, . . . , vn); (Process)
def ::= f(x1, . . . , xk){stmts; l : return xr} (Procedure)

stmts ::= ε | stmt; stmts (Statement Block)
stmt ::= send c← e | receive c→ x (Statement)

| l : stmt | x := e | x := f(x1, . . . , xn)
| if(test) {stmtst} else {stmtsf }
| while(test){stmts}
| choose test1 → {stmts1} [] . . . [] testn → {stmtsn}

e ::= v | x | e1 op e2 (Integer Expression)

test ::= T | F (Boolean Constant)
| test1 ∧ test2 | 0 = e | 0 ≤ e | 0 < e (Boolean Expression)

p : Process identifiers (p, q, . . .)
c : Channel identifiers (c, d, . . .)
f : Procedure identifiers (f, g, . . .)
x : Variable identifiers (Variables = { x, y, . . . })
l : Labels identifiers (Labels = { 1, 2, . . . })
v : Integers (ZZ)
op : Binary Operators (ZZ × ZZ → ZZ)

Fig. 14 Parallel program syntax.

[EXEC]
si → s′i

(s1, . . . , sk)⇒(s′1, . . . , s′k)

(
where s′m = sm for all m �= i

for some i

)

[COM]
s′′j : (x =e;Bj , ρj) → s′j

(s1, . . . , sk)⇒(s′1, . . . , s′k)

 where for some i, j s′m = sm for all m �= i, j and

si = s′′i : (send c← e;Bi, ρi)
sj = s′′j : (receive c→ x;Bj , ρj)

s′i = s′′i : (Bi, ρi)

Fig. 15 Parallel program semantics.

10. Parallel Language

The syntax for the parallel language given in
Fig. 14 is an extension of the syntax defined
in Fig. 1. A program consists of a process def-
inition for each process followed by a number
of procedure definitions and the definition of a
statement is extended with two communication
primitives: send and receive, that communi-
cate via statically named channels.

The semantics in Fig. 15 is similarly ex-
tended to accommodate the parallelism and
new statements. The extended semantics intro-
duces a layer, on top of the non-parallel seman-
tics, that governs the process scheduling. Any
process not at send or receive statement can
be scheduled for execution at any time. Pro-
cesses at send or receive statements can only
be scheduled for execution if another process
can be scheduled at a corresponding receive

or send statement on the same communications
channel. In the following we will in general
use vector notation for concepts in the par-
allel language that are analogous to those of
the non-parallel language, e.g., �l denotes a tu-
ple of labels �l = (l1, . . . , lk) and (�l)i denotes
the ith element (�l)i = li. The notation [li]ki=1
will be used as a shorthand notation for the
tuple (l1, . . . , lk). In order to precisely state
what some property refers to, properties of non-
parallel programs are considered to be process
properties as opposed to program properties,
e.g., c denotes a process sub-computation while
�c denotes a program sub-computation.
(1) A program state �s ∈ �S for a program with

k processes is a tuple of program stacks
�s = (s1, . . . , sk).

(2) The computational semantics of the lan-
guage in Fig. 15 specifies a transition re-

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 127

process p = f(1000); g(y) {
process q = g(1); 13: while(y �= 0) {
f(x) { 14: y := recvPos() }

1: while(x ≥ 0) { 15: return y }
2: send d← x; recvPos() {
3: x := updatePending(x, x) } 16: receive d→ z;

4: return x } 17: if(z ≤ 0) { 18: z := −z }
updatePending(q, i) { else { 19: }

5: i := i− 1; 20: return z }
6: if(0 < i) {

7: choose T→ { 8: q := q− 1; } // request timed out
[] T→ { 9: }; // request still pending

10: q := updatePending(q, i); }
11: else { q := q− 1; }
12: return q }

Fig. 16 Parallel example program.

lation on program states, �s⇒�s′.
(3) An initial state is a program state con-

sisting only of initial stacks.
(4) A computation is a finite or infinite se-

quence of program states �π = �s1 → �s2 →
. . . such that �s1 is an initial state and
�si⇒ �si+1 for all i ≥ 1.

(5) A program location for a program with
k processes is a k-tuple of labels: �l =
(l1, . . . , lk). The location of a given
state �s is given by: location(s) :=
(label(s1), . . . , label(sk))

(6) A program trace is a finite or infinite se-
quence of program locations �τ = �l1 →
�l2 → . . . such that there exists a com-
putation realizing the trace: �π = s1 →
s2 → . . . where location(si) = �li for all
i ≥ 0. The program trace �τ of �π is de-
noted trace(�π) = �τ .

Example: The parallel program in Fig. 16
defines a “producer” process p which sends a
decreasing sequence of numbers, terminated by
a zero, on a channel d. The counter variable x
for the while loop in p is decreased using the
updatePending function from the running ex-
ample for the non-parallel algorithm. The se-
quence is received by a “consumer” process q
which loops until the terminating zero is en-
countered. A minor complication is that q uses
the procedure recvPos to receive data on chan-
nel d and perform some conditioning of the
data. Termination of procedure g thus depends
both on the termination of process p and the
(communication) side effects of the procedure
recvPos. In the following we will use the ex-
ample in Fig. 16 as a running example to illus-

trate the techniques used for verifying parallel
programs.

11. Program Sub-Computations

In order to identify sub-computations in a
parallel program, a distinction must be made
between program sub-computations and process
sub-computations. Process sub-computations
arise from analyzing processes in isolation while
disregarding communication side effects. They
can be computed similarly to the non-parallel
case using the additional definitions in Fig. 17,
the only difference being that we now have two
additional statements send and receive. The
infinite flow graph FLOW inf (P) is defined the
same way as for the non-parallel analysis, ex-
cept that we replace the definition of Einf .
Definition 11.1. (Infinite Flow Graph): The
infinite flow graph for the program P is defined
as FLOW inf (P) = (label(P), Einf [[P]]) where
Einf is given by Fig. 17 and label(P) is the set
of all labels in P.

Example: Consider again the program
in Fig. 16. The infinite flow graph, which
can be computed using the new definition
of FLOW inf (P), contains three process sub-
computations (strongly connected components):
• the while loop in p: c1 = {1, 2, 3},
• the recursive procedure updatePending:
c2 = {5, 6, 7, 8, 9, 10} and

• the while loop in q: c3 = {13, 14}.
Lemma 11.1. Given a program with k pro-
cesses, for any infinite computation �π for which
trace(�π) = �τ , for all i ∈ {1, . . . , k} there exists
an infinite trace τ ′ in FLOW inf (P) such that
τ ′ is a sub-sequence of (�τ)i.

We now extend the idea of process sub-

128 IPSJ Transactions on Programming June 2007

Einf [[l: send c← e]]l′ = {(l, l′)}
Einf [[l: receive c→ x]]l′ = {(l, l′)}
Fig. 17 Additional definition for computing the

infinite flow graph.

computations, to one of program sub-computa-
tions. Intuitively, a program sub-computation
is a set of process sub-computations from differ-
ent processes that may affect each other’s exe-
cution.

A given process sub-computation c becomes
blocked if it tries to send or receive data on a
given channel, but no other process executes
a corresponding receive or send statement for
the same channel. In order to identify such pro-
cess sub-computations we define a set of chan-
nels that may cause a process sub-computation
c to block for send and receive statements.
Definition 11.2. (Blocking Channels): The
infinite flow transition relation Einf on labels
induces a relation on process sub-computations,
so let �∗ denote its reflexive and transitive clo-
sure. For a given process sub-computation c de-
fine the sender blocking channels, send(c), and
the receiver blocking channels, receive(c), by

send(c) := {d | ∃c′ : c �∗ c′ ∧ ∃l ∈ c′ :
(stmt l = send d← e)},

receive(c) := {d | ∃c′ : c �∗ c′ ∧ ∃l ∈ c′ :
(stmt l = receive d→ x)}.

The communication flow between process
sub-computations approximate which process
sub-computations might communicate with
each other and thus might affects each
other’s execution. The set of program sub-
computations can then be computed via the
communication flow graph.
Definition 11.3. (Communication Flow):
Suppose p1, . . . , pk are processes and for all i
let c(i,1), . . . , c(i,mi) be the sub-computations in
process pi then define the communication rela-
tion c(i1,j1) ⇀↽ c(i2,j2) by

{{c(i1,j1), c(i2,j2)} | i1 �= i2 ∧
(send(c(i1,j1)) ∩ receive(c(i2,j2)) �= ∅ ∨
receive(c(i1,j1)) ∩ send(c(i2,j2)) �= ∅) }

and let ⇀↽∗ denote its reflexive, symmetric and
transitive closure.

Note that communication is, due to the syn-
chronous semantics, bidirectional in nature:
process p sends data to process q and q unblocks
process p.

A program sub-computation, is a set of pro-
cess sub-computations, each representing a pro-
cess in the program, such that any process sub-
computation can reach any other via the com-

munication relation ⇀↽∗.
Definition 11.4. (Program Sub-Comp.): The
set of program sub-computations for a program
with processes p1, . . . , pk is given by
{ {c1, . . . , cn} |
∀i ≤ n : (ci ∈ Cproc(ci)) ∧

(∀j ≤ n : i �= j ⇒ (ci ⇀↽∗ cj ∧
proc(ci) �= proc(cj)))}

where Cj is the set of process sub-computations
for process pj for all j = 1, . . . , k and
proc is a one-to-one mapping of process sub-
computations to processes indices: (proc(ci)) ∈
{1, . . . , k}.

Example: Consider the three process sub-
computations c1 = {1, 2, 3}, c2 = {5, 6, 7, 8, 9,
10}, c3 = {13, 14} for the program in Fig. 16.
The blocking channels for c1 and c3 are given
by send(c1) = receive(c3) = {d} since c1 sends
data on channel d at label 2 and c3 calls the
procedure recvPos which receives data on chan-
nel d at label 16. By the definition of the com-
munications flow this implies that c1 ⇀↽∗ c3.
The sub-computation c2 does not contain any
send or receive statements, so the two sets of
blocking channels are the empty set: send(c2) =
receive(c2) = ∅.

Since c1 ⇀↽∗ c3 and proc(c1) �= proc(c3)
we find that �c1 = {c1, c3} is a program
sub-computation. For the remaining pro-
cess sub-computation, c2, neither send(c2) nor
receive(c2) can overlap with the blocking chan-
nels of another process sub-computation, so c2
gives rise to a program sub-computation by it-
self: �c2 = {c2}.
Lemma 11.2. Let �C be the set of program
sub-computations for a given program with pro-
cesses p1, . . . , pk. If π is an infinite computa-
tion with trace τ = �l1 → �l2 → . . . then for
all processes i ∈ proc(�C) there exists a program
sub-computation �c ∈ �C such that the trace τ
visits a label in �c infinitely often.

12. State Predicate Models

In order to extract transition relations for a
program sub-computation, consisting of one or
more process sub-computations, we use state
predicate abstraction on the parallel program to
obtain a state predicate model that can be used
to guide the extraction of transition relations.
A state predicate model is a graph where nodes
approximate the state space of the program and
the edges are derived from the semantics of
the subject language. State predicate abstrac-

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 129

Fig. 18 State predicate model for the parallel program.

tion is a well-known tool in the model-checking
community which can provide accurate mod-
els of communication protocols since they are
useful for capturing communication side effects.
Though transition predicate abstraction can de-
scribe even more complex behaviors (e.g., ter-
mination due to decrease in values passed be-
tween processes) we argue that state predicate
abstraction is sufficient to describe the inter-
process communication of most programs.
Definition 12.1. (State Predicate Model):
For a given program P of k processes a state
predicate model is a graph MP = (VMP , RMP)
where the nodes VMP ∈ Labelsk × P(test) ☆ ap-
proximate the reachable state of P in the fol-
lowing sense: Let γ be a concretization function
mapping abstract states to concrete states
γ(�l, P) := {�s | location(�s) = �l ∧

∀p ∈ P : sto(�s) |=exp p→ T}
where sto(�s) is the store of the configuration at
the top of �s. The graph MP is a state predicate
model for P under γ iff for every computations
�π = �s1 → �s2 → . . . there exists a path �π′ =
(�l1, P1) → (�l2, P2) → . . . in MP such that �si ∈
γ(�li, Pi).

The state predicate model M ′ for program
sub-computation �c is a projection of the state
predicate model M onto the processes of �c: M’
:=

(δ�c(VMP), {δ�c(v)→ δ�c(v′) |
v → v′ ∈ RMP})

where

δ�c((�l, P)) := ([(�l)i]i∈proc(�c),
{p | p ∈ P, p ∈ exp(proc(�c))}),

proc([ci]ni=1) =
⋃n
i=1 proc(ci) and p ∈ exp(I) iff

all variables x in p belong to process i for some
i ∈ I.

Example: The state predicate model for
☆ Recall the notation test for the set of tests that can

be used in a program.

the program sub-computation �c1, in the pro-
gram in Fig. 16, is given below in Fig. 18 for
input 0 < x and 0 �= y. In order to reduce
the model size, scheduling is not performed af-
ter each statement, but only at the initial state,
after communications and when a process be-
comes blocked. The abstract states that are
guaranteed to lead to termination of either pro-
cess have been replaced by “ p returns” and “ q
returns” for the sake of brevity.

Those marked with a star abbreviate calls to
updatePending and thus represent a sub graph
modeling the behavior of updatePending. Note
that since updatePending cannot cause any
communication side effects, process q is not
scheduled for execution and process p thus pro-
ceeds until updatePending eventually returns.

In order to extract transition predicates for
a given sub-computation, we need to define
the set of relevant transitions that must be
abstracted over, i.e., the notion of an infi-
nite flow graph must be defined in the con-
text of program transitions. Recall that, in
the case of process transitions, FLOW inf de-
fined summary edges to account for terminat-
ing computations, each representing some un-
known number of concrete transitions. How-
ever for a parallel program we cannot guaran-
tee that we can eventually reach a state where
all processes have returned from their sub-
computations such that a summary edge can
be used.

Example: Setting the running example aside
for a moment, consider the program in Fig. 19:

The processes r and s pass a decreasing value
back and forth on the channel d and both even-
tually exit the loop. Both while loops in a and
b cause the execution of a send and receive
statement on channel d, so �c = {{1, 2}, {5, 6}}
is a program sub-computation. The state predi-
cate model for �c is given in Fig. 20. Again, pro-
cesses are only scheduled at the initial state, af-

130 IPSJ Transactions on Programming June 2007

process r = a(1); process s = b(100);
a(x){ b(y){ c(z){

4 : send d← y; 7 : receive d→ z;
1 : while(x > 0) 5 : while(y > 0) 8 : send d← z− 1;
{2 : x = c(0)} {6 : y = c(0)} 9 : return z− 1

3 : receive d→ x; } }
}

Fig. 19 Program cycle where at any point at least one sub-computation has not returned.

Fig. 20 State predicate model for the parallel composition of r and s.

ter communication and when a process becomes
blocked. Note that the process s starts out with
a send command, so when either process iter-
ates the while loop, the other is evaluating the
procedure c. This is indicated by the cycle in
the state predicate model where for all states ei-
ther r or s is at a label in procedure c. It is thus
not possible to use summary edges for evalua-
tion of c, so steps inside c must be taken into
account.

Because of this problem the set of transition
relations, modeling the behavior of the pro-
gram, must take sub-computations explicitly
into account by also extracting transitions rela-
tions for transitions in the sub-computations.

When abstracting transitions for non-parallel
programs procedure calls are treated differ-
ently depending on the termination assump-
tions: terminating calls transition to the state-
ment following the call using summary edges,
so the sub-computation bound environment is
used to obtain size relations. Non-terminating
calls transition to a label in the called proce-
dure, in which case the sub-computation bound
environment is not used. For parallel programs
procedure calls should also make use of the sub-
computation bound environment depending on
the termination assumptions, but since state
predicate models do not have summary edges
a new criterion is needed.

One approach is to explicitly annotate labels
with termination assumptions and defining a
new type of state predicate model that keeps
track of termination assumptions for the indi-
vidual procedures. However in the interest of

clarity we will restrict the language to only al-
low linear recursion, in which case a simple cri-
terion can be used. Suppose we wish to verify
the program sub-computation �c. Since all pro-
cedures are linearly recursive, infinite compu-
tations can only continue if the recursive calls
never return, so calls to procedures in �c can be
assumed not to terminate. Calls to procedures
not in �c can be assumed to already have been
verified, so such calls must terminate. The cri-
terion can thus be stated as whether the called
procedure belongs to �c.

13. Progressive Paths

To verify a given program sub-computation �c,
transition relations must be extracted for each
possible “transition” in the sub-computation,
i.e., transition relations must approximate all
paths from a state where one or more processes
are at a label in �c to another such state. In or-
der to exclude paths that eventually “get stuck”
in a different sub-computation, we additionally
require that at least one process must execute
a statement in �c on the first transition and no
statements in �c are executed for the remaining
transitions. Paths that satisfy this criterion are
called progressive paths.
Definition 13.1. (Progressive Path): Suppose
M ′ is a state predicate model for a given pro-
gram sub-computation �c, and let L(�c) denote the
labels of �c: L(�c) =

⋃
c∈�c c. A progressive path

is a finite path (�l1, P1) → . . . → (�ln, Pn) such
that for some i: (�l1)i ∈ L(�c) and (�l1)i �= (�l2)i,
for some i′: (�ln)i′ ∈ L(�c) and for all j =

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 131

1, . . . , k and a = 3, . . . , n − 1: (�la)j /∈ L(�c) or
(�la)j = (�la−1)j. The existence of a progressive
path (�l1, P1)→ . . .→ (�ln, Pn) in M ′ is denoted
(�l1, P1) � (�ln, Pn).

Example: Consider again the state predi-
cate model in Fig. 18. Note the transitions that
cause execution of a statement in �c1 are marked
with thick arrows, and those which do not are
marked with a thin arrow. Progressive paths are
thus maximal paths that begin with a single thick
arrow transition followed by any number of thin
arrow transitions.

For instance ((2, 14), P) → ((2, 16), P),
where P = {0 ≤ x, 0 �= y}, is a progressive path
where process q calls recvPos, enabling commu-
nication on channel d since the send statement
at label 2 is matched by a receive statement at
label 16.

The progressive path given below executes the
transaction on channel d and then schedules q.
Process q proceeds to evaluate the conditional,
choosing the then branch, and then finally re-
turns to label 13:

((2, 16), P) → ((3, 17), P)
→ ((3, 19), P) → ((3, 20), P)
→ ((3, 13), P).

Lemma 13.1. Suppose �π is an infinite compu-
tation which is confined to some program sub-
computation �c from some point onwards, then
there exists a path τ = (�l1, P1) → (�l2, P2) →
. . . ∈ M�c and a sequence of indices I such that
(�lIj

, PIj
) � (�lIj+1 , PIj+1) for any j.

14. Extraction of Transition Relations

A transition relation in the context of a par-
allel program is simply a tuple of process tran-
sition relations, one for each process. Since
program traces are now sequences of locations,
trace automata need to be redefined to work
with locations rather than labels.
Definition 14.1. (Program Trace Automa-
ton): A program trace automaton �A for a pro-
gram with k processes is a non-deterministic fi-
nite automaton over the set of program loca-
tions, Labelk. We write �τ = (�l1 → . . . →
�ln) ∈ �A if there exists a run �l1, �l2, . . . , �ln of
the automaton �A. In the following �A1 ◦ �A2 de-
notes the concatenation of �A1 and �A2, such that
(�w1

�l �w2) ∈ �A1 ◦ �A2 for all (�w1
�l) ∈ �A1, (�l �w2) ∈

�A2.
The state predicate model accounts for block-

ing and unblocking of send and receive state-
ments, so when extracting a (program) tran-

sition relation for a given progressive path, we
can extract a transition relation for each process
and then merge them into a transition relation
which describes the program sub-computation
path by forming the process transition rela-
tions into a tuple. The extraction of process
transition relations, defined in Fig. 21 is simi-
lar to that of the non-parallel algorithm. One
key difference is that the size relations track
changes in size, not for the configuration at the
top of the program stack, but rather for the
last configuration that is at a label in the sub-
computation being analyzed. Another differ-
ence is that we have send and receive state-
ments, and that we must be able to abstract
transitions where the source label does not be-
long to �c. Since the blocking and unblocking
effects have already been accounted for, we can
abstract send by the identity transition relation
and receive by identity transition predicates
for all variables but the one being updated.
Transitions from a label not belonging to �c rep-
resent execution of a statement that does not
belong to �c, i.e., a statement in a terminating
sub-computation which cannot affect the vari-
ables in �c, so such transitions can be abstracted
by the identity transition relation. Conversely,
transitions from a label belonging to �c represent
execution of a statement in �c and can thus be
abstracted using the new definition of S. Note
that transitions from a label belonging to �c to
a label not belonging to �c represent the start
of a terminating sub-computation and is thus
abstracted by the sub-computation bound en-
vironment.

By construction, a progressive path can be
abstracted by abstracting the first transition
in the path since all other transitions are ab-
stracted by the identity transition relation by
definition. Note that even though the number
of possible progressive paths is infinite, the set
can be computed by abstracting the first tran-
sition, finding all possible endpoints and pro-
ducing a transition relation for each endpoint.
Any non-progressive loop, executing only state-
ments not belonging to �c, is assumed to already
have been analyzed and will thus either termi-
nate, violate the liveness requirement or cause
a deadlock.

Since the size relation analysis extracts size
relations also for transitions in terminating sub-
computations the use of size bound environ-
ments requires a modification of safety. The
size relations stored in the size bound environ-

132 IPSJ Transactions on Programming June 2007

�S[[(�l, P)→ (�l′, P ′)]]ψ = (�l→ �l′, [S[[(�l)i → (�l′)i]]ψ]ki=1)

S[[l→ l′]]ψ =
{ S[[l : stmt l]]ψ, l′ if l ∈ L(�c) and l �= l′
Id(l→ l′)[∅, ∅] otherwise

S[[l : send c← e]]ψ, l′ = Id(l→ l′)[∅, ∅]
S[[l : receive c→ x]]ψ, l′ = Id(l→ l′)[∅, {y′ = y | for all y �= x}]

S[[l : x :=e]]ψ, l′ = Id(l, l′)[∅, x′ = Se[[e]]]
S[[l : if(test){lT . . . } else {lF . . . }]]ψ, lT = Id(l, lT)[test , ∅]
S[[l : if(test){lT . . . } else {lF . . . }]]ψ, lF = Id(l, lF)[¬test , ∅]
S[[l : choose test1 → {l1 . . . } [] . . .

[] testn → {ln . . . }]]ψ, li = Id(l, li)[test i, ∅]
S[[l : while(test){lT . . . }]]ψ, l′ ={

Id(l, l′)[test , ∅] if l′ ∈ L(�c) ∧ l′ = lT.
Id(l, l′)[ψ(l)] otherwise

S[[l : x := f(x1, . . . , xn)]]ψ, l′ ={
(l→ l′, ∅, {f(1)′ = x1, . . . , f

(n)′ = xn}) if l′ ∈ L(�c)
Id(l, l′)[ψ(fE [x′/f(R), x1/f(1), . . . , xn/f(n)]]) otherwise

Se [[e]] =
{

e if e is of form c+
∑n
i=1 cixi otherwise

Fig. 21 Transition relation analysis for parallel programs.

ment make assertions over the execution of a
terminating sub-computation, from the point of
entry to the point of exit/return. Thus size re-
lations are not guaranteed to hold for a single
step transition (which might end up inside a ter-
minating sub-computation), but can be guar-
anteed to eventually hold after finitely many
steps. We therefore allow process size-relations
to be unsafe for terminating sub-computations
if they are safe once the sub-computation even-
tually exits/returns.
Definition 14.2. (Safety): The program tran-
sition relation �v is safe for the trace automaton
�A iff for each i = 1, . . . , k the process transition
relation (�v)i is an identity transition relation or
is safe for any path l′′1 → . . .→ l′′n where
• there exists a j ∈ {1, . . . , n} such that

(l′′1 → . . .→ l′′j) ∈ (�A)i and
• l′′1 , l

′′
n ∈ L(�c), l′′m /∈ L(�c) for all m ∈

{j, . . . , n− 1}.
Example: Consider again the state predi-

cate model in Fig. 18 containing the progressive
paths (P = {0 ≤ x, 0 �= y}):

τ1 = ((2, 14), P)→ ((2, 16), P)
τ2 = ((2, 16), P)→ ((3, 17), P)

→ ((3, 19), P)→ ((3, 20), P)
→ ((3, 13), P)

To extract transition relations for the two
progressive paths, a safe sub-computation bound
environment is needed: ψ = [16 → ∅]. For
τ1 we must compute a process transition rela-
tion for each process transition: 2 → 2 and
14 → 16. The former is a identity transition,
so S[[2 → 2]]ψ = (2 → 2, ∅, {y′ = y}). The
latter transition, 14 → 16, executes a call to
recvPos, so the transition relation is given by
ψ: S[[14 → 16]]ψ = Id(14, 16)[ψ(16)[y′/z]] =
(14 → 16, ∅, ∅). The transition relation for τ1
is thus

�S[[((2, 14), P) � ((2, 16), P)]]ψ
= ((2, 14)→ (2, 16),

((2→ 2, ∅, {y′ = y}),
(14→ 16, ∅, ∅)))

For the progressive path τ2 we get
�S[[((2, 16), P) � ((3, 13), P)]]ψ
= ((2, 16)→ (3, 13),

((2→ 3, ∅, {x′ = x}),
(16→ 13, ∅, {y′ = y})))

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 133

(�v′)i :
(�v1)i :
(�v2)i :

∈(�A′)i=(�A1)i◦(�A2)i︷ ︸︸ ︷
l1 → → lj2
l1 → . . . → lj1 → . . .

lj1 → . . . → lj2

→ . . . → ln′

. . . → ln1

→ . . . → ln′

Fig. 22 Overview of the indices into the path τ (proof of Lemma 14.2).

since (2 → 3, ∅, {x′ = x}) is safe for 2 → 3
and the identity transition relation is safe for
all transitions that originate from labels not in
�c1.
Lemma 14.1. Let M ′ be a state predicate
model for a program, and let ψ be a safe sub-
computation bound environment. Then for any
transition �τ = (�l, P)→ (�l′, P ′) in M ′ the tran-
sition relation �v is safe for the trace automaton
�A, where (�A,�v) = �S[[�τ]]ψ.

Composition of two program transition pred-
icates can trivially be defined as the pairwise
composition of the process transition predicates
they contain.
Definition 14.3. (Composition): Suppose that
the program transition predicates �v1, �v2 are safe
for the trace automata �A1, �A2 respectively then
define their composition by

(�A1, �v1) ◦ (�A2, �v2)
:= (�A1 ◦ �A2, [(�v1)i ◦ (�v1)i]ki=1])

Lemma 14.2. Suppose that the program tran-
sition predicates �v1, �v2 are safe for the trace
automata �A1, �A2 respectively and let (�A′, �v′) =
(�A1, �v1) ◦ (�A2, �v2) be their composition, then �v′
is safe for �A′.
Proof. The safety of the composition of pro-
gram transition relations follows directly from
the safety of the composition of each pro-
cess transition relation, so consider the com-
position for the ith process: ((�A′)i, (�v′)i) =
((�A1)i, (�v1)i) ◦ ((�A2)i, (�v2)i). If either (�v1)i
or (�v2)i is an identity transition relation then
safety follows trivially, so suppose that is not
the case. To prove safety of the composition,
let τ = l1 → . . . → ln′ be path such that for
some index j2 ∈ {1, . . . , n′} the following holds
(Fig. 22 illustrate how the indices into τ re-
late):
• (l1 → . . .→ lj2) ∈ (�A′)i and
• l1, ln′ ∈ L(�c), lm /∈ L(�c) for m ∈
{j2, . . . , n′ − 1}.

By the safety of (�v2)i there exists an index j1 <
j2 such that
• (lj1 → . . .→ lj2) ∈ (�A2)i and

• lj1 ∈ L(�c).
Since �A′ = �A1 ◦ �A2 it follows from the safety of
(�v1)i that for some n1 ∈ {j1, . . . , n′}:
• (l1 → . . .→ lj1) ∈ (�A1)i and
• ln1 ∈ L(�c), lm /∈ L(�c) for m ∈ {j1, . . . , n1 −

1},
so we can conclude that n1 = j1 (because lj1 ∈
L(�c)). In other words, (�v1)i is safe for l1 →
. . . → lj1 and (�v2)i is safe for lj1 → . . . → ln′ ,
so by Lemma 3.2 their composition must be safe
for τ = l1 → . . .→ ln′ .

Just as in the non-parallel analysis, the clo-
sure set must be finite in order to insure termi-
nation of the verification algorithm, so we ex-
tend the definition of convergent process transi-
tion relations to convergent program transition
relations.
Definition 14.4. (Convergent Program Tran-
sition Relations): A convergent program tran-
sition relation �v = (v1, . . . , vk) is a program
transition relation such that each vi is a con-
vergent process transition relation. The do-
main of convergent program transition relations
is denoted �Vcon . The abstraction operator �αcon

is given by �αcon(�v) = [αcon((�v)i)]ki=1 and the
convergent composition operator ◦con is given
by �v1 ◦con �v2 = [(�v1)i ◦con (�v2)i]ki=1. Finally
let �αcon denote the extension of �αcon to pairs
of trace automata and program transition rela-
tions: �αcon(�A,�v) := (�A, �αcon(�v)).
Lemma 14.3. If the transition relation �v is
safe for the trace automaton �A then �αcon(�v) is
also safe for �A.
Proof. Follows trivially since αcon preserves
safety by Lemma 7.2.

15. Inter-Recursion Paths

The concept of cut-point labels can also be
extended to the parallel setting in order to
speed up the closure set computation. A cut-
point location is simply a location where at least
one process is at a cut-point label.
Definition 15.1. (Cut-Point Location): Given
a program sub-computation �c, define the set of
cut-point locations �Lcpt (�c) such that �l ∈ �Lcpt (�c)

134 IPSJ Transactions on Programming June 2007

Input: Program P and fairness test fair .
decompose FLOW inf (P) into a set of strongly connected components C
ψ := ∅
foreach c ∈ C in bottom-up order:

compute safe bounds ψ0 for c.
ψ := ψ ∪ ψ0.

let �C be the set of program sub-computations.

foreach �c ∈ �C in bottom-up order:
compute the State Predicate Model M ′ for �c

W0 := {�αcon (�S[[�s1 � . . . � �sn]]�c, ψ) | for all inter-recursion paths (�s1 � . . . � �sn) ∈ M ′ }
compute the closure set (V,E) of W0, as per Fig. 5 using ◦con
foreach idempotent �v ∈ V :

if(fairAF
((A�v)ω) �⇒ well-founded(�v))

return “Requirement Potentially Violated for A�v”
return “Requirement is Satisfied”

Fig. 23 Sub-computation based parallel verification algorithm.

iff (�l)i ∈ Lcpt ((�c)i) for some i.
The concept of inter-recursion traces (Defi-

nition 6.2) can then be applied to progressive
paths in the state predicate model.
Definition 15.2. (Inter-Recursion Path): For
a given state predicate model M ′ and a set of
cut-point locations �Lcpt (�c), an inter-recursion
path is a path (�l1, P1) � . . . � (�ln, Pn) in M ′

where �l1 and �ln are cut-point locations and �li is
non-cut-point for all 2 ≤ i ≤ n− 1.

Example: Returning to the state predicate
model in Fig. 18, we note that since labels 1 and
13 are cut-point labels,

(1, 13), (2, 13), (1, 14), (1, 16), (1, 17), (3, 13)
are cut-point locations. An inter-recursion path
is thus any path between them, e.g.,

((1, 13), P)→ ((2, 13), P)
and

((2, 14), P)→ ((2, 16), P)
→ ((3, 17), P)→ ((3, 19), P)
→ ((3, 20), P)→ ((3, 13), P),

where P = {0 ≤ x, 0 �= y}. Notice that the
latter inter-recursion path is a concatenation of
the two progressive paths which were discussed
in the previous example:

((2, 14), P)→ ((2, 16), P)
and

((2, 16), P)→ ((3, 17), P)
→ ((3, 19), P)→ ((3, 20), P)
→ ((3, 13), P).

Lemma 15.1. For any sub-computation �c and
any infinite computation �π for which trace(�π) =
�l1 → �l2 → . . . and �li ∈ �c from some point on-
wards (∃i0 ∈ IN : ∀i > i0 : �li ∈ �c), there ex-
ists an infinite set of indices I ⊆ IN such that
�li ∈ �Lcpt (�c) for all i ∈ I.

16. Parallel Verification Algorithm

The algorithm for verifying liveness proper-
ties, given in Fig. 23, processes all the pro-
gram sub-computations in turn, so the process
sub-computation bound environment ψ must
be computed in a separate loop over process
sub-computations. Transition predicates are
extracted for each inter-recursion path in the
model. Since the transition predicates are of
(virtually) the same form as for the non-parallel
algorithm, the closure set computation and the
fairness test is identical to the non-parallel algo-
rithm. The essential difference between the par-
allel verification algorithm and the sequential
algorithm is that the parallel algorithm must
compute the parallel composition of the pro-
cesses in the program prior to the closure set
computation. This leads to a potentially expo-
nential blow-up in the size of the model, which
naturally has a large impact on the efficiency of
the analysis. While the sub-computation based
parallel verification algorithm does not address
the complexity of the closure set computation,
the efficiency can be improved if the exponen-
tial blow-up can be limited.
Theorem 16.1. Given a program P and a fair-
ness test fairAF

on trace automata, if the algo-
rithm in Fig. 23 returns “Requirement is Satis-
fied” then P is fairly terminating.

17. Conclusion

We have presented an extension of the
transition predicate abstraction framework of
Podelski, et al. 11) that improves on both preci-
sion and performance of the original algorithm.
The main contribution is the method for iden-

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 135

tification of sub-computations via the infinite
flow graph and its integration into the veri-
fication algorithm. We introduced two con-
crete levels of abstractions: One expressive ab-
straction sufficiently precise to handle certain
types of non-monotone progress and another
which ensures convergence of the closure set
computation, allowing inter-recursion traces to
be collapsed prior to the closure set computa-
tion. Further we reported on experimental re-
sults which indicate the potential performance
gain. Finally we extended the sub-computation
algorithm to an parallel language with syn-
chronous communication via statically named
channels. By using state predicate abstraction
to guide the extraction of transition relations
for the parallel composition of a given program,
the number of feasible transition relations can
be reduced prior to the closure set computa-
tion, thus improving efficiency of the algorithm.
Many of the concepts of the non-parallel algo-
rithm were shown to carry over into the parallel
setting.

17.1 Related and Future Work
In our algorithm the set of preconditions are

used directly as a basis for the termination test,
so termination can only be shown for programs
that already contain suitable tests. The pre-
conditions can however be strengthened by au-
tomatic discovery of invariant linear relations
using the polyhedral cones, as developed by
Cousot and Halbwachs 5), which is a power-
ful framework for approximating state space.
In Ref. 4) the polyhedral analysis is used to
augment a termination analysis for an impera-
tive language with well-structured control flow.
The termination analysis developed is strong
enough to handle lexicographical termination
arguments, but fail other termination argu-
ments that size-change termination can handle.
Bridging the gap between size-change termi-
nation for functional languages and polyhedral
analysis for imperative language, Avery 1) ap-
plies the polyhedral analysis to strengthen size-
change termination analysis for a small imper-
ative language. The method is directly applica-
ble to the analysis of this paper since we use the
same definition of well-foundedness. In Ref. 2)
Bradley, et al. develops a technique for proving
termination of programs with polynomial rank-
ing functions, which might lead to a technique
for automatic discovery of polynomial invari-
ants.

Rather than using the notion of decreasing

expressions 1) applied to preconditions, it is
possible to use more powerful methods for find-
ing “ranking functions” for transition relations.
Podelski and Rybalchenko 10) introduce a com-
plete method for finding linear ranking func-
tions.

The present algorithm only deals with vari-
ables over integers, but the framework can
be extended to handle recursive data types
by introducing “size measures” that map a
data value to an appropriate integer “size”, cf.
Ref. 6). With such an extension, the frame-
work would be able to handle programs over
data structures such as lists and trees in a nat-
ural way.

The time complexity for proving size-change
termination for first order functional programs
with well-founded data has been proven to be
PSPACE complete. This result unfortunately
also carries over to fair termination. Codish,
et al. 3) have developed an efficient method for
computing the closure set by using binary de-
cision diagrams leads to a concise representa-
tion, though the complexity remains PSPACE
complete. Lee has developed 7) two PTIME ap-
proximations for size-change termination: One
quadratic in the size of the input (which re-
quires certain restrictions on the abstractions)
and a general cubic approximation. The two
have proven to be surprisingly precise in prac-
tice and it is possible that the methods can be
applied to speed up the closure set computa-
tion for transition relations. However one open
question is how to uncover the trace automata
that a given transition relation is safe for, in
order to prove fair termination.

References

1) Avery, J.: Size-Change Termination and
Bound Analysis, Proc. FLOPS 2006, LNCS
3945, Hagiya, M. and Wadler, P. (Eds.), Fuji
Susono, pp.192–207, Springer (2006).

2) Bradley, A.R, Manna, Z. and Sipma, H.B.:
Termination of Polynomial Programs, Proc.
VMCAI ’05, LNCS 3385, Cousot, R. (Ed.),
Paris, France, pp.113–129, Springer (2005).

3) Codish, M, Lagoon, V, Schachte, P. and
Stuckey, P.: Size-Change Termination Analy-
sis in k-Bits, Proc. ESOP 2006, LNCS 3924,
Sestoft, P. (Ed.), Vienna, Austria, pp.230–245,
Springer (2006).

4) Cólon, M.A. and Sipma, H.B.: Practical Meth-
ods for Proving Program Termination, Proc.
CAV 2002, LNCS 2404, Brinksma, E. and
Larsen, K.G. (Eds.), Copenhagen, Denmark,

136 IPSJ Transactions on Programming June 2007

pp.442–454, Springer (2002).
5) Cousot, P. and Halbwachs,N.: Automatic Dis-

covery of Linear Restraints Among Variables of
a Program, Proc.POPL 1978, Tucson, Arizona,
pp.84–97, ACM (1978).

6) Frederiksen,C.C.: Automatic Runtime Analy-
sis for First Order Functional Programs, Tech-
nical Report D-470, University of Copenhagen
(2002).

7) Lee, C.S.: Program Termination Analysis in
Polynomial Time, Proc. GPCE 2002, LNCS
2487, Batory, D.S, Consel, C. and Taha, W.
(Eds.), Pittsburgh, PA, USA, pp.218–235,
Springer (2002).

8) Lee, C.S, Jones, N.D. and Ben-Amram, A.M.:
The Size-Change Principle for Program Termi-
nation, Proc. POPL 2001, London, England,
pp.81–92, ACM (2001).

9) Podelski, A. and Rybalchenko, A.: Software
Model Checking of Liveness Properties via
Transition Invariants, Technical Report MPI-
TR-2003-2-004, Max Planck Insitiute für Infor-
matik (2003).

10) Podelski,A. and Rybalchenko,A.: A Complete
Method for Synthesis of Linear Ranking Func-
tions, Proc. VMCAI 2004, LNCS 2937, Steffen,
B. and Levi, G. (Eds.), Venice, Italy, pp.239–
251, Springer (2004).

11) Podelski, A. and Rybalchenko, A.: Transi-
tion Predicate Abstraction and Fair Termina-
tion, Proc.POPL 2005, Long Beach, California,
USA, pp.132–144, ACM (2005).

12) Ramsey, F.P.: On a Problem of Formal Logic,
Procedures of London Mathematical Society,
Vol.30, London, England, pp.264–285 (1930).

Appendix

A.1 Proof of Theorem 4.2
Proof. Assume for all idempotent v are well-
founded if fairAF

((Av)ω) and that P is not
fairly terminating. Let π = s1 → s2 → . . . be
an infinite computation satisfying the fairness
requirement: fairAF

holds from some point on-
wards. If trace(π) = l1 → l2 → . . . then there
exists a k′ ≥ 1 such that fairAF

(lk → lk+1 →
. . .) holds for all k ≥ k′. Define w(i,i+1) := v to
be the transition relation v ∈ V corresponding
to the transition li → li+1. Define a 2-set to be
a two element set {i, j} of positive integers and
assume without loss of generality that i < j.
For each v ∈ V define the class Pv of 2-sets
yielding v by:

Pv := {(i, j) | v = w(i,i+1) ◦ . . . ◦ w(j−1,j)}.
The set of classes {Pv | v ∈ V } partitions sub-
sequences of w(1,2), w(2,3), . . . into equivalence

classes depending on which transition relation
they compose to. The set of classes {Pv | v ∈
V } is mutually disjoint and every 2-set belongs
of exactly one of them. The closure set (V,E)
was assumed finite, so by the Infinite Ramsey
Theorem 12) there thus exists an infinite set of
indices I such that any 2-set of elements in I
belong to the same equivalence class. That is,
there exists a transition relation v′ ∈ V such
that for all indices i, j ∈ I such that i < j we
have that (i, j) ∈ Pv′ . This implies that v′ is
idempotent: let i, i′ and i′′ be indices in I such
that i < i′ < i′′:

v′ = w(i,i+1) ◦ . . . ◦ w(i′′−1,i′′)

= (w(i,i+1) ◦ . . . ◦ w(i′−1,i′))
◦(w(i′,i′+1) ◦ . . . ◦ w(i′′−1,i′′))

= v′ ◦ v′
Fairness for a given trace automaton A is de-
fined by fairAF

(A) ⇐⇒ AF∩A �= ∅, where AF

is the Büchi-automaton encoding all fair traces.
It follows that A is fair iff some trace tr ∈ A
is fair: fairAF

(A) ⇐⇒ ∃tr ∈ A : fairAF
(tr).

By Theorem 3.1 Av′ is safe for v′, so we have
that (lk → lk+1 → . . .) ∈ (Av′)ω for some
k ∈ {i ∈ I | i ≥ k′}. Since fairAF

(lk → lk+1 →
. . .) holds by assumption, it thus follows that
fairAF

((Av′)ω) must hold. Again, by assump-
tion fairAF

((Av′)ω) implies well−founded(v′),
so v′ must be well-founded. That is, there ex-
ists a precondition 0 < e which decreases for
v. By Theorem 4.1 for any two indices i, j in
I such that i < j we have ρi |=exp e → ai and
ρj |=exp e → aj implies ai > aj , where ρi is
the store on the top of stack si. The index set
I is infinite so there exists an infinite sequence
a1 > a2 > . . . of decreasing numbers. However
the safety of v′ implies that if ρi |=exp e → ai
then 0 < ai for all i so the sequence is bounded
from below. Thus the sequence is well-founded
and must be finite, contradicting the original
assumption.

A.2 Proof of Theorem 8.1
Proof. Again the correctness of the algorithm
depends on Theorem 4.2. By Lemma 6.1 any
trace that is restricted to a sub-computation
c from some point onwards can be partitioned
into subsequences that are accepted by some
trace automaton A where (A, v) ∈W0 by choos-
ing I = Lcpt (c). Since the algorithm was as-
sumed to output “Requirement is Satisfied” the
closure set computation of W0 must terminate,
so the closure set must be finite. Any (A, v) ∈
W0 is safe since extraction of transition rela-

Vol. 48 No. SIG 10(PRO 33) Sub-Computation Based Transition Predicate Abstraction 137

tions is safe by Lemma 3.1, composition over
inter-recursion traces is safe by Lemma 3.2 and
αcon preserves safety by Lemma 7.2. The sub-
computation bound environment is modified as
the algorithm iterates over sub-computations,
so we show safety of ψ by induction. Clearly the
empty sub-computation bound environment is
safe and by assumption the new bounds ψ0

are safe for each iteration so ψ ∪ ψ0 must also
be safe. By definition the convergent composi-
tion operator ◦con preserves safety, so by The-
orem 4.2 the program is fairly terminating if
for all idempotent v ∈ V : fairAF

((Av)ω) ⇒
well − founded(v). Since this is precisely the
condition tested, the algorithm outputs “Re-
quirement is Satisfied” only if the program is
fairly terminating.

A.3 Proof of Theorem 16.1
Proof. The correctness of the algorithm de-
pends on Theorem 4.2. The sub-computation
bound environment is modified as the algo-
rithm iterates over sub-computations, so we
show safety of ψ by induction. Clearly the
empty sub-computation bound environment is
safe and by assumption the new bounds ψ0 are
safe for each iteration, so ψ ∪ ψ0 must also be
safe.

By Lemma 15.1 any trace that is restricted
to a program sub-computation �c from some
point onwards can be partitioned into subse-
quences that are accepted by some trace au-
tomaton �A where (�A,�v) ∈ W0 by choosing
I = �Lcpt(�c). Since the algorithm was assumed
to output “Requirement is Satisfied” the clo-
sure set computation of W0 must terminate, so
the closure set must be finite. Any (�A,�v) ∈W0

is safe since extraction of transition relations
is safe by Lemma 14.1, composition over inter-
recursion paths is safe by Lemma 14.2 and �αcon

preserves safety by Lemma 14.3. By definition
the convergent composition operator ◦con pre-

serves safety, so by Theorem 4.2 the program is
fairly terminating if for all idempotent �v ∈ �V :
fairAF

((A�v)ω)⇒ well − founded(�v). Since this
is precisely the condition tested, the algorithm
outputs “Requirement is Satisfied” only if the
program is fairly terminating.

(Received December 15, 2006)
(Accepted March 26, 2007)

Carl Christian Frederiksen
was born in 1976. During his
studies in the TOPPS group
(Theory and Practise of Pro-
grams) at the University of
Copenhagen, he worked as a re-
search assistant on model check-

ing, size-change termination and running time
analysis projects. After receiving his M.Sc. de-
gree in 2002, he joined Hagiya Lab at the Uni-
versity of Tokyo where he is currently work-
ing as a Ph.D. student. His research interests
include size-change termination based program
analysis and verification of liveness properties.

Masami Hagiya is a profes-
sor at Department of Computer
Science, the University of Tokyo.
After receiving M.Sc. from the
University of Tokyo, he worked
for Research Institute for Math-
ematical Sciences, Kyoto Uni-

versity, and received Dr.Sc. He has been work-
ing on modeling, formalization, simulation, and
verification of computer systems, including var-
ious kinds of software systems and program-
ming languages, mainly using deductive ap-
proaches. Recently, he is not only dealing with
systems composed of electronic computers, but
also biological and molecular systems with re-
spect to their computational aspects, and is
now working on DNA and molecular comput-
ing.

