
Vol. 49 No. SIG 1(PRO 35) IPSJ Transactions on Programming Jan. 2008

Regular Paper

Soundness of Rewriting Induction Based on an Abstract Principle

Takahito Aoto†1

Rewriting induction (Reddy, 1990) is a method to prove inductive theorems of term rewrit-
ing systems automatically. Koike and Toyama (2000) extracted an abstract principle of rewrit-
ing induction in terms of abstract reduction systems. Based on their principle, the soundness
of the original rewriting induction system can be proved. It is not known, however, whether
such an approach can be adapted also for more powerful rewriting induction systems. In this
paper, we give a new abstract principle that extends Koike and Toyama’s abstract principle.
Using this principle, we show the soundness of a rewriting induction system extended with an
inference rule of simplification by conjectures. Inference rules of simplification by conjectures
have been used in many rewriting induction systems. Replacement of the underlying rewriting
mechanism with ordered rewriting is an important refinement of rewriting induction — with
this refinement, rewriting induction can handle non-orientable equations. It is shown that,
based on the introduced abstract principle, a variant of our rewriting induction system based
on ordered rewriting is sound, provided that its base order is ground-total. In our system
based on ordered rewriting, the simplification rule extends those of the equational fragment
of some major systems from the literature.

1. Introduction

Properties of programs are often proved by
induction on data structures such as natural
numbers or lists. Such properties are called in-
ductive properties of programs. Inductive prop-
erties are indispensable in formal treatments of
programs such as program verification and pro-
gram transformation. For such applications,
automated reasoning on inductive properties is
crucial.

Term rewriting systems (TRSs) are a com-
putational model based on equational logic
that has been studied extensively 2),21). In-
ductive properties of TRSs are called induc-
tive theorems, and methods that automat-
ically perform inductive reasoning in term
rewriting have been investigated for many
years 4)–7),10),12)–18),20),22).

Rewriting induction �1 proposed by Reddy 18)

is one of such inductive theorem proving
methods. Contrasted to inductionless induc-
tion 12),13),15),17),22), in which some kind of
Church-Rosser property is needed, the basis
of rewriting induction is noetherian induction.
Test set induction 5)–7) used for the basis of
well-known inductive theorem prover SPIKE
can be regarded as a variant of rewriting in-
duction.

An inference system for proving inductive
theorems is said to be sound if every success-

†1 RIEC, Tohoku University

fully derived equation is an inductive theorem.
Koike and Toyama 16) extracted an abstract
principle from rewriting induction in terms of
abstract reduction systems. Based on their
principle, the soundness of the original rewrit-
ing induction system can be proved 1). It is not
known, however, whether such an approach can
be adapted also for more powerful rewriting in-
duction systems.

Many refinements have been introduced for
rewriting induction to increase its power and
efficiency of theorem proving. The underlying
rewriting mechanism has been replaced by or-
dered rewriting in Ref. 9) so that rewriting in-
duction can also handle non-orientable equa-
tions; not only ordered rewriting but also re-
laxed rewriting is used in the inference systems
of SPIKE 5)–7) to get more flexible expansion
and simplification rules. Another refinement is
to use simplification by conjectures (equations
to prove)5)–9). More inference rules are added
to get efficient proofs and/or failure detection in
some systems. Another direction for extension
is to make the framework more general. The in-
duction systems of SPIKE 5)–7) can handle not
only equational theories but conditional ones;
moreover, inductive properties can be given not
only in equations but also in clauses. Further
generalization is given in Ref. 8) whose under-

�1 Originally, it is called “term rewriting induction”.
The terminology “rewriting induction” is intro-
duced in Ref. 16).

28

Vol. 49 No. SIG 1(PRO 35) Soundness of Rewriting Induction Based on an Abstract Principle 29

lying logical theory is replaced with an abstract
first-order deductive relation. Stratulat 4),20)

strengthens such an abstraction further by a
general abstract inference system that can be
used to prove general inductive properties of
any first-order deductive relation.

In this paper, we give a new abstract principle
that extends Koike and Toyama’s abstract prin-
ciple. Using this principle, we show the sound-
ness of a rewriting induction system extended
with an inference rule of simplification by con-
jectures (equations to prove).

It is also shown that, based on the same ab-
stract principle, a variant of our rewriting in-
duction system based on ordered rewriting is
sound, provided that its base order is ground-
total. Contrasted to many previous work,
our approach can handle only first-order term
rewriting and proof of equations. On the other
hand, in our system based on ordered rewrit-
ing, our general simplification-by-conjectures
rule extends those of the equational fragment of
some major systems from the literature. Fur-
thermore, the soundness of our system is not
explained by the abstract frameworks of Ref. 8)
and Ref. 20).

The rest of the paper is organized as follows.
After fixing basic notation (Section 2), we re-
view rewriting induction (Section 3). In Sec-
tion 4, we present our extension of rewriting
induction and discuss its soundness. Section 5
introduces a variant of our system based on or-
dered rewriting. In Section 6, we compare our
system with other major systems. Section 7
concludes.

2. Preliminaries

Let us fix some notation for abstract reduc-
tion systems (ARSs). Let → be a binary rela-
tion on a set A. The reflexive transitive closure
(symmetric closure, equivalence closure) of →
is denoted by ∗→ (↔, ∗↔, respectively). The re-
lation → is well-founded (denoted by SN(→))
if there exists no infinite chain a0 → a1 → · · ·.
An element a is said to be normal if there is no
b such that a→ b. The set of normal elements
is denoted by NF(→). The union →i ∪ →j

of two binary relations →i and →j is abbrevi-
ated as→i∪j . We assume ∪ associates stronger
than the closure operations so that, for exam-
ple, ∗↔1∪2 stands for the equivalence closure of
→1 ∪ →2. We use ◦ for the composition oper-
ator. A binary relation ∗→i ◦ ∗←i is abbreviated

as ↓i.
We next introduce notation for term rewrit-

ing used in this paper. (For details, see Ref. 2).)
The sets of function symbols and variables are
denoted by F and V , respectively. The arity of
a function symbol f is denoted by arity(f). A
function symbol of arity 0 is called a constant.
The set T(F , V) of terms over F , V is defined
as usual. We use ≡ to denote the syntactical
equality. The set of variables contained in a
term t is denoted by V (t).

A position is a (possibly empty) sequence of
natural numbers. The empty sequence is de-
noted by ε. The set of positions of a term t is
denoted by Pos(t) and the subterm of t at the
position p ∈ Pos(t) by t/p. We write u � t if
u is a subterm of t. The root symbol of a term
t is denoted by root(t). Let � be a constant
not occurring in F . A context is an element
in T(F ∪ {�}, V). The special constant � in
contexts is called a hole. If a context C has
n holes in it, we denote by C[t1, . . . , tn] a term
obtained by replacing holes with t1, . . . , tn from
left to right. We write C[u]p if C/p ≡ �.

A mapping σ from V to T(F , V) is called a
substitution; as usual, we identify σ and its ho-
momorphic extension. The domain of a substi-
tution σ is denoted by dom(σ), i.e. dom(σ) =
{x ∈ V | σ(x)
= x}. A term σ(t) is called
an instance of the term t; σ(t) is also writ-
ten as tσ. We denote by mgu(s, t) the most
general unifier of terms s, t. A pair 〈l, r〉 of
terms l, r satisfying conditions (1) root(l) ∈ F
and (2) V (r) ⊆ V (l) is said to be a rewrite
rule. As usual, a rewrite rule 〈l, r〉 is denoted
by l → r. A term rewriting system (TRS) is a
set of rewrite rules. We also specify the set F of
function symbols and write 〈F ,R〉 instead of R
if there exists a function symbol that does not
occur in the rewrite rules. Let R be a TRS. If
there exist a context C, a substitution σ, and
a rewrite rule l → r ∈ R such that s ≡ C[lσ]p
and t ≡ C[rσ]p, we write s →R t. We call
s→R t a rewrite step. The rewrite step s→R t
is sometimes written as s →p,l→r

R t to indicate
the position p and the rewrite rule l → r used
in this rewrite step. →R forms a relation on
T(F , V), called the rewrite relation of R. Clo-
sure operations and the notion of normal terms
are adapted to rewrite relations as usual. An
equation l

.= r is a pair 〈l, r〉 of terms. When
we write l

.= r, however, we do not distinguish
〈l, r〉 and 〈r, l〉. The rewrite relation of a set E

30 IPSJ Transactions on Programming Jan. 2008

of equations is defined in a way similar to that
of a TRS, i.e. s ↔E t if there exist a context
C, a substitution σ and an equation 〈l, r〉 ∈ E
satisfying either s ≡ C[lσ] and t ≡ C[rσ] or
t ≡ C[lσ] and s ≡ C[rσ] (or equivalently, an
equation l

.= r ∈ E such that s ≡ C[lσ] and
t ≡ C[rσ]).

The set of defined function symbols is given
by DR = {root(l) | l → r ∈ R} and the
set of constructor symbols by CR = F \ DR.
The set of defined symbols appearing in a term
t is denoted by DR(t). When R is obvious
from its context, we omit the subscript R from
DR, CR. Terms in T(C, V) are said to be
constructor terms; a substitution σ such that
σ(x) ∈ T(C, V) for any x ∈ dom(σ) is called
a constructor substitution. A term of the form
f(c1, . . . , cn) for some f ∈ D and c1, . . . , cn ∈
T(C, V) is said to be basic. The set {u�s | ∃f ∈
D. ∃c1, . . . , cn ∈ T(C, V). u ≡ f(c1, . . . , cn)} of
basic subterms of s is written as B(s).

A term t is said to be ground if V (t) = ∅.
The set of ground terms is denoted by T(F). If
tσ ∈ T(F), tσ is called a ground instance of t.
The ground instance of a rewrite rule, an equa-
tion, etc. is defined similarly. A ground substitu-
tion is a substitution σg such that σg(x) ∈ T(F)
for any x ∈ dom(σg). A TRS R is said to be
quasi-reducible if no ground basic term is nor-
mal. Without loss of generality, we can assume
that tσg is ground (i.e. V (t) ⊆ dom(σg)) when
we speak of an instance tσg of t by a ground
substitution σg; and so for ground instances of
rewrite rules, equations, etc. An inductive the-
orem of a TRS R is an equation that is valid
on T(F), i.e. s

.= t is an inductive theorem
if sσg

∗↔R tσg holds for any ground instance
sσg

.= tσg. In other words, a set E of equa-
tions is a set of inductive theorems of R iff∗↔R = ∗↔R∪E holds on T(F).

Example 1 Let R be a TRS for the addi-
tion of natural numbers:

R
{

0 + y → y
s(x) + y → s(x + y)

Consider the equation (x + y) + z
.= x + (y +

z) that expresses the associativity of addition.
This equation is an inductive theorem of R, that
is, ((x + y) + z)σg

∗↔R (x + (y + z))σg for any
ground substitution σg. (We assume x, y, z ∈
dom(σg), as mentioned above.)

A (strict) partial order > is an irreflexive
transitive relation. a ≥ b iff a > b or a = b;

or, if > is a partial order on syntactical objects,
s ≥ t iff s > t or s ≡ t. A partial order > is
well-founded if there is no infinite descending
chain a0 > a1 > · · ·. A relation R on T(F , V)
is said to be closed under substitutions if s R t
implies sσRtσ for any substitution σ; closed un-
der contexts if s R t implies C[s] R C[t] for any
context C. A reduction order is a well-founded
partial order on T(F , V) that is closed under
substitutions and contexts. A partial order >
on T(F , V) is said to be ground-total if sg ≡ tg,
sg < tg or tg > sg hold for any sg, tg ∈ T(F).

3. Rewriting Induction

Rewriting induction (RI for short) proposed
by Reddy 18) is a method to prove inductive
theorems automatically. This section reviews
rewriting induction and proves basic properties
of an operation involved in our formulation of
rewriting induction.

Let R be a TRS and > a reduction order. We
list the inference rules of rewriting induction in
downward fashion in Fig. 1. In the figure, the
relation � expresses the disjoint union and the
ternary operation Expd is defined as:

Expdu(s, t) = {C[r]σ .= tσ | s ≡ C[u],
σ = mgu(u, l), l→ r ∈ R, l:basic}

A rewriting induction procedure starts from a
pair 〈E0, ∅〉 where E0 is the set of conjectures
to prove. It successively applies those inference
rules to a pair 〈E, H〉. Intuitively, E is a set of
equations to be proved and H is a set of induc-
tion hypotheses and theorems already proved.

Definition 2 If 〈E′, H ′〉 is obtained from
〈E, H〉 by applying one of the inference rules
from Fig. 1, we write 〈E, H〉�RI 〈E′, H ′〉. The
reflexive transitive closure of �RI is denoted by
∗
�RI. We sometimes write �s

RI, �
d
RI, or �e

RI
to indicate which inference rule is used.

If a derivation by �RI eventually reaches
the form 〈∅, H ′〉 then the procedure returns
“success”—this means that the conjectures are
inductive theorems of R. On the other hand,
when none of the rules are applicable for 〈E, H〉
with E
= ∅, the procedure reports “fail-
ure” and the procedure may also run forever
(“divergence”)—in these cases, rewriting induc-
tion fails to prove that the conjectures are in-
ductive theorems. A proof of the next proposi-
tion will be given afterwards in a more general
setting.

Proposition 3 (Reddy 18)) Let R be a

Vol. 49 No. SIG 1(PRO 35) Soundness of Rewriting Induction Based on an Abstract Principle 31

Expand
〈E � {s .

= t}, H〉
〈E ∪ Expdu(s, t), H ∪ {s → t}〉 u ∈ B(s), s > t

Simplify
〈E � {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s →R∪H s′

Delete
〈E � {s .

= s}, H〉
〈E, H〉

Fig. 1 Inference rules of RI.

〈 {
(x + y) + z

.
= x + (y + z) }, {} 〉

�e
RI

〈 {
y0 + z

.
= 0 + (y0 + z)

s(x1 + y1) + z
.
= s(x1) + (y1 + z)

}
,
{

(x + y) + z → x + (y + z)
} 〉

∗
�

s

RI

〈 {
y0 + z

.
= y0 + z

s(x1 + (y1 + z))
.
= s(x1 + (y1 + z))

}
,
{

(x + y) + z → x + (y + z)
} 〉

∗
�

d

RI

〈{}
,
{

(x + y) + z → x + (y + z)
}〉

Fig. 2 A process of rewriting induction.

quasi-reducible TRS, E a set of equations, and
> a reduction order satisfying R ⊆ >. If
〈E, ∅〉 ∗

�RI 〈∅, H〉 for some set H of rewrite
rules, then the equations of E are inductive the-
orems of R.

Example 4 Let R be the TRS given in
Example1 and let E = {(x+y)+z

.= x+(y +
z)}. Let > be the lexicographic path order 2)

based on a precedence + > s > 0. In Fig. 2,
we present a successful derivation by rewriting
induction starting from 〈E, ∅〉.

Before we end the section, we introduce two
properties of Expd that will be used later.

Lemma 5 Let R be a quasi-reducible TRS
and u ∈ B(s). Then (1) sσg →R ◦ ↔Expdu(s,t)

tσg for any ground constructor substitution σg

and (2) vg ↔Expdu(s,t) wg implies vg
∗↔R∪{s

.
=t}

wg for any ground terms vg, wg.
Proof (1) Since u is basic and σg is a ground

constructor substitution, uσg is a basic ground
term. Thus, by the quasi-reducibility of R,
there exists l → r ∈ R such that uσg is an
instance of l. Then l is basic because uσg is
basic. W.l.o.g. we may assume V (l)∩ V (s) = ∅
and thus by extending σg one can let uσg ≡ lσg

so that σg is a unifier of u and l. Let σ =
mgu(u, l). Then we have σg = θg ◦ σ for some
substitution θg. By letting s ≡ C[u], we have
sσg ≡ C[u]σg ≡ Cσg[uσθg] ≡ Cσg[lσθg] →R
Cσg[rσθg] ≡ C[r]σθg ↔Expdu(s,t) tσθg ≡ tσg.

(2) Let vg ↔Expdu(s,t) wg. By the definition
of Expd, for some Cg, C, σg, σ, u, l→ r ∈ R, we
have vg ≡ Cg[C[r]σσg], wg ≡ Cg[tσσg] (or wg ≡
Cg[C[r]σσg], vg ≡ Cg[tσσg]), σ = mgu(u, l) and
s ≡ C[u]. Then we have vg ≡ Cg[C[r]σσg] ←R

Cg[C[l]σσg] ≡ Cg[Cσ[lσ]σg] ≡ Cg[Cσ[uσ]σg] ≡
Cg[C[u]σσg] ≡ Cg[sσσg] ↔{s

.
=t} Cg[tσσg] ≡

wg. �
4. Simplification by Conjectures

Simplification by (yet unproved) conjectures
is one of basic refinements used in many ex-
tended rewriting induction systems 5)–7),9). In
this section, we introduce a rewriting induc-
tion system with a general simplification-by-
conjectures rule and an abstract principle that
is used to prove the soundness of this new
rewriting induction system.

Figure 3 describes our new inference system
cRI which is obtained by adding an inference
rule Simplify-C to RI. In Simplify-C, an equa-
tion of E is reduced using other equations of E
if an indicated condition is satisfied.

Definition 6 If 〈E′, H ′〉 is obtained from
〈E, H〉 by applying one of the inference rules
from Fig. 3, we write 〈E, H〉 �cRI 〈E′, H ′〉.
The reflexive transitive closure of �cRI is de-
noted by ∗

�cRI. We sometimes write �s
cRI

, �sc
cRI, �

d
cRI, or �e

cRI to indicate which infer-
ence rule is used.

Koike and Toyama 16) extracted the following
abstract principle from the proof of the sound-
ness of rewriting induction 18).

Proposition 7 (Koike and Toyama 16))
Let →1,→2 be binary relations and > a well-
founded partial order on a set A. Suppose that
(i) →1∪2 ⊆ > and (ii) if a→2 b then there ex-
ists c such that (ii-a) a→1 c and (ii-b) c ↓1∪2 b.
Then, ∗↔1 = ∗↔1∪2.

Based on this principle, the soundness of the

32 IPSJ Transactions on Programming Jan. 2008

Expand
〈E � {s .

= t}, H〉
〈E ∪ Expdu(s, t), H ∪ {s → t}〉 u ∈ B(s), s > t

Simplify
〈E � {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s →R∪H s′

Simplify-C
〈E � {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s ↔E s′, (s ≥ s′) ∨ (t ≥ s′)

Delete
〈E � {s .

= s}, H〉
〈E, H〉

Fig. 3 Inference rules of cRI.

Koike and Toyama’s principle Our principle

a a

c b c c1 · · · cn b

◦ ◦ ◦

21

*

1 ∪ 2

*

1 ∪ 2

1 2

*

1 ∪ 2

*

1 ∪ 2

*

1 ∪ 2

*

1 ∪ 2

Fig. 4 Difference of principles.

original rewriting induction system RI can be
proved 1). The principle, however, is not general
enough to show the soundness of cRI.

We now give a new abstract principle that
allows us to prove the soundness of cRI. It is
easy to see that our new abstract principle is
an extension of Koike and Toyama’s principle
(Fig. 4).

Lemma 8 Let →1,→2 be binary relations
and > a well-founded partial order on a set A.
Suppose that (i) →1∪2 ⊆ > and (ii) if a →2 b
then there exist c, c1, . . . , cn (n ≥ 0) such that
(ii-a) a →1 c, (ii-b) for each 1 ≤ i ≤ n, either
ci ≤ c or ci ≤ b, and (ii-c) c ↓1∪2 c1, c1 ↓1∪2 c2,
. . ., cn−1 ↓1∪2 cn, and cn ↓1∪2 b. Then, ∗↔1 =
∗↔1∪2.
Proof (⊆) is obvious. To show (⊇), we show

by noetherian induction on > that

∀y ∈ A. (x ∗→1∪2 y ⇒ x
∗↔1 y)

for any x ∈ A. (Base Step) We have x = y and
thus x

∗↔1 y. (Induction Step) Let x
∗→1∪2 y.

The case x = y is obvious. Let x→1∪2 z
∗→1∪2

y. Then x > z follows by condition (i), and
hence z

∗↔1 y by the induction hypothesis. If
x →1 z then we have x →1 z

∗↔1 y, and thus
x

∗↔1 y. Otherwise, x →2 z. By condition (ii),

there exist c, c1, . . . , cn such that (a) x →1 c,
(b) for each 1 ≤ i ≤ n, either ci ≤ c or ci ≤ z
(c) c

∗→1∪2 ◦ ∗←1∪2 c1, c1
∗→1∪2 ◦ ∗←1∪2 c2, . . .,

cn−1
∗→1∪2 ◦ ∗←1∪2 cn, and cn

∗→1∪2 ◦ ∗←1∪2 z.
By condition (i), x > c follows from (a). Thus,
together with x > z, it follows from (b) that
ci < x for all 1 ≤ i ≤ n. Hence one can apply
the induction hypothesis to z, c, c1, . . . , cn and
obtain from (c) that c

∗↔1 ◦ ∗↔1 c1, c1
∗↔1 ◦ ∗↔1

c2, . . ., cn−1
∗↔1 ◦ ∗↔1 cn, cn

∗↔1 ◦ ∗↔1 z. Thus,
x→1 c

∗↔1 z
∗↔1 y. �

In the remaining lemmas of this section, we
assume that R is a quasi-reducible TRS and >
is a reduction order satisfying R ⊆ >.

Lemma 9 If 〈En, Hn〉�cRI 〈En+1, Hn+1〉,
then ∗↔R∪En∪Hn

= ∗↔R∪En+1∪Hn+1 on T(F).
Proof We distinguish cases according to

the inference rule applied in the derivation
step 〈En, Hn〉 �cRI 〈En+1, Hn+1〉. The
cases 〈En, Hn〉 �

s,sc,d
cRI 〈En+1, Hn+1〉 easily

follow. Consider the case 〈En, Hn〉 �e
cRI〈En+1, Hn+1〉. Then one can let En = E �

{s = t}, En+1 = E ∪ Expdu(s, t), Hn+1 =
Hn ∪ {s → t}, and u ∈ B(s). The in-
clusion ∗↔R∪En∪Hn

⊆ ∗↔R∪En+1∪Hn+1 is obvi-
ous. To show ∗↔R∪En∪Hn

⊇ ∗↔R∪En+1∪Hn+1 ,
it suffices to show ug ↔Expdu(s,t) vg implies

Vol. 49 No. SIG 1(PRO 35) Soundness of Rewriting Induction Based on an Abstract Principle 33

ug
∗↔R∪En∪Hn

vg for any ground terms ug, vg.
This follows from Lemma 5 (2), since s

.= t ∈
En. �

Lemma 10 Let 〈En, Hn〉 ∗
�cRI 〈∅, H�〉.

For any sg, tg ∈ T(F) such that sg ↔En
tg,

there exist u1, . . . , uk ∈ T(F) satisfying (1) for
any 1 ≤ i ≤ k either ui ≤ sg or ui ≤ tg and (2)
sg ↓R∪H� u1, u1 ↓R∪H� u2, . . ., uk−1 ↓R∪H�

uk, uk ↓R∪H� tg
Proof By induction on the length k of the

derivation 〈En, Hn〉 ∗
�cRI 〈∅, H�〉. The case

k = 0 is obvious. Suppose k > 0. Then
one can let 〈En, Hn〉 �cRI 〈En+1, Hn+1〉 ∗

�cRI

〈∅, H�〉. We distinguish cases according to
the inference rule applied in the derivation
step 〈En, Hn〉 �cRI 〈En+1, Hn+1〉. The cases
〈En, Hn〉�

d,e
cRI 〈En+1, Hn+1〉 are shown easily.

• Case 〈En, Hn〉 �s
cRI 〈En+1, Hn+1〉. Then

one can let En = E � {s .= t}, En+1 =
E ∪ {s′ .= t}, Hn = Hn+1, s →R∪Hn

s′. If
sg ↔E tg, the claim follows immediately from
the induction hypothesis. Let sg ↔{s

.
=t} tg.

Then we have sg ≡ Cg[sσg], tg ≡ Cg[tσg]
(or sg ≡ Cg[tσg], tg ≡ Cg[sσg]). Since s′g ≡
Cg[s′σg]↔En+1 tg, by the induction hypoth-
esis, there exist u1, . . . , uk such that (1) for
all 1 ≤ i ≤ k, either ui ≤ s′g or ui ≤ tg holds
and (2) s′g

∗→R∪H� ◦ ∗←R∪H� u1, u1
∗→R∪H�

◦ ∗←R∪H� u2, . . ., uk
∗→R∪H� ◦ ∗←R∪H� tg.

By s →R∪Hn
s′, sg ≡ Cg[sσg] →R∪Hn

Cg[s′σg] ≡ s′g and thus sg > s′g. Hence, from
(1), for all 1 ≤ i ≤ k, we have either ui ≤ sg

or ui ≤ tg. By sg →R∪Hn
s′g and Hn ⊆ H�,

we have sg →R∪H� s′g. Thus, it follows from
(2) that sg

∗→R∪H� ◦ ∗←R∪H� u1, u1
∗→R∪H�

◦ ∗←R∪H� u2, . . ., uk
∗→R∪H� ◦ ∗←R∪H� tg.

• Case 〈En, Hn〉 �sc
cRI 〈En+1, Hn+1〉. Then

one can let En = E � {s .= t}, En+1 =
E ∪ {s′ .= t}, Hn = Hn+1, s ↔E s′, and
s′ ≤ s or s′ ≤ t. The case sg ↔E tg
follows immediately from the induction hy-
pothesis. Let sg ↔{s

.
=t} tg. Then we

have sg ≡ Cg[sσg], tg ≡ Cg[tσg] (or sg ≡
Cg[tσg], tg ≡ Cg[sσg]). Because we have
s′g ≡ Cg[s′σg] ↔En+1 tg, by the induction
hypothesis, there exist u1, . . . , uk ∈ T(F)
such that (1) for any 1 ≤ i ≤ k, either
ui ≤ s′g or ui ≤ tg holds and (2) s′g

∗→R∪H�

◦ ∗←R∪H� u1, u1
∗→R∪H� ◦ ∗←R∪H� u2, . . .,

uk
∗→R∪H� ◦ ∗←R∪H� tg. Further, since sg ≡

Cg[sσg] ↔En+1 Cg[s′σg] ≡ s′g, by the induc-
tion hypothesis, there exist v1, . . . , vl ∈ T(F)

such that (1′) for any 1 ≤ i ≤ l, either
vi ≤ sg or vi ≤ s′g holds and (2′) sg

∗→R∪H�

◦ ∗←R∪H� v1, v1
∗→R∪H� ◦ ∗←R∪H� v2, . . .,

vl
∗→R∪H� ◦ ∗←R∪H� s′g.

Since s′ ≤ s implies s′g ≤ sg and s′ ≤ t im-
plies s′g ≤ tg, we have (1′′) for 1 ≤ j ≤ l,
either vj ≤ sg or vj ≤ tg, and for 1 ≤ i ≤ k,
either ui ≤ sg or ui ≤ tg. Combining (2) and
(2′), we have (2′′) sg

∗→R∪H� ◦ ∗←R∪H� v1,
v1

∗→R∪H� ◦ ∗←R∪H� v2, . . ., vl
∗→R∪H�

◦ ∗←R∪H� s′g, s′g
∗→R∪H� ◦ ∗←R∪H� u1,

u1
∗→R∪H� ◦ ∗←R∪H� u2, . . ., uk

∗→R∪H�

◦ ∗←R∪H� tg. Now, it remains to show ei-
ther s′g ≤ sg or s′g ≤ tg holds—this follows
because we have either s′ ≤ s or s′ ≤ t. �
Lemma 11 Let 〈En, Hn〉 ∗

�cRI 〈∅, H�〉.
For any sg, tg ∈ T(F) such that sg →H� tg,
there exist wg, u1, . . . , uk ∈ T(F) satisfying (1)
sg →R wg, (2) for any i, either ui ≤ wg or
ui ≤ tg, and (3) wg ↓R∪H� u1, u1 ↓R∪H� u2,
. . ., uk−1 ↓R∪H� uk, uk ↓R∪H� tg.

Proof Suppose s → t ∈ H� and sg →{s→t}
tg. Let sg ≡ Cg[sσg] and tg ≡ Cg[tσg].

We first claim that one may assume w.l.o.g.
that σg(x) ∈ NF(→R) for any x ∈ V (s). By
SN(→R), there exists a substitution σ̂g such
that for any x ∈ V (s), σg(x) ∗→R σ̂g(x) ∈
NF(→R). Let ŝg ≡ Cg[sσ̂g] and t̂g ≡ Cg[tσ̂g],
and suppose that there exist wg, u1, . . . , uk ∈
T(F) such that (1) ŝg →R wg, (2) for any i, ei-
ther ui ≤ wg or ui ≤ t̂g holds, and (3) wg ↓R∪H�

u1, u1 ↓R∪H� u2, . . ., uk−1 ↓R∪H� uk, uk ↓R∪H�

t̂g. Then by sg ≡ Cg[sσg]
∗→R Cg[sσ̂g] ≡ ŝg

and tg ≡ Cg[tσg]
∗→R Cg[tσ̂g] ≡ t̂g, we have

sg ≥ ŝg and tg ≥ t̂g. By sg
∗→R ŝg →R wg

one can take w′
g such that sg →R w′

g
∗→R wg.

Then it follows that (1) sg →R w′
g, (2) for any

i, either ui ≤ wg ≤ w′
g (since w′

g
∗→R wg) or

ui ≤ t̂g ≤ tg, and (3) w′
g

∗→R∪H� wg
∗→R∪H�

◦ ∗←R∪H� u1, u1 ↓R∪H� u2, . . ., uk−1 ↓R∪H� uk,
uk

∗→R∪H� ◦ ∗←R∪H� t̂g
∗←R∪H� tg. Thus the

claim follows.
Thus let us assume w.l.o.g. that for any x ∈

V (s), σg(x) ∈ NF(→R). Then by the quasi-
reducibility of R, σg is a constructor substitu-
tion. Since the only inference rule that adds
equations to H� is Expand, we have a deriva-
tion of the form 〈E0, ∅〉 ∗

�cRI 〈En, Hn〉 �cRI

〈En+1, Hn+1〉 ∗
�cRI 〈∅, H�〉 such that Hn+1 =

Hn ∪ {s → t}, En = E � {s .= t}, En+1 = E ∪
Expdu(s, t), u ∈ B(s), and s > t. By Lemma5

34 IPSJ Transactions on Programming Jan. 2008

O-Expand
〈E � {s .

= t}, H〉
〈E ∪ OExpdu(s, t), H ∪ {s .

= t}〉 u ∈ B(s)

O-Simplify
〈E � {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s ��E∪H∪E s′, (s ≥ s′) ∨ (t ≥ s′)

O-Delete
〈E � {s .

= s}, H〉
〈E, H〉
Fig. 5 Inference rules of oRI.

(1), we have sσg →R ◦ ↔Expdu(s,t) tσg. Thus,
sg ≡ Cg[sσg]→R ◦ ↔En+1 Cg[tσg] ≡ tg. Hence
the statement follows from Lemma 10. �

Theorem 12 Let R be a quasi-reducible
TRS, E a set of equations, and > a reduction
order such that R ⊆ >. If 〈E, ∅〉 ∗

�cRI 〈∅, H�〉
for some set H� of rewrite rules, then the equa-
tions of E are inductive theorems of R.

Proof By applying Lemma9 repeatedly, we
know ∗↔E∪R = ∗↔R∪H� holds on T(F). Thus
it remains to show ∗↔R∪H� = ∗↔R on T(F).
For this, we apply Lemma 8 with →1 :=→R,
→2 := →H� , and A := T(F). By the facts
that R ∪ H� ⊆ > and > is a reduction order,
condition (i) of the lemma is satisfied. Condi-
tion (ii) follows from Lemma 11. Therefore,
∗↔R = ∗↔R∪H� . �
5. Extension to Ordered Rewriting

The notion of ordered rewriting was intro-
duced originally for the Knuth-Bendix com-
pletion algorithm to deal with non-orientable
equations 3),11). Rewriting induction systems
in5)–7),9) are based on ordered rewriting. In this
section, we present a variant oRI of the system
cRI based on ordered rewriting and prove its
soundness using the same abstract principle.

We first present some preliminary definitions
related to ordered rewriting. Let > be a reduc-
tion order. For a set E of equations, its ordered
rewrite relation →E is defined as: s →E t iff
there exist an equation l

.= r ∈ E, a context
C and a substitution θ such that s ≡ C[lθ],
t ≡ C[rθ], and lθ > rθ. Clearly, →E is well-
founded. We write s ��E t if there exists
l

.= r ∈ E, a context C, and a substitution
θ such that s ≡ C[lθ], and t ≡ C[rθ]. Note that
in general ↔E (the symmetric closure of →E)
and ��E may be different. Moreover, if > is
ground-total, ��E =↔E on T(F).

Let D, C be disjoint sets of function symbols,
E a set of equations over T(D ∪ C, V). Then
the triple 〈D, C, E〉 is called an equational sys-

tem (ES). If D, C are known or irrelevant, we
identify 〈D, C, E〉 with E . For ESs, the notions
such as defined symbols, constructor symbols,
are adapted by regarding DR and CR as D and
C, respectively. An ES E is said to be quasi-
reducible if all ground basic terms are reducible
by →E , i.e. for any ground basic term sg there
exist l

.= r ∈ E and σg such that lσg ≡ sg and
lσg > rσg. An inductive theorem of an ES E is
an equation that is valid on T(F), i.e. s

.= t is
an inductive theorem iff sσg �∗�E tσg holds for
any ground instance sσg

.= tσg.
Figure 5 describes our inference system oRI

of rewriting induction based on ordered rewrit-
ing. The Simplify rule and the Simplify-C rule
of cRI are integrated into the O-Simplify rule of
the new inference system. The operator OExpd
in the figure is defined as:

OExpdu(s, t) = {C[r]σ .= tσ | s ≡ C[u],
σ = mgu(u, l), l .= r ∈ E ,

l : basic, rσ
≥ lσ}
Note that by the condition rσ
≥ lσ and the
fact that > is a reduction order, it follows that
OExpdu(s, t) = Expdu(s, t) when l > r for any
〈l, r〉 ∈ E .

Definition 13 If 〈E′, H ′〉 is obtained from
〈E, H〉 by applying one of the inference rules
from Fig. 5, we write 〈E, H〉 �oRI 〈E′, H ′〉.
The reflexive transitive closure of �oRI is de-
noted by ∗

�oRI. We sometimes write �os
oRI

, �os
oRI, or �oe

oRI to indicate which inference rule
is used.

OExpd has two properties similar to Expd.
Lemma 14 Let E be a quasi-reducible ES

and u ∈ B(s). Then (1) sσg →E ◦ �∗�OExpdu(s,t)

tσg for any ground constructor substitution
σg and (2) vg ��OExpdu(s,t) wg implies
vg �∗�E∪{s

.
=t} wg for any ground terms vg, wg.

Proof (1) Since u is basic and σg is a ground
constructor substitution, uσg is a basic ground
term. Thus, by the quasi-reducibility of E ,
there exists l

.= r ∈ E such that uσg is an

Vol. 49 No. SIG 1(PRO 35) Soundness of Rewriting Induction Based on an Abstract Principle 35

instance of l and uσg is greater than the corre-
sponding instance of r. Because uσg is basic, l is
basic. W.l.o.g. we may assume V (l)∩ V (s) = ∅
and thus by extending σg one can let uσg ≡ lσg

such that lσg > rσg. Then σg is a unifier of
u and l and thus we have σg = θg ◦ σ for
some substitution θg, where σ = mgu(u, l).
If we have rσ ≥ lσ, then rσg ≥ lσg, con-
tradicting lσg > rσg. Thus we may assume
rσ
≥ lσ. Then by letting s ≡ C[u], we have
sσg ≡ C[u]σg ≡ Cσg[uσθg] ≡ Cσg[lσg] →R
Cσg[rσg] ≡ C[r]σθg ��OExpdu(s,t) tσθg ≡ tσg.
(2) Similar to the proof of Lemma 5 (2). �

The soundness of oRI is proved in a way
almost similar to the proof of soundness of
cRI. Below, proofs are explicitly presented only
when a different situation is involved. In the re-
maining lemmas in this section, we assume that
E is a quasi-reducible ES and > is a reduction
order that is ground-total.

Lemma 15 If 〈En, Hn〉�oRI 〈En+1, Hn+1〉
then �∗�R∪En∪Hn

= �∗�R∪En+1∪Hn+1
on T(F).

Lemma 16 Let 〈En, Hn〉 ∗
�oRI 〈∅, H�〉.

For any sg, tg ∈ T(F) such that sg ��En
tg,

there exist u1, . . . , uk ∈ T(F) satisfying (1) for
any 1 ≤ i ≤ k either ui ≤ sg or ui ≤ tg and (2)
sg ↓E∪H� u1, u1 ↓E∪H� u2, . . ., uk−1 ↓E∪H� uk,
uk ↓E∪H� tg

Proof By induction on the length k of the
derivation 〈En, Hn〉 ∗

�oRI 〈∅, H�〉. The case
k = 0 is obvious. Suppose k > 0. Then
one can let 〈En, Hn〉 �oRI 〈En+1, Hn+1〉 ∗

�oRI

〈∅, H�〉. We distinguish cases according to the
inference rule applied in the derivation step
〈En, Hn〉 �oRI 〈En+1, Hn+1〉. We only show
the case 〈En, Hn〉 �os

oRI 〈En+1, Hn+1〉 and
s ��E∪H s′. Other cases are shown in the ways
similar to Lemma10. Suppose En = E �{s .=
t}, En+1 = E ∪ {s′ .= t}, Hn = Hn+1, and
s ≥ s′ or t ≥ s′. The case sg ��E tg fol-
lows immediately from the induction hypothe-
sis. Let sg ��{s

.
=t} tg. W.l.o.g. let sg ≡ Cg[sσg],

tg ≡ Cg[tσg]. Since s′g ≡ Cg[s′σg] ��En+1 tg, by
the induction hypothesis, there exist u1, . . . , uk

such that (1) for all 1 ≤ i ≤ k, either ui ≤ s′g or
ui ≤ tg and (2) s′g ↓E∪H� u1, . . ., uk ↓E∪H� tg.

By s ��E∪Hn
s′ and the ground-totality of

>, we have sg ↔E∪Hn
s′g. The case sg →E∪H�

s′g follows easily. Otherwise, s′g →E∪H� sg and
thus t ≥ s′. Let u′

1 := s′g, u′
i+1 := ui for i ≤ k

and it follows that (1) u′
i ≤ tg for any 1 ≤ i ≤

k + 1 and (2) sg
∗→E∪H� sg

∗←E∪H� s′g ≡ u′
1,

u′
1 ↓E∪H� u′

2, . . ., u′
k+1 ↓E∪H� tg. �

Lemma 17 Let 〈En, Hn〉 ∗
�oRI 〈∅, H�〉.

For any sg, tg ∈ T(F) such that sg →H� tg,
there exist wg, u1, . . . , uk ∈ T(F) satisfying (1)
sg →E wg, (2) for any i, either ui ≤ wg or
ui ≤ tg, and (3) wg ↓E∪H� u1, u1 ↓E∪H� u2,
. . ., uk−1 ↓E∪H� uk, uk ↓E∪H� tg.

Theorem 18 Let E be a quasi-reducible ES,
E a set of equations, and > a reduction order
that is ground-total. If 〈E, ∅〉 ∗

�oRI 〈∅, H�〉 for
some set H� of rewrite rules, then the equations
of E are inductive theorems of E .

Proof By applying Lemma 15 repeatedly,
we know �∗�

E∪E = �∗�E∪H� holds on T(F). Thus
it remains to show �∗�E∪H� = �∗�E on T(F). By
the ground-totality of >, this is equivalent to
showing ∗↔E∪H� = ∗↔E on T(F). This follows
from Lemma 8 with →1 := →E , →2 := →H� ,
and A := T(F) using Lemma 17. �

6. Comparison

In this section, we compare our system and
some major systems from the literature.

Firstly, in the original rewriting induction
system I by Reddy 18), a slightly different ex-
pand rule is used:

Expand
〈E � {s .= t}, H〉

〈E ∪ E′, H ∪ {s→ t}〉 s > t

where E′ =
⋃

i∈I{b .= tσi | sσi →R b} and
{σi | i ∈ I} is a >-cover set of substitutions for
s, that is, for any ground term sg, there exists
i ∈ I such that sσi ↔R sg and sσi ≤ sg. Many
systems employ essentially the same but differ-
ently formulated expand rules—the differences
are out of the scope of this paper and below
we omit these differences. Our version based
on the quasi-reducibility of R and the notion of
basic subterms is originally used in 19). Other
methods do not assume the quasi-reducibility;
instead, some properties of the data structure
on which the TRS R acts on are assumed or
induced from R.

Dershowitz and Reddy 9) incorporate ordered
rewriting extension into rewriting induction;
their system also includes simplification by con-
jectures. In Fig. 6, we present their system
in our formulation. The system is based on
a ground-total simplification order. It is read-
ily seen that the rule Simplify is a part of O-
Simplify. Each application of Subsume can be
simulated by an application of O-Simplify and
a successive application of O-Delete. The rule

36 IPSJ Transactions on Programming Jan. 2008

Expand
〈E ∪ {s .

= t}, H〉
〈E ∪ E′, H ∪ {s .

= t}〉 E′ is a cover set of s
.
= t

Simplify
〈E � {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s ��E∪H∪E s′, s > s′

Subsume
〈E ∪ {C[sθ]

.
= C[tθ]}, H〉

〈E, H〉 s
.
= t ∈ H

Hypothesis
〈E, H〉

〈E ∪ {s .
= t}, H〉

Delete
〈E ∪ {s .

= s}, H〉
〈E, H〉

Fig. 6 Inference rules by Dershowitz and Reddy (Ref. 9)).

Generate
〈E ∪ {s .

= t}, H〉
〈E ∪ ⋃

σ Eσ , H ∪ {s .
= t}〉

for any test-instance sσ
.
= tσ there exists b

such that either
(a) ¬(s < t), sσ ��p

E b, sσ/p > b/p, Eσ = {b .
= tσ},

(b) s | t, tσ ��p
E b, tσ/p > b/p, Eσ = {sσ .

= b}, or
(c) sσ ≡ tσ and Eσ = ∅

Simplify1
〈E ∪ {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s ��p
E s′, s/p > s′/p

Simplify2
〈E ∪ {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉
s ��p,g

.
=h

E s′, g .
= h ∈ H, s/p > s′/p,

(p �= ε ∧ s > s/p) ∨ (g > h)
Simplify3

〈E ∪ {s .
= t}, H〉

〈E ∪ {s′ .
= t}, H〉 s ��p

E s′, s/p > s′/p, p �= ε, s > s/p

Simplify4
〈E ∪ {s .

= t}, H〉
〈E ∪ {s′ .

= t}, H〉 s ��p
H s′, s/p | s′/p, s | t, s′ ≤ t

Delete
〈E ∪ {s .

= s}, H〉
〈E, H〉

Fig. 7 Inference rules of (a part of) system I (Ref. 6)).

Hypothesis is not derived in oRI but it is easily
seen that this rule can be added without loos-
ing soundness. Thus, Dershowitz and Reddy’s
system is essentially subsumed by oRI.

In Fig. 7, we present a part of the inference
system I in Ref. 6). The full part of inference
system I is used as a basis for the inductive
theorem prover SPIKE. Here s | t means nei-
ther s > t, t < s, nor t ≡ s. The presented
inference system is obtained from the original
system by restricting to first-order term rewrit-
ing and proof of equations. A failure detection
rule is also removed. The Generate rule cor-
responds to the O-Expand rule. Since > is a
reduction order, s/u > s′/u in Simplyfy1–4 is
more restrictive than s > s′. Then it is read-
ily seen that Simplyfy1–4 are part of the O-
Simplyfy rule. Thus the equation-proving part
of first-order term rewriting fragment of the in-

ference system I is subsumed by our system
provided that the underlying order is ground-
total.

In Refs. 8), 20), general frameworks for prov-
ing induction theorems are proposed. Rewrit-
ing induction 8) (Procedure 4) involves the fol-
lowing simplification rule:

Simplify
〈E ∪ {s .= t}, H〉
〈E ∪ {s′ .= t}, H〉 cond

where cond equals sσg �∗� ≤e{sσg,tσg}
E∪E∪{s′=t}∪H tσg

for all ground substitutions σg. Here, �∗�
≤e{ug,vg}
S is the equivalence closure of the re-
lation {〈s′g, t′g〉 | ∃p.(s′g ��p

S t′g∧{s′g/p, t′g/p} ≤e

{ug, vg})} and <e is a fixed reduction order
over equations. The system A in Ref. 20) also
includes a more general simplification rule us-

Vol.49 No.SIG1(PRO35) Soundness of Rewriting Induction Based on an Abstract Principle 37

ing the notion of contextual cover sets (CCSs).
These simplification rules are not simulated by
our system and vice versa. Both rules request
the derived equation to be used as smaller or
equal instantiations, but our system does not
necessary require such a restriction, viz. when
s < s′ = t in O-Simplify we have {s′, t}
≤e

{s, t} by orderings on equations such as the
multiset extension and the max-extension 8),20).

We end this section with an example.
Example 19 Let us consider the following

equations for the addition and multiplication of
natural numbers.

E

⎧⎪⎨
⎪⎩

0 + y
.= y

s(x) + y
.= s(x + y)

0× y
.= 0

s(x)× y
.= (x× y) + y

Let us prove the following set of conjectures us-
ing the lexicographic path order 2) based on a
precedence × > + > s > 0.

E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) x + y
.= y + x

(2) (x + y) + z
.= x + (y + z)

(3) x× 0
.= 0

(4) x× s(y) .= (x× y) + x
(5) (x + y)× z

.= (x× z) + (y × z)
(6) x× y

.= y × x
(7) (x× y)× z

.= (y × z)× x
(8) s(x)× x

.= x× s(x)

In the presented rewriting induction system
based on ordered rewriting, equations (1)–(4)
are proved without difficulties; using these equa-
tions equations (5) and (6) are proved. To
prove equation (7) in oRI, the step 〈E � {(x×
y)×z

.= (y×z)×x}, H∪{(6)}〉�oRI 〈E�{(x×
y) × z

.= x × (y × z)}, H ∪ {(6)}〉 is performed
and successively the obtained equation is proved
using equations (1),(2),(6); in Dershowitz and
Reddy’s system, in contrast, this step is impos-
sible. To prove equation (8), in oRI, the step
〈E � {s(x) × x

.= x × s(x)}, H ∪ {(6)}〉 �oRI

〈E � {x × s(x) .= x × s(x)}, H ∪ {(6)}〉 is per-
formed and successively the proof succeeds; but
in Bouhoula et. al.’s system I this step is im-
possible.

7. Conclusion

We have given an abstract principle for
rewriting induction that extends the principle
introduced in Ref. 16). Based on this principle,
we have proved the soundness of a rewriting
induction system cRI which extends the basic
rewriting induction system RI by a general rule

of simplification by conjectures. We have pre-
sented a variant oRI of the system cRI based
on ordered rewriting and proved the soundness
of it under the assumption that its base order
is ground-total. We have compared our system
and other major systems in the literature. The
proposed inference rule of simplification by con-
jectures essentially subsumes those of the cor-
responding fragments of some well-known in-
ference systems. As our future work, we intend
to implement the proposed method and exper-
imentally evaluate the effectiveness of our ap-
proach.

Acknowledgments Thanks are due to
Yoshihito Toyama, Jeroen Ketema, Yuki Chiba,
and an anonymous referee for valuable com-
ments. This work was partially supported by
a grant from JSPS, No.17700002.

References

1) Aoto, T.: Dealing with non-orientable equa-
tions in rewriting induction, Proc. 17th Inter-
national Conference on Rewriting Techniques
and Applications, LNCS, Vol.4098, pp.242–256,
Springer-Verlag (2006).

2) Baader, F. and Nipkow, T.: Term Rewrit-
ing and All That, Cambridge University Press
(1998).

3) Bachmair, L., Dershowitz, N. and Plaisted,
D.A.: Completion without failure, Resolution
of Equations in Algebraic Structures, Vol.2,
pp.1–30, Academic Press (1989).

4) Barthe, G. and Stratulat, S.: Validation of
the JavaCard Platform with implicit induc-
tion techniques, Proc. 14th International Con-
ference on Rewriting Techniques and Applica-
tions, LNCS, Vol.2706, pp.337–351, Springer-
Verlag (2003).

5) Bouhoula, A.: Automated theorem proving by
test set induction, Journal of Symbolic Compu-
tation, Vol.23, pp.47–77 (1997).

6) Bouhoula, A., Kounalis, E. and Rusinowitch,
M.: Automated mathematical induction, Jour-
nal of Logic and Computation, Vol.5, No.5,
pp.631–668 (1995).

7) Bouhoula, A. and Rusinowitch, M.: Im-
plicit induction in conditional theories, Jour-
nal of Automated Reasoning, Vol.14, pp.189–
235 (1995).

8) Bronsard, R., Reddy, U.S. and Hasker, R.W.:
Induction using term orders, Journal of Auto-
mated Reasoning, Vol.16, pp.3–37 (1996).

9) Dershowitz, N. and Reddy, U.S.: Deduc-
tive and inductive synthesis of equational
programs, Journal of Symbolic Computation,
Vol.15, pp.467–494 (1993).

38 IPSJ Transactions on Programming Jan. 2008

10) Falke, S. and Kapur, D.: Inductive decidabil-
ity using implicit induction, Proc. 13th Interna-
tional Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LNAI,
Vol.4246, pp.45–59, Springer-Verlag (2006).

11) Hsiang, J. and Rusinowitch, M.: On word
problems in equational theories, Proc. 14th
International Colloquium on Automata, Lan-
guages and Programming, LNCS, Vol.267,
pp.54–71, Springer-Verlag (1987).

12) Huet, G. and Hullot, J.-M.: Proof by in-
duction in equational theories with construc-
tors, Journal of Computer and System Sci-
ences, Vol.25, No.2, pp.239–266 (1982).

13) Jouannaud, J.-P. and Kounalis, E.: Auto-
matic proofs by induction in theories with-
out constructors, Information and Computa-
tion, Vol.82, pp.1–33 (1989).

14) Kapur, D., Giesl, J. and Subramaniam, M.:
Induction and decision procedures, Revista
de la real academia de ciencas (RACSAM)
Serie A: Matematicas, Vol.98, No.1, pp.154–
180 (2004).

15) Kapur, D., Narendran, P. and Zhang, H.:
Automating inductionless induction using test
sets, Journal of Symbolic Computation, Vol.11,
No.1–2, pp.81–111 (1991).

16) Koike, H. and Toyama, Y.: Inductionless in-
duction and rewriting induction, Computer
Software, Vol.17, No.6, pp.1–12 (2000). in
Japanese.

17) Musser, D.R.: On proving inductive properties
of abstract data types, Proc. 7th Annual ACM
Symposium on Principles of Programming Lan-
guages, pp.154–162, ACM Press (1980).

18) Reddy, U.S.: Term rewriting induction,

Proc. 10th International Conference on Auto-
mated Deduction, LNAI, Vol.449, pp.162–177,
Springer-Verlag (1990).

19) Sakamoto, K., Aoto, T. and Toyama, Y.:
Fusion transformation based on rewriting in-
duction, Proc. 21st JSSST Annual Conference
(2B-3, 2004). in Japanese.

20) Stratulat, S.: A general framework to build
contextual cover set induction provers, Journal
of Symbolic Computation, Vol.32, pp.403–445
(2001).

21) Terese: Term Rewriting Systems, Cambridge
University Press (2003).

22) Toyama, Y.: How to prove equivalence of term
rewriting systems without induction, Theoret-
ical Computer Science, Vol.90, No.2, pp.369–
390 (1991).

(Received May 7, 2007)
(Accepted August 16, 2007)

Takahito Aoto received his
M.S. and Ph.D. from Japan Ad-
vanced Institute for Science and
Technology (JAIST). He was at
JAIST from 1997 to 1998 as an
associate, at Gunma University
from 1998 to 2002 as an assis-

tant professor, and at Tohoku University from
2003 to 2004 as a lecturer. He has been in
Tohoku University from 2004 as an associate
professor. His current research interests in-
clude term rewriting, automated theorem prov-
ing, and foundations of software. He is a mem-
ber of IPSJ, JSSST, EATCS, and ACM.

