
Vol. 49 No. SIG 3(PRO 36) IPSJ Transactions on Programming Mar. 2008

Regular Paper

A Type System for Dynamic Delimited Continuations

Takuo Yonezawa†1 and Yukiyoshi Kameyama†1

We study the control operators “control” and “prompt” which manage part of continuations,
that is, delimited continuations. They are similar to the well-known control operators “shift”
and “reset”, but differ in that the former is dynamic, while the latter is static. In this paper, we
introduce a static type system for “control” and “prompt” which does not use recursive types.
We design our type system based on the dynamic CPS transformation recently proposed by
Biernacki, Danvy and Millikin. We also introduce let-polymorphism into our type system,
and show that our type system satisfies several important properties such as strong type
soundness.

1. Introduction

We are interested in control operators that
manage (e.g., capture, discard, or reinstall)
delimited continuations, part of an evaluation
context. They allow one to represent vari-
ous kinds of control structures such as non-
determinism, logging, and a base framework to
represent other effects (be they control effects
or not) in direct style.

In the literature, two sets of delimited con-
tinuation operators have attracted researchers’
interest. The first such operators are “con-
trol” and “prompt” proposed by Felleisen in
1988 1). They are classified as dynamic opera-
tors, since, when a captured delimited continu-
ation is used, it is merged with the current con-
tinuation with no delimiter (prompt) between
them. Therefore we cannot regard each de-
limited continuation as an independent compo-
nent: they will be dynamically merged. The
second operators “shift” and “reset” proposed
by Danvy and Filinski 2) in 1990 are classified
as static operators, since a delimited continu-
ation, when used, is composed with the cur-
rent continuation, i.e., it can be regarded as an
ordinary function, or a static object. Due to
their static nature, shift and reset have a sim-
ple CPS transformation, which allows one to
study the the representation of all monadic ef-
fects 3), abstract machine 4) and equational ax-
iomatization 5), together with several interest-
ing programming examples, extensively. On the
other hand, control and prompt have not been
active research targets until Biernacki, Danvy

†1 Department of Computer Science, Graduate School
of Systems and Information Engineering, University
of Tsukuba

and Millikin 6) recently found a CPS transfor-
mation for them, together with several new ap-
plications, and there is still room for founda-
tional studies on them.

This paper introduces a type system for con-
trol and prompt, and studies its properties. In
the literature, studies on the control operators
for delimited continuations were mostly done in
type-free languages or with very restricted type
systems. Recently, Asai and Kameyama 7) have
proposed a polymorphic type system for shift
and reset and shown that it satisfies several
properties such as type soundness and strong
normalization. However, it is still an interest-
ing open question as to whether we can define a
static polymorphic type system for control and
prompt, since control/prompt is inherently dy-
namic. One might need recursive types which
would drastically change the static nature of
the source calculus. In this paper, we solve this
question by introducing a static type system
which does not need recursive types. Our type
system is much more expressive than the one
implicitly used by Biernacki, Danvy, Millikin 6).

The contribution of this paper can be sum-
marized as follows:
• We propose a type system for control/

prompt which does not need recursive
types. We show that our type system dis-
plays strong type soundness.

• We introduce ML-like let-polymorphism
into the type system, and show that it also
satisfies properties above.

• We compare the expressibility of control/
prompt and shift/reset under the typed
framework.

We also emphasize that this paper is the first
one which studies the type theoretic foundation
of control/prompt.

28

Vol. 49 No. SIG 3(PRO 36) A Type System for Dynamic Delimited Continuations 29

This paper is organized as follows: We define
the language with control/prompt in Section 2.
We introduce the dynamic CPS transformation
in Section 3. In Section 4, we define the poly-
morphic type system for control/prompt. We
discuss the relation of our type system with that
for shift/reset in Section 5. Then we show sev-
eral properties of the type system in Section 6.
The conclusion appears in Section 7.

2. Definition of the Language

In this section, we define the language with
control/prompt and show some examples.

Figure 1 defines the syntax of the language
where x and c are variables. Following the ML
families, we restrict the let expression let x =
v in M by the “value restriction”, where the
substituted expression v must be a value.

We introduce the call-by-value reduction
rules of the language. Figure 2 defines evalu-
ation context, pure evaluation context (evalua-
tion context without prompt, “pure e-context”
in short), redex, and Fig. 3 defines reduction
rules. We define M1 →∗ M2 as the reflexive-
transitive closure of →, and the equality M1 =
M2 as the least congruence relation which con-
tains →.

2.1 Example
Control/prompt can be used as follows:

#(
Fc.((c 1) + 2)
+3

) + 4

For the prompt expression #M , the subex-
pression M is evaluated first. If it contains
no control operator F , the value of M is re-
turned. Otherwise, the control operator F cap-
tures the continuation up to the most recent
prompt ([]+3 in this example), which is in turn
assigned to c as a function (λx. x + 3). Then
the body of the control expression ((c 1) + 2)
is evaluated under this assignment. When its
evaluation is finished, its then-current continu-
ation up to the prompt ([] + 3) is discarded,
so that the value of the prompt expression is
((λx.x + 3) 1) + 2. Finally, the entire result is
(((λx.x + 3) 1) + 2) + 4 = 10.

The captured continuation is called a de-
limited continuation since it is delimited by
prompt.

Note that the captured delimited continua-
tion is a function so that it can be used ar-
bitrarily many times. We can simulate non-

M ::= (expression)
x (variable)

| λx.M (λ abstraction)
| M M (function application)
| let x = v in M (let)
| #M (prompt)
| Fc.M (control)

v ::= x | λx.M (value)

Fig. 1 Syntax of the language.

E ::= (evaluation context)
[]

| E M
| v E
| #E

P ::= (pure e-context)
[]

| P M
| v P

R ::= (redex)
(λx.M) v

| #v
| let x = v in M
| #(P [Fc.M])

Fig. 2 Evaluation contexts and redex.

(λx.M)v →M [v/x]
let x = v in M →M [v/x]

#v →v
#(P [Fc.M]) →#(M [λx.P [x]/c])

where x is fresh.
where M [v/x] represents the capture-avoiding substitu-
tion.

Fig. 3 Reduction rules.

deterministic computation by using the delim-
ited continuation many times, or an exception-
like effect by never using it.

2.2 Web Application
A more practical example is web applica-

tion 8).
Consider a simple console application

x = input();
y = input();
print(x + y);

If we want the application to be a web ap-
plication, we must suspend the program after
printing an input-form, wait for the user’s sub-
mission, and resume the program when the user
submits some value.

A naive solution to implement such a web
application is to use threads, however it has a
problem. After submitting a value for x, a user
may come back to the input-form page for x (by
using the browser’s “Back” button), and may
submit another value for x. The second value
for x is, however, stored to y with the thread

30 IPSJ Transactions on Programming Mar. 2008

implementation.
A better solution is to use continuations. We

re-define the input procedure as follows:
input() =
Fc.(
generate a fresh continuation id;
save c to a global associative table
with the continuation id;
print the input-form with
the continuation id as
a hidden parameter;

)

and the main routine resumes the saved contin-
uation when the user submits a value. Since
continuation can be called arbitrarily many
times, the program will work correctly even if
the user submits values multiple times.

The captured continuation above is a contin-
uation up to, but excluding, the main routine
or other request-specific codes. Hence it is a
delimited continuation 9) rather than an unlim-
ited continuation. We can implement the ap-
plication with control/prompt: we enclose the
session-specific code (i.e. two input commands
for x and y and a print command) by prompt,
and use the control operator F to capture de-
limited continuations.

2.3 List Reversing
The control operator “shift” (denoted by S)

is a similar operator to control but it delimits
the captured continuation with prompt. Its re-
duction rule is defined as follows:

#(P [Sc.M]) → #(M [λx.#(P [x])/c])
where x is fresh.

Let us compare it to one for control:

#(P [Fc.M]) → #(M [λx.P [x]/c])

Shift and control behave differently for the
following example 4):

reverse l =
let

visit = λl′

case l′ of
Nil ⇒ Nil
(x : x′) ⇒

visit(Fk.(x :: (k x′)))
in

#(visit l)

The example is a list reversing function. If we
replace control with shift, the function becomes
a list copying function.

Biernacki, et al 10) have shown that we can
express the depth-first (and breadth-first, re-
spectively) traversal by using shift/reset (and
control/prompt, respectively).

3. CPS Transformation

In this section, we introduce a CPS trans-
formation for control and prompt proposed by
Biernacki, Danvy and Millikin 6).

A CPS transformation is a syntax-directed
program transformation from a source calculus
to a target calculus in continuation passing style
(CPS), i.e., all functions explicitly pass continu-
ations as their arguments. In a typical case, the
source calculus is a lambda calculus with con-
trol operators, and the target calculus is one
without. Then the control operators are given
precise semantics through this CPS transforma-
tion (so called CPS semantics).

For control/prompt, only non-functional
style CPS transformations were previously
known until Biernacki, Danvy and Millikin 6)

discovered a purely functional one in 2005.
They called it a dynamic CPS transformation,
and we introduce its curried version here.

The dynamic CPS transformation is based on
the 2-CPS transformation. While a standard
(1-CPS) transformation maps a term to a func-
tion term which takes one continuation as its
argument, a 2-CPS transformation maps a term
to a function which takes two continuation pa-
rameters as its arguments, one for the first level
continuation and the other for the second level
continuation (or meta-continuation). 1-CPS is
sufficient to give semantics for undelimited con-
tinuation operators like call/cc, while 2-CPS is
the key to interpret control operators for de-
limited continuations like shift/reset and con-
trol/prompt.

The dynamic CPS transformation is an ex-
tension of 2-CPS transformation with the no-
tion of “trail”, a list of continuations, which
will be explained later. The source calculus of
the dynamic CPS transformation is the call-by-
value lambda calculus with control and prompt
given in the previous section, and its target cal-
culus is the lambda calculus with lists (for rep-
resenting trails). Figure 4 defines the syntax
of the target calculus.

Figure 5 shows the dynamic CPS transfor-
mation as a type-free transformation. Note that
the results of the transformation (except those
for control and prompt) is identical to Plotkin’s
call-by-value CPS transformation if we η-reduce

Vol. 49 No. SIG 3(PRO 36) A Type System for Dynamic Delimited Continuations 31

[[x]] =λk1 t1 k2.k1 x t1 k2

[[λx.M]] =λk1 t1 k2.k1 (λx.[[M]]) t1 k2

[[M0M1]] =λk1 t1 k2.[[M0]] (λv0 t′1 k′
2.[[M1]] (λv1 t′′1 k′′

2 .v0 v1 k1 t′′1 k′′
2)t′1 k′

2) t1 k2

[[let x = v in M]] =λ k1 t1 k2.
let x = v∗
in [[M]] k1 t1 k2

[[#M]] =λk1 t1 k2.[[M]] θ1 Nil (λv.k1 v t1 k2)
[[Fx.M]] =λk1 t1 k2.

let x = λv k′
1 t′1 k′

2.k1 v (t1@(k′
1 :: t′1)) k′

2
in [[M]] θ1 Nil k2

θ1 =λv t1 k2. case t1 of
Nil ⇒ k2 v
(k1 :: t′1) ⇒ k1 v t′1 k2

x∗ =x
(λx. M)∗ =λx. [[M]]

where @ is the list concatenation.

Fig. 5 Definition of dynamic CPS transformation.

M ::= (expression)
x (variable)

| λx.M (λ abstraction)
| M M (function application)
| let x = M in M (let)
| L (list)
| case M of (case)

Nil ⇒ M
(x :: x) ⇒ M

L ::= Nil | M :: L

Fig. 4 Definition of the target language.

the results.
A transformed expression takes (if uncurried)

three arguments, a continuation, a list of con-
tinuations or trail, and a meta-continuation,
and returns a result value (answer).

The key feature of this transformation is the
introduction of trails. A trail is part of a con-
tinuation (i.e. captured by the F operator), but
is represented as a list of delimited continua-
tions. The reason for representing it as a list
of continuations rather than a single, composed
continuation comes from the dynamic nature of
the F operator.

Let us examine how a trail is changed through
a computation. Initially (without invocation of
control operators) a trail is empty. But when
control operators are invoked, a delimited con-
tinuation is captured and when the captured
delimited continuation is invoked, it is added to
a trail to form a non-empty trail, and it dynam-
ically changes the behavior of the initial (iden-
tity) continuation so that it passes a value to
the continuations in the trail.

Although we gave the transformation as a
type-free one, an informal typing would help
understand its meaning. Informally, if an ex-
pression M has a type τ and its answer type is
α, the type of the transformed expression [[M]] is

Ans α ::=Trail α → (Cont2 α ∗) → ∗
Trail α ::=List (Cont1 α α)

Cont1 α β ::=α → Ans β
Cont2 α β ::=α → β

Note that Ans is defined recursively.

Fig. 6 Answer type of the dynamic CPS
transformation.

Cont1 τ α → Ans α where Ans is informally de-
fined as Fig. 6. We note that all continuations
in a trail must be of the same type, continua-
tions from α to α, since all the elements of a list
(trail) should have the same type. This infor-
mal discussion will be reflected in the design of
our type system in the next section. We think
this is a natural restriction, but it may delimit
the extent of the applicability of our type sys-
tem, which will be discussed in Section 4.

4. Type System

Now we introduce the type system for the
language with control/prompt based on the dy-
namic CPS transformation in Section 3 so that
it satisfies the following property: a source ex-
pression is typable whenever its CPS transfor-
mation is typable in the target calculus.

Since the transformed expressions mention
the type of “answers” (final results of computa-
tions), our type system for the source language
has to also mention the answer type. Therefore,
we extend the notation of type judgments and
function types: a type judgment

Γ � M : τ/α
is read as: under a type environment Γ, the ex-
pression M has a type τ and its answer type is
α. A function type σ → τ/α similarly repre-
sents the type of a function which takes a value
of σ as the argument, returns a value of τ , and
its answer type is α. For pure expressions (i.e.
values and prompt), we use a pure judgment

32 IPSJ Transactions on Programming Mar. 2008

Γ(x) = A τ ≤ A

Γ �p x : τ
variable

Γ[x �→ σ] � M : τ/α

Γ �p λx.M : (σ → τ/α)
λ abstraction

Γ �p M : τ

Γ � M : τ/α
from pure

Γ � M1 : (σ → τ/α)/α Γ � M2 : σ/α

Γ � M1 M2 : τ/α
function application

Γ �p v : σ Γ[x �→ Gen(σ; Γ)] � M : τ/α

Γ � let x = v in M : τ/α
let

Γ � M : τ/τ

Γ �p #M : τ
prompt

Γ[c �→ (τ → α/α)] � M : α/α

Γ � Fc.M : τ/α
control

Fig. 8 Typing rules.

τ ::= (monomorphic type)
t (type variable)

| (τ → τ/τ) (function type)
A ::= (polymorphic type)

τ | ∀t.A
Γ ::= (type environment)

∅ (empty type environment)
| Γ[x �→ A] (type env. extension)

Fig. 7 Syntax of type and type environment.

Γ �p M : τ
to represent that the answer type of pure ex-
pressions can be arbitrary.

Figure 7 defines the syntax of types. Greek
alphabets (α, β, γ, . . .) denote types in this pa-
per.

Figure 8 defines the typing rules. The typ-
ing rules are defined to reflect the CPS transfor-
mation. For example, the expression [[Fx.M]] in
the target language is typable as follows:

....
∅[x �→ (τ → Cont1 α α → Ans α)] �

M : Cont1 β β → Ans α
....

∅ � [[Fx.M]] : Cont1 τ α → Ans α

We can prove that none of the types
of the transformed expressions match with
Cont1 β β → Ans α but only with Cont1 α α →
Ans α, so that we can type it as:

....
∅[x �→ (τ → Cont1 α α → Ans α)] �

M : Cont1 α α → Ans α
....

∅ � [[Fx.M]] : Cont1 τ α → Ans α

Mapping Γ � [[X]] : Cont1 τ α → Ans α to
Γ � X : τ/α, we obtain a typing rule

Γ[c �→ (τ → α/α)] � M : α/α

Γ � Fc.M : τ/α

Other rules can be derived similarly.
Moreover, we introduce ML-like let poly-

morphism with value-restriction. In Fig. 8,
Gen(σ; Γ) is ∀t1. . . .∀tn.σ where {t1, . . . , tn} =
FTV(σ)−FTV(Γ), FTV (α) denotes the set of
free type variables in α, and τ ≤ A means that
A is ∀t1. . . .∀tn.ρ and τ is ρ[σ1, . . . σn/t1, . . . , tn]
for some monomorphic types ρ, σ1, . . . , σn and
type variables t1, . . . , tn.

Discussion: Answer Type Modification
Answer type modification is a control effect

where the (final) answer type of an expres-
sion differs from the return type of the cur-
rent continuation. For a term without con-
trol operators, these two types always agree as
shown by the type of its CPS transformation
(α → X) → X. With control operators, how-
ever, these two types may differ, for instance,
Asai 11) has shown that a direct style implemen-
tation of printf in ML needs answer type mod-
ification.

Our type system does not support answer
type modification. This restriction comes from
the restriction that the types of continuations in
a trail must be the same as the type of continu-
ations from α to α. Eliminating the restriction
is left for future work�1.

5. Relation to shift/reset

In this section, we discuss the relationship be-
tween prompt/control and shift/reset.

In the type-free setting, shift/reset and con-
trol/prompt are known to be equally expressive,
namely, each set of control operators can simu-
late the other 13). To see this, we identify reset
with prompt, and simulate shift by control and
prompt as follows:

Sc.M = Fc′. let c = λx.#(c′ x) inM
Then it is easy to see that shift/reset can be
simulated by control/prompt.

�1 See our forthcoming paper 12).

Vol. 49 No. SIG 3(PRO 36) A Type System for Dynamic Delimited Continuations 33

The converse direction is also possible, but is
rather complicated, for instance, the encoding
of control in terms of shift/reset needs recursive
types if we type the encoding.

Here we show that the one-way simulation
(simulating shift/reset by control/prompt) is
possible even under the polymorphic type sys-
tem�1. Namely, the expression Fc′. let c =
λx.#(c′ x) in M can be typed in our type sys-
tem as

Γ[c′ �→ . . .][c �→ ∀β.(τ → α/β)] � M : α/α....
Γ � Fc′. let c = λx.#(c′ x) inM : τ/α

This type is essentially equivalent to the type
for the shift expression in Murthy’s type system
restricted to level 1 (with polymorphism), or
the one in Asai and Kameyama’s type system
without answer type modification, which can be
defined as follows:

Γ[c �→ ∀β.(τ → α/β)] � M : α/α

Γ � Sc.M : τ/α
shift

Note that Asai and Kameyama’s type system
uses ∀ both in the rule for let and in the rule
for shift (i.e., ∀β at the type of c), while our sys-
tem uses it only in the rule for let. In fact, we
can derive polymorphism of the answer type of
continuations captured by shift from the typing
rules for let, reset, and control. Hence, we can
say that the let polymorphism and the type of
control effects (control and prompt) are orthog-
onal in our type system.

6. Properties of the Type System

Here we show three important properties of
the type system:
• Strong type soundness.
• Preservation of types with respect to CPS

transformation.
• Preservation of equality with respect to

CPS transformation.
Proofs of theorems in this section can be

found in the appendix.
Type soundness is the most important prop-

erty for static type systems for programming
languages, stated as follows:
Theorem 1 (Type Soundness). If ∅ �p

#M : τ is derivable, then either M is a value

�1 At the time of submitting this paper, we did not
know if the converse simulation was possible or not.
After that, we came up with a counterexample of the
converse simulation, which is detailed in our forth-
coming paper 12).

(a variable or lambda abstraction), or there ex-
ists some term N such that #M → #N and
∅ �p #N : τ .

The theorem states strong type soundness in
the sense the type of an expression is preserved
through evaluation, while weak type soundness
means that a well typed program does not go
wrong 14).

Theorem 1 is a combination of the following
two properties:
Theorem 2 (Subject Reduction). If Γ �
M1 : τ/α is derivable and M1 →∗ M2, then
Γ � M2 : τ/α is derivable. If Γ �p M1 : τ is
derivable and M1 →∗ M2, then Γ �p M2 : τ is
derivable.
Theorem 3 (Progress). If ∅ �p #M : τ is
derivable, then either M is a value, or #M
can be uniquely decomposed into the form E[R]
where E is an evaluation context and R is a
redex.

The progress property above takes a slightly
unusual form in that the expression being con-
sidered is not an arbitrary one M , but an ex-
pression in the form of #M , i.e., we only con-
sider #M with no free variables as a program.
In fact, Felleisen assumes that the operator #
is always supplied from the top level, and thus
called this operator prompt.

Next, we show the CPS transformation given
above is well behaved, namely, it preserves
types and equality. Before stating the prop-
erty, we need to define the CPS transformation
for types. For this purpose, let us recall the
informal definition of types given in Fig. 6. By
expanding the informal definition of Trail, we
get:

Trail α = List (Cont1 α α)
= List (α → Ans α)
= List (α → Trail α

→ (α → ∗) → ∗)
Based on this intuition, we formally define the
type constructor Trail as:

Trail α ::= μX.List (α → X → (α → ∗) → ∗)
where μX. . . . is a recursive type, and ∗ is the
answer type. We also regard the informal def-
initions for the other type constructors Ans,
Cont1, and Cont2 as formal. Then it is easy
to see the formal definition coincides with the
informal one (modulo the folding/unfolding of
recursive types).

Note on Answer Type Polymorphism:
Since we use so called 2-CPS transformation
(it uses two continuation variables k1 and k2),

34 IPSJ Transactions on Programming Mar. 2008

the final answer type ∗ used to type the target
terms of the CPS transformation can be made
polymorphic. Thus, if we were to work in the
second order lambda calculus, we could bind all
∗’s by universal type quantifier as ∀ ∗ .Trail α.
Alternatively we can locally quantify the type
variable ∗ such as · · · → ∀ ∗ .((α → ∗) → ∗)).

For more details about answer type polymor-
phism, see Thielecke 15).

Now we define the CPS transformation for
types:

t∗ = t for type variable
(α → β/γ)∗ = α∗ → (Cont1 β∗ γ∗)

→ (Ans γ∗)
(∀t.α)∗ = ∀t.α∗

The CPS translation can be naturally extended
to type context Γ.

Then we can state the type preservation prop-
erty with respect to the CPS transformation.
The formal definition of the type system of the
target language is given by Fig. 9 and Fig. 10
in the appendix.
Theorem 4 (Preservation of Types). If Γ �
M : τ/α is derivable, then we can derive Γ∗ �
[[M]] : (Cont1 τ∗ α∗) → (Ans α∗) in the target
calculus.

Similarly, if Γ �p M : τ is derivable, then we
can derive Γ∗ � [[M]] : (Cont1 τ∗ α) → (Ans α)
for any type α in the target calculus.

Note that, the types in the target calculus
implicitly contains the type variable ∗.

We can also show that equality in the source
calculus is preserved with respect to the CPS
transformation.

We define the equality of expressions of the
target language as the least congruence relation
which includes β-equality and the following ad-
ditional equality:

[[M]] k1 t1 k2 = [[M]] θ1 (k1 :: t1) k2

for a source expression M , a continuation k1 of
type Cont1 α β, a trail t1 of type Trail α, a
meta-continuation k2 of type Cont2 α β.

The additional equality can be justified by
the following argument: since the continuation
k1 is used linearly at the tail position with
trail t1 appended to some trail at the end, or
captured by control with a trail t1 appended
to some trail at the end. In the former case,
both sides of the additional equality are clearly
equal. In the later case, since trails are de-
stroyed (used) by θ1 only, and (k1 v t1 k2) is
equal to (θ1 v (k1 :: t1) k2), both sides of the
equality are equal. In this paper, we regard the

equation as an axiom for simplicity.
Theorem 5 (Preservation of Equality). If
Γ � Mi : τ/α is derivable for i = 1, 2 and M1 =
M2, then we have [[M1]] = [[M2]] in the target
calculus.

7. Conclusion

We have proposed a type system for a lan-
guage with control/prompt based on the dy-
namic CPS transformation, and showed several
important properties of the type system such
as type soundness, relation to the CPS trans-
formation, and relation to shift/reset under the
typed framework. We emphasize that our type
system does not need recursive types, but does
have let polymorphism. We have also shown
that answer type polymorphism of shift can be
derived from let polymorphism.

Future work includes studies on the following
topics:
• Type inference algorithm for our type sys-

tem.
• Answer type modification: the type system

in this paper does not allow modification of
answer types. We are working on a type
system which does not have this restric-
tion 12).

• Multi-level control operators.
• More general polymorphism.
Acknowledgments We would like to

thank the anonymous referees and the atten-
dees of the SIG-Programming meeting for use-
ful comments. This work was partly supported
by JSPS Grant-in-Aid for Scientific Research
(C) 16500004.

References

1) Felleisen, M.: The Theory and Practice of
First-Class Prompts, POPL ’88: Proc. 15th
ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, New York,
NY, USA, pp.180–190, ACM (1988).

2) Danvy, O. and Filinski, A.: Abstracting Con-
trol, LFP ’90: Proc. 1990 ACM conference on
LISP and functional programming, New York,
NY, USA, pp.151–160, ACM (1990).

3) Filinski, A.: Representing Monads, POPL
’94: Proc. 21st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming lan-
guages, New York, NY, USA, pp.446–457,
ACM (1994).

4) Biernacka, M., Biernacki, D. and Danvy, O.:
An Operational Foundation for Delimited Con-
tinuations, Proc. 4th ACM SIGPLAN Work-
shop on Continuations, Technical Report CSR-

Vol. 49 No. SIG 3(PRO 36) A Type System for Dynamic Delimited Continuations 35

04-1, School of Computer Science, University of
Birmingham, pp.25–34 (2004).

5) Kameyama, Y. and Hasegawa, M.: A Sound
and Complete Axiomatization of Delimited
Continuations, ICFP ’03: Proc. 8th ACM SIG-
PLAN international conference on Functional
programming, New York, NY, USA, pp.177–
188, ACM (2003).

6) Biernacki, D., Danvy, O. and Millikin, K.: A
Dynamic Continuation-Passing Style for Dy-
namic Delimited Continuations, Technical Re-
port BRICS-RS-05-16, BRICS, University of
Aarhus, Denmark (2005).

7) Asai, K. and Kameyama, Y.: Polymorphic De-
limited Continuations, APLAS ’07: Proc. 5th
Asian Symposium on Programming Languages
and Systems, LNCS 4807, pp.239–254 (2007).

8) Queinnec, C.: The Influence of Browsers on
Evaluators or, Continuations to Program Web
Servers, ICFP ’00: Proc. 5th ACM SIGPLAN
international conference on Functional pro-
gramming, New York, NY, USA, pp.23–33,
ACM (2000).

9) Kiselyov, O., chieh Shan, C. and Sabry, A.:
Delimited Dynamic Binding, ICFP ’06: Proc.
11th ACM SIGPLAN international conference
on Functional programming, New York, NY,
USA, pp.26–37, ACM (2006).

10) Biernacki, D., Danvy, O. and Shan, C.: On the
Static and Dynamic Extents of Delimited Con-
tinuations, Technical Report BRICS-RS-05-36,
BRICS, University of Aarhus, Denmark (2005).

11) Asai, K.: On Typing Delimited Continuations:
Three New Solutions to the Printf Problem
(2007). Submitted. See
http://pllab.is.ocha.ac.jp/~asai/

papers/.
12) Kameyama, Y. and Yonezawa, T.: Typed Dy-

namic Control Operators for Delimited Con-
tinuations, FLOPS ’08: Proc. 9th International
Symposium on Functional and Logic Program-
ming (2008).

13) Biernacki, D. and Danvy, O.: A Simple
Proof of a Folklore Theorem about Delimited
Control, Technical Report BRICS-RS-05-25,
BRICS, University of Aarhus, Denmark (2005).

14) Wright, A.K. and Felleisen, M.: A Syntactic
Approach to Type Soundness, Information and
Computation, Vol.115, No.1, pp.38–94 (1994).

15) Thielecke, H.: From Control Effects to Typed
Continuation Passing, POPL ’03: Proc. 30th
ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, New York,
NY, USA, pp.139–149, ACM (2003).

Appendix

A.1 Proof
We first prove several lemmas which are nec-

essary to prove subject reduction.
Lemma 1 (Weakening of Type Environ-
ment). If Γ � M : τ/α is derivable and a vari-
able x does not freely occur in M , Γ[x �→ σ] �
M : τ/α is derivable.

If Γ �p M : τ is derivable and a variable x
does not freely occur in M , Γ[x �→ σ] �p M : τ
is derivable.

Proof. By structural induction on the deriva-
tion.

Lemma 2 (Substitution for Monomorphic
Variable). If Γ1 �p v : β and Γ2[x �→ β] �
M : τ/α is derivable and Γ1 ⊆ Γ2, then Γ2 �
M [v/x] : τ/α is derivable.

If Γ1 �p v : β and Γ2[x �→ β] �p M : τ is
derivable and Γ1 ⊆ Γ2, then Γ2 �p M [v/x] : τ
is derivable.

Proof. By mutual structural induction on the
derivation of M and Lemma 1.

We omit the proof since it is almost the same
as (and simpler than) the proof of Lemma 3.

Lemma 3 (Substitution for Polymorphic
Variable). If Γ1 �p v : σ and Γ2[x �→
Gen(σ; Γ1)] � M : τ/α is derivable and Γ1 ⊆
Γ2, then Γ2 � M [v/x] : τ/α is derivable.

If Γ1 �p v : σ and Γ2[x �→ Gen(σ; Γ1)] �p

M : τ is derivable and Γ1 ⊆ Γ2, then Γ2 �p

M [v/x] : τ is derivable.

Proof. From Γ1 �p v : σ, we can derive Γ2 � v :
β/α by Lemma 1. We use structural induction
on the type derivation of M .
Case 1. If the last derivation is a derivation
for a variable and M = x, then we can de-
rive Γ2 �p M [v/x] : τ since τ ≤ Gen(σ; Γ1)
and we can systematically replace type vari-
ables FTV(τ) − FTV(Γ) in the derivation of
Γ2 � v : β to arbitrary type variables. If M is
a variable with M �= x, it is obvious.
Case 2. The other cases are proved by simple
induction, since in all typing rules, type envi-
ronment used in the conclusion is smaller than
or equal to one in the premises.

Lemma 4. If Γ � P [M] : τ/α is derivable,
then Γ � M : σ/α is derivable for some σ.

36 IPSJ Transactions on Programming Mar. 2008

Proof. By structural induction on P .

Lemma 5. If Γ � P [M] : τ/α is derivable and
Γ � M : σ/α is derivable, Γ �p λx.P [x] : (σ →
τ/α) is derivable for a fresh variable x.

Proof. Case analysis on P .
Case 1. If P = [], it is obvious.
Case 2. If P = P ′ M ′, the last part of the
derivation of Γ � P [M] : τ/α must be:

Γ � P ′[M] : (ρ → τ/α)/α Γ � M ′ : ρ/α

Γ � P ′[M] M ′ : τ/α
By the assumption of induction, we can de-

rive Γ � λx.P ′[x] : (σ → (ρ → τ/α)/α and
Γ[x �→ σ] � P ′[x] : (ρ → τ/α)/α.

Thereby, we can derive Γ �p λx.P ′[x] M ′ :
(σ → τ/α), that is, Γ �p λx.P [x] : (σ → τ/α)
as follows:

Γ[x �→ σ] � P ′[x] : (ρ → τ/α)/α
Γ[x �→ σ] � M ′ : ρ/α

Γ[x �→ σ] � P ′[x] M ′ : τ/α

Γ �p λx.P ′[x] M ′ : (σ → τ/α)

Case 3. If P = v P ′, we can prove it similarly
to the case for P = P ′ M .

Theorem 2 (Subject Reduction). If Γ �
M1 : τ/α is derivable and M1 →∗ M2, then
Γ � M2 : τ/α is derivable.

Proof. We show the case of one-step reduc-
tion. The other case can be derived straight-
forwardly.

Now we will perform case analysis on the re-
duction rule used in the one-step reduction.
Case 1 (β reduction and elimination of let). If
the reduction is the β reduction ((λx.M)v →
M [v/x]), the statement holds by Lemma 2. If
the reduction is the elimination of let (letx =
v in M → M [v/x]), the statement holds by
Lemma 3.
Case 2 (elimination of prompt). If the reduc-
tion is the elimination of prompt (#v → v),
then, by assumption, we have the following
derivation:

....
Γ �p v : τ

Γ � v : τ/τ

Γ �p #v : τ

Therefore, the statement holds in this case.

Case 3 (elimination of control). If the reduc-
tion is the elimination of control (#P [Fc.M] →
#M [λx.P [x]/c]), then we have the following
derivation by the assumption and Lemma 4.

Γ[c �→ (π → τ/τ)] � M : τ/τ

Γ � Fc.M : π/τ....
Γ � P [Fc.M] : τ/τ

Γ �p #P [Fc.M] : τ

Applying Lemma 5, we can derive
Γ �p λx.P [x] : (π → τ/τ)

and applying Lemma 2, we can derive
Γ � M [λx.P [x]/c] : τ/τ

Hence we can derive the following judgment
by applying the typing rule for prompt.

Γ �p #M [λx.P [x]/c] : τ

Consequently, Subject Reduction holds.

Theorem 3 (Progress). If ∅ �p #M : τ is
derivable, then either M is a value, or #M
can be uniquely decomposed into the form E[R]
where E is an evaluation context and R is a
redex.

Proof. We can prove that if M is not a value,
we can decompose it to the unique forms P [R],
P [Fc.M ′], or P [#M ′].

If it is decomposed to P [R], the theorem
holds.

If it is decomposed to P [Fc.M ′], combin-
ing P with the outer #, it becomes a redex
#P [Fc.M ′] and the theorem holds.

If it is decomposed to P [#M ′], if M ′ is a
value, it is trivial. Otherwise, we recursively
decompose M ′ to E′[R], and let E[] be P [E′[]],
and the theorem holds.

Proof (Theorem 4), Preservation of Types.
We prove that, if Γ � M : τ/α is deriv-
able in the source calculus, then Γ∗ � [[M]] :

τ ::= (monomorphic type)
t (type variable)

| (τ → τ/τ) (function type)
| List τ (list)
| μt.τ (recursive type)

A ::= (polymorphic type)
τ | ∀t.A

Γ ::= (type environment)
∅ (empty type environment)

| Γ[x �→ A] (type environment)

Fig. 9 Syntax of type and type environment of the
target language.

Vol. 49 No. SIG 3(PRO 36) A Type System for Dynamic Delimited Continuations 37

Γ(x) = A τ ≤ A

Γ � x : τ
variable

Γ[x �→ σ] � M : τ

Γ � λx.M : (σ → τ)
λ abstraction

Γ � M1 : (σ → τ) Γ � M2 : σ

Γ � M1 M2 : τ
function application

Γ � M1 : σ Γ[x �→ Gen(σ; Γ)] � M1 : τ

Γ � let x = M1 in M2 : τ
let

Γ � Nil : List τ
empty list

Γ � M1 : τ Γ � M2 : List τ

Γ � (M1 :: M2) : List τ
list

Γ � M0 : List σ Γ � M1 : τ Γ[x �→ σ][y �→ List σ] � M2 : τ

Γ � caseM0 of Nil ⇒ M1 (x :: y) ⇒ M2 : τ
case

Γ � M : τ [μt.τ/t]

Γ � M : μt.τ
roll

Γ � M : μt.τ

Γ � M : τ [μt.τ/t]
unroll

Fig. 10 Typing rules of target language.

(Cont1 τ∗ α∗) → (Ans α∗) is derivable in the
target calculus. This is proved by induction on
the derivation of Γ � M : τ/α, and we state
several important cases here.

Case 1 (M = #M ′). We have the following
derivation:

....
Γ � M ′ : τ/τ

Γ �p #M ′ : τ

and by the induction hypothesis, we have:
Γ∗ � [[M ′]] : (Cont1 τ∗ τ∗) → (Ans τ∗)

in the target calculus.
Note that θ1, defined in Fig. 5 has type

Cont1 α α for any type α, and therefore �
θ1 : Cont1 τ∗ τ∗ is derivable. We also have
� Nil : Trail τ∗ and

∅[k1 �→ Cont1 τ∗ τ∗][t1 �→ Trail τ∗]
[k2 �→ τ∗ → ∗]

� λv.k1vt1k2 : (τ∗ → ∗)
Then it is easy to see that:

Γ∗ �λk1 t1 k2.[[M ′]] θ1 Nil (λv.k1 v t1 k2)
: (Cont1 τ∗ τ∗) → (Ans τ∗)

Case 2 (M = Fx.M ′). We have the following
derivation:

....
Γ[c �→ (τ → α/α)] � M ′ : α/α

Γ � Fc.M ′ : τ/α

By the induction hypothesis, we have:
Γ∗[c �→ τ∗ → (Cont1 α∗ α∗) → (Ans α∗)]

� [[M ′]] : (Cont1 α∗ α∗) → (Ans α∗)
in the target calculus.

Let Δ = Γ∗[k1 �→ Cont1 τ∗ α∗, t1 �→
Trail α∗, k2 �→ α∗ → ∗] and Σ = Δ[c �→ τ∗ →
(Cont1 α∗ α∗) → (Ans α∗)].

Then, we can derive:
Δ �λv k′

1 t′1 k′
2.k1 v (t1@(k′

1 :: t′1)) k′
2

: τ∗ → (Cont1 α∗ α∗) → (Ans α∗)
Σ �[[M ′]] θ1 Nil k2 : ∗

Then we can derive:
Γ∗ � [[Fx.M]] : (Cont1 τ∗ α∗) → (Ans α∗)

Case 3 (M = letx = v in M). We have the
following derivation:....

Γ �p v : σ

....
Γ[x �→ Gen(σ; Γ)] � M : τ/α

Γ � letx = v in M : τ/α
By induction hypothesis, we have:

Γ∗ � v∗ : σ∗

and
Γ∗[x �→ Gen(σ∗; Γ∗)]

� [[M]] : (Cont1 τ∗ α∗) → (Ans α∗)
in the target calculus.

Let Δ = Γ∗[k1 �→ Cont1 τ∗ α∗, t1 �→
Trail α∗, k2 �→ α∗ → ∗].

Then we can easily derive Δ [x �→
Gen(σ∗; Γ∗)] � [[M]] k1 t1 k2 : ∗.

Altogether, we can derive:
Δ � v∗ : σ∗

Δ[x �→ Gen(σ∗; Γ∗)] � [[M]] k1 t1 k2 : ∗
Δ � letx = v∗

in [[M]] k1 t1 k2 : ∗
Γ∗ �[[letx = v in M]]

: (Cont1 τ∗ α∗) → (Ans α∗)

Proof (Theorem 5), Preservation of Equality.
We show the interesting case only, that is,

M1 =#P [Fc. M ′]
M2 =#M ′[(λx. P [x])/c]

We let
[[P [M]]] = λk1 t1 k2. [[M]] (f k1) t1 k2

We then transform [[M1]] as follows:
[[M1]] = λk1 t1 k2.

38 IPSJ Transactions on Programming Mar. 2008

(λk′
1 t′1 k′

2. [[Fc. M ′]] (f k′
1) t′1 k′

2)
θ1 Nil (λv. k1 v t1 k2)

= λk1 t1 k2. [[Fc. M ′]]
(f θ1) Nil (λv. k1 v t1 k2)

= λk1 t1 k2.

let c = λv k′
1 t′1 k′

2. (f θ1) v

(k′
1 :: t′1) k′

2

in [[M ′]] θ1 Nil (λv. k1 v t1 k2)
= λk1 t1 k2.

[[M ′]][(λv k′
1 t′1 k′

2. (f θ1) v

(k′
1 :: t′1) k′

2)/c]
θ1 Nil (λv. k1 v t1 k2)

Moreover, we transform [[M2]] as follows:
[[M2]] = λk1 t1 k2.

[[M ′[(λx. P [x])/c]]]
θ1 Nil (λv. k1 v t1 k2)

= λk1 t1 k2.

[[M ′]][(λv. [[P [v]]])/c]
θ1 Nil (λv. k1 v t1 k2)

= λk1 t1 k2.

[[M ′]][(λv k′
1 t′1 k′

2. (f k′
1) v

t′1 k′
2)/c]

θ1 Nil (λv. k1 v t1 k2)
Hence, we only need show the following equa-
tion.

(λv k′
1 t′1 k′

2. (f k′
1) v t′1 k′

2)
=(λv k′

1 t′1 k′
2. (f θ1) v (k′

1 :: t′1) k′
2

We can transform these expressions as follows:
(λv k′

1 t′1 k′
2. (f k′

1) v t′1 k′
2)

=(λv k′
1 t′1 k′

2. [[P [v]]] k′
1 t′1 k′

2)

(λv k′
1 t′1 k′

2. (f θ1) v (k′
1 :: t′1) k′

2)
=(λv k′

1 t′1 k′
2. [[P [v]]] θ1 (k′

1 :: t′1) k′
2)

By the definition of the equality of the target
language, we have that these two expressions
are equal.

(Received September 12, 2007)
(Accepted December 5, 2007)

Takuo Yonezawa is a Grad-
uate Student of the Master’s
Program at the Department
of Computer Science, Graduate
School of Systems and Informa-
tion Engineering, University of
Tsukuba. He is interested in

type systems and computational effects of pro-
gramming languages.
e-mail: yone@logic.cs.tsukuba.ac.jp
URL: http://logic.cs.tsukuba.ac.jp/˜yone/

Yukiyoshi Kameyama is
an Associate Professor of Com-
puter Science at the Graduate
School of Systems and Informa-
tion Engineering, University of
Tsukuba. He is interested in
programming logic and software

verification. He is a member of ACM, JSSST,
and IEICE.
e-mail: kameyama@acm.org
URL: http://logic.cs.tsukuba.ac.jp/˜kam/

