
Vol. 49 No. SIG 3(PRO 36) IPSJ Transactions on Programming Mar. 2008

Regular Paper

Parallel Skeletons for Sparse Matrices in SkeTo Skeleton Library

Yuki Karasawa†1 and Hideya Iwasaki†1

Skeletal parallel programming makes both parallel programs development and paralleliza-
tion easier. The idea is to abstract generic and recurring patterns within parallel programs as
skeletons and provide them as a library whose parallel implementations are transparent to the
programmer. SkeTo is a parallel skeleton library that enables programmers to write parallel
programs in C++ in a sequential style. However, SkeTo’s matrix skeletons assume that a
matrix is dense, so they are incapable of efficiently dealing with a sparse matrix, which has
many zeros, because of duplicated computations and commutations of identical values. This
problem is solved by re-formalizing the matrix data type to cope with sparse matrices and
by implementing a new C++ class of SkeTo with efficient sparse matrix skeletons based on
this new formalization. Experimental results show that the new skeletons for sparse matrices
perform well compared to existing skeletons for dense matrices.

1. Introduction

It has become quite common in many ar-
eas that need scientific computation to write
parallel programs and execute them on paral-
lel machines like PC clusters to substantially
improve the performance. Skeletal parallel pro-
gramming 7),10),20) is a promising approach that
makes this programming process easier, espe-
cially for non-experienced programmers with
little knowledge of parallel programming. The
idea of skeletal parallel programming is to ab-
stract generic and recurring patterns within
parallel programs as skeletons and to provide
them as a library whose parallel implementa-
tions are transparent to the programmer. Pro-
grammers can create moderately efficient par-
allel programs with little effort by combining
suitable skeletons. Much research 1),6),8),9) has
been devoted to skeletal parallel programming
and to the development of skeleton libraries and
systems 2),5),16).

The SkeTo (Skeletons in Tokyo) library 17),21)

enables programmers to write skeletal parallel
programs in C++ in a sequential style. It is
implemented in standard C++ with Message
Passing Interface (MPI) and has four distin-
guishing features.
• It is based on the theory of Constructive Al-

gorithmics 3), in which programs are struc-
tured in accordance with the data type. It
provides a set of data parallel skeletons that
reflect the structure of the data type of in-
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terest and that perform simultaneous com-
putations on data distributed across pro-
cessors.

• It provides parallel skeletons for lists, ma-
trices, and trees 18). Since the parallel be-
havior of each data type or each skeleton is
concealed within its implementation, pro-
grammers can write parallel programs as if
they were sequential ones.

• In contrast to systems 5),9),10) that sup-
port parallel skeletons with enhanced syn-
tax in their base language, SkeTo intro-
duces no special extension to the base C++
language. Programmers who can develop
a standard C++ program can use SkeTo
without the burden of acquiring a new syn-
tax or new language.

• SkeTo has a systematic program optimiza-
tion mechanism based on fusion transfor-
mation 12),14). This transformation merges
two successive function calls into a single
one, thereby eliminating the overhead of
function calls and the generation of inter-
mediate data structures passed between the
two functions.

Focusing on SkeTo’s matrix skeletons 11),17),
we see that their major premise is that a ma-
trix is dense. This originates from SkeTo’s in-
ductive definition of a matrix: a single element
constructs a 1 × 1 matrix, and two matrices of
the same width or same height can be joined
together to form a larger matrix. Since this def-
inition cannot efficiently represent a sparse ma-
trix, which has many zeros, skeletons based on
this definition have to perform many redundant
computations for the same values (elements)
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when they are applied to sparse matrices. This
inefficiency is a big problem with SkeTo because
sparse matrices frequently appear in scientific
computations.

To solve this problem and make SkeTo
more practical for the development of matrix-
oriented parallel programs, we re-formalize the
matrix data type to efficiently cope with sparse
matrices and implement a new C++ class of
SkeTo based on this formalization. The main
contributions of this paper are as follows.
• It provides a theoretical background for

handling sparse matrices by formalizing the
matrix data type using a block of identical
values and gives definitions for basic paral-
lel skeletons based on this formalization.

• It describes the implementation of a C++
class for sparse matrices in the SkeTo li-
brary. Since the class has exactly the
same interface as that of the existing ma-
trix class, users need not change their pro-
grams to use the sparse matrix class. This
compatibility is very important because a
user encounters no barriers in using the new
sparse skeleton class.

• It presents experimental results showing
that the new implementations of matrix
skeletons perform well for sparse matrices.
Even for dense matrices, their overhead
compared to those of the existing matrix
skeletons is very small.

From the viewpoint of internal representa-
tion of matrices, the data structure for sparse
matrices resembles a quadtree 22). The most
important point of this work is that we have
developed a practical and easy-to-use parallel
skeleton library that has good performance for
sparse matrices whose sparseness is transparent
to the programmer.

In this paper, we use dense matrix
class/skeleton to represent the existing ma-
trix class/skeleton in SkeTo and sparse ma-
trix class/skeleton to represent the new matrix
class/skeleton.

We also use the following functional nota-
tion of Haskell to describe the theoretical back-
grounds and definitions of skeletons because of
its concision and clarity. Function application is
denoted by a space, and the argument is written
without brackets. Thus, f a means f (a). Func-
tions are curried, and applications associate to
the left. Thus, fab means (fa)b. A function ap-
plication binds stronger than any operator, so
f a⊕ b means (f a)⊕ b, but not f (a⊕ b). Infix

binary operators are generally denoted by ⊕, ⊗,
etc. and can be sectioned ; an infix binary opera-
tor like ⊕ is turned into a unary or binary func-
tion by a⊕b = (a⊕)b = (⊕b)a = (⊕)ab. Binary
operators << and >> are defined by a << b = a
and a >> b = b.

2. Related Work

The research on Muesli 16), a skeleton library
in C++ that supports distributed matrices, is
the most related to our work. Muesli supports
the map, zipwith, and fold data parallel skele-
tons. (The fold corresponds to reduce in SkeTo.)
In the internal implementation of Muesli, ele-
ments distributed to each processor are stored
in an array, and each data parallel skeleton ac-
cesses each element in this array in turn. This
implementation of a matrix resembles that of
SkeTo’s dense matrix class and has the same
inefficiency in handling sparse matrices.

Other skeleton library systems like Skil 5) and
P3L 9) also support matrices as their basic data
type, but they do not offer efficient implemen-
tation of sparse matrices. In addition, unlike
SkeTo, they have enhanced syntax in their base
language, which is likely to be a serious barrier
for non-experienced users.

Intel’s Threading Building Blocks 15) is a
C++ runtime library especially for multi-core
processors that abstracts the low-level thread-
ing activities. It offers generic parallel algo-
rithms like parallel-for (which corresponds to
the map skeleton in SkeTo), parallel-reduce,
and parallel-scan. A matrix is abstracted in
blocked range2d class, which describes the index
range of two dimensions. This class is used to-
gether with parallel algorithms such as parallel-
for. Although this library can deal with matri-
ces in parallel, whether the sparseness of a ma-
trix is taken into account in its implementation
is not clear.

As for the internal representation of matri-
ces, Wise 22) used a quadtree, which is con-
structed by combining four small sub-matrices
of the same size to represent a matrix. However,
once a matrix is represented by a quadtree, it
is difficult to re-construct the representation.
This prevents one from flexibly and dynami-
cally changing the matrix representation in ac-
cordance with the progress of computations in
which a dense matrix is transformed into a
sparse one.

PETSc 23) (Portable, Extensible Toolkit for
Scientific Computation) is a suit of data struc-
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tures and routines for parallel (and sequential)
scientific applications. It provides a variety of
sparse matrix implementations capable of deal-
ing with a sparse AIJ format (also called com-
pressed sparse row format), blocked sparse AIJ
format, block diagonal format and so on. After
creating a matrix, programmers are required to
explicitly set an appropriate format of the ma-
trix to have a good speed; the efficiency of the
program may be awfully degraded unless an ap-
propriate format is specified. Compared to this,
SkeTo’s data constructor and skeletons auto-
matically configure an adequate internal repre-
sentation for a matrix based on the tree struc-
ture described in Section 5.2, according to the
degree of its sparseness. Thus the user of SkeTo
needs not specify the format of a matrix and
needs not worry about the transition of the de-
gree of sparseness of a matrix.

PETSc is not a skeleton library; it is spe-
cialized in numerical computation and provides
rather large built-in operations like matrix-
vector/matrix-matrix multiplications and LU
factorizations that are frequently used in nu-
merical applications. It is easy to write a pro-
gram using PETSc as long as the program can
be described by the combination of these built-
in operations. However, since PETSc does not
support small, flexible, and higher-order rou-
tines with high abstraction level like our skele-
tons, it seems difficult to write a program in
PETSc for a problem, e.g., Maximum Rectangle
Sum described in Section 6.2, which does not
use common numerical operations. Thus the
goal of SkeTo is different from that of PETSc;
SkeTo enables users to implement general (ma-
trix) algorithms in terms of small ready-made
skeletons.

3. Matrix Skeletons in SkeTo Library

3.1 Formalization of Matrix and Skele-
tons

SkeTo defines a matrix as being formed by
three constructors, namely |·|,−◦, and − ◦4).

data Matrix α = |·| α
| Matrix α−◦ Matrix α
| Matrix α − ◦ Matrix α

Here, | · | a, which is abbreviated as |a|, forms
a matrix with a single element a. Given two
matrices x and y with the same width, u−◦ v
forms a matrix in which u is located above v.
Similarly, given two matrices x and y with the
same height, x − ◦ y forms a matrix in which x is

located to the left of y. We say that a matrix
formed by−◦ and − ◦ has an abide structure, where
abide is a coinage of above and beside.

In general, a matrix formed using these con-
structors has many possible representations.
For example, a 2 × 2 matrix has two represen-
tations:(

1 2
3 4

)
= (|1| −◦ |2|)−◦ (|3| −◦ |4|)
= (|1|−◦ |3|) − ◦ (|2|−◦ |4|).

To avoid this ambiguity in representations,
data constructors−◦ and − ◦ are made to have two
properties that ensure that all representations
for a matrix can be regarded as identical.
Associativity The constructors −◦ and − ◦ are

regarded as associative.
Abide Property The constructors −◦ and − ◦

are considered to satisfy the following equa-
tion, called the abide property.

(x − ◦ y)−◦ (z − ◦ w) = (x−◦ z) − ◦ (y−◦ w)
The matrix skeletons supported by the SkeTo

library are designed based on the abide struc-
ture of a matrix. Four important data paral-
lel skeletons are map, reduce, zipwith, and scan.
Their intuitive and formal definitions are shown
in Figs. 1 and 2, respectively.

The map skeleton is the operation that ap-
plies a function to every element in a matrix.

The reduce skeleton collapses a matrix into a
single value by repeated applications of ⊕ for
the vertical direction and ⊗ for the horizontal
direction. Both ⊕ and ⊗ have to be associative
and have to satisfy the abide property, (x⊕y)⊗
(z ⊕ w) = (x ⊗ z) ⊕ (y ⊗ w).

The zipwith skeleton is an extension of map.
It takes two matrices of the same shape and
returns a matrix of the same shape by applying
the function to their corresponding elements.

Similar to reduce, the scan skeleton takes two
associative operators, ⊕ and ⊗, which satisfy
the abide property. It returns a matrix that
holds all values generated while reducing a ma-
trix by reduce.

Hereafter, all binary operators like ⊕ and ⊗
are assumed to be associative and all pairs of bi-
nary operators are assumed to satisfy the abide
property.

During the computation of matrices, it is of-
ten necessary to rearrange matrix data among
processors. An example is matrix multiplica-
tion, where a matrix is rotated in both the row
and column directions. SkeTo supports com-
munication skeletons for such a rearrangement.
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map f

⎛
⎜⎝

x11 x12 . . . x1n

x21 x22 . . . x2n
.
..

.

..
. . .

.

..
xm1 xm2 . . . xmn

⎞
⎟⎠ =

⎛
⎜⎝

f x11 f x12 . . . f x1n
f x21 f x22 . . . f x2n

.

..
.
..

. . .
.
..

f xm1 f xm2 . . . f xmn

⎞
⎟⎠

reduce (⊕,⊗)

⎛
⎜⎝

x11 x12 . . . x1n

x21 x22 . . . x2n
..
.

..

.
. . .

..

.
xm1 xm2 . . . xmn

⎞
⎟⎠ =

(x11 ⊗ x12 ⊗ · · · ⊗ x1n) ⊕
(x21 ⊗ x22 ⊗ · · · ⊗ x2n) ⊕
· · ·
(xm1 ⊗ xm2 ⊗ · · · ⊗ xmn)

zipwith f

⎛
⎜⎝

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...
xm1 xm2 . . . xmn

⎞
⎟⎠
⎛
⎜⎝

y11 y12 . . . y1n

y21 y22 . . . y2n
.
..

.

..
. . .

.

..
ym1 ym2 . . . ymn

⎞
⎟⎠

=

⎛
⎜⎝

f x11 y11 f x12 y12 . . . f x1n y1n

f x21 y21 f x22 y22 . . . f x2n y2n
..
.

..

.
. . .

..

.
f xm1 ym1 f xm2 ym2 . . . f xmn ymn

⎞
⎟⎠

scan (⊕,⊗)

⎛
⎜⎝

x11 x12 . . . x1n

x21 x22 . . . x2n
.
..

.

..
. . .

.

..
xm1 xm2 . . . xmn

⎞
⎟⎠ =

⎛
⎜⎝

y11 y12 . . . y1n

y21 y22 . . . y2n
.
..

.

..
. . .

.

..
ym1 ym2 . . . ymn

⎞
⎟⎠

where

yij =

(x11 ⊗ · · · ⊗ x1j) ⊕
(x21 ⊗ · · · ⊗ x2j) ⊕
· · ·
(xi1 ⊗ · · · ⊗ xij)

Fig. 1 Intuitive definitions of basic data parallel skeletons.

map :: (a → b) → Matrix a → Matrix b
map f |a| = |f a|
map f (u−◦ v) = map f u −◦ map f v
map f (x − ◦ y) = map f x − ◦ map f y

reduce :: (a → a → a, a → a → a) → Matrix a → a
reduce (⊕,⊗) |a| = a
reduce (⊕,⊗) (u−◦ v) = reduce (⊕,⊗) u ⊕ reduce (⊕,⊗) v
reduce (⊕,⊗) (x − ◦ y) = reduce (⊕,⊗) x ⊗ reduce (⊕,⊗) y

zipwith :: (a → b → c) → Matrix a → Matrix b → Matrix c
zipwith f |a| |b| = |f a b|
zipwith f (u−◦ v) (s−◦ t) = zipwith f u s−◦ zipwith f v t
zipwith f (x − ◦ y) (z − ◦ w) = zipwith f x z − ◦ zipwith f y w

scan :: (a → a → a, a → a → a) → Matrix a → Matrix a
scan (⊕,⊗) |a| = |a|
scan (⊕,⊗) (u−◦ v) = scan (⊕,⊗) u ⊕′ scan (⊕,⊗) v
scan (⊕,⊗) (x − ◦ y) = scan (⊕,⊗) x ⊗′ scan (⊕,⊗) y
where sx ⊕′ sy = sx−◦ (mapr (zipwith (⊕) (bottom sx)) sy)

sx ⊗′ sy = sx − ◦ (mapc (zipwith (⊗) (last sx)) sy)
bottom = reduce (>>, − ◦) ◦ map |·|
last = reduce (−◦, >>) ◦ map |·|
mapr f = reduce (−◦, <<) ◦ map f ◦ rows
mapc f = reduce (<<, − ◦) ◦ map f ◦ cols
rows = reduce (−◦, zipwith ( − ◦)) ◦ map (|·| ◦ |·|)
cols = reduce (zipwith (−◦), − ◦) ◦ map (|·| ◦ |·|)

Fig. 2 Formal definitions of basic data parallel skeletons.

An instance of a communication skeleton is rotr
which takes a function f and rotates the i-th
sub-matrix in the row direction by f i. For ex-
ample, by letting f z = −z and Xij be a sub-
matrix assigned to each processor, we get

rotr f

(
X00 X01 X02

X10 X11 X12

X20 X21 X22

)
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=

(
X00 X01 X02

X11 X12 X10

X22 X20 X21

)
.

Similarly, rotc rotates the specified matrix in
the column direction. Their formal definitions
are omitted here.

3.2 Current Implementation of Matri-
ces

In SkeTo, parallel skeletons for matrices are
designed and implemented on the basis of the
formalization described in Section 3.1. A ma-
trix is divided into rectangular areas in accor-
dance with its abide structure in such a way
that the number of rectangular areas is equal
to the number of processors and each area has
almost the same number of elements. Each
rectangular area is then sent to the correspond-
ing processor. This distribution process is com-
pletely concealed within the constructor of the
dense matrix class. At each processor, all el-
ements in the assigned rectangular area are
stored in a one-dimensional array with an index
table that enables skeletons to access a specified
element directly.

The current implementation of a matrix does
not give any special consideration to sparse ma-
trices. It has two inefficiencies when treating a
sparse matrix.
• The data parallel skeletons repeatedly per-

form the same computation on the ze-
ros. These computations are redundant
and waste CPU power.

• Communication skeletons like rotr send/
receive many zeros to/from other proces-
sors. This increases the amount of data
exchanged between processors and causes
superfluous communication.

Considering that many matrix-oriented prac-
tical programs are likely to transform a matrix
into a sparse one, it is important to improve
the efficiency of the SkeTo library when dealing
with sparse matrices.

4. Design of Sparse Matrices in SkeTo

4.1 New Formalization of Sparse Ma-
trices

As described in Section 3.2, the current dense
matrix class is problematic for sparse matrices.
To solve this problem, we revised the formal-
ization of matrices so as to deal with a sub-
rectangle of an arbitrary size whose elements
are identical. We call this sub-rectangle within
a matrix a block.

This revised definition of matrices, coined

SMatrix to distinguish it from Matrix, is

data SMatrix α = |·|Int×Int α
| SMatrix α −◦ SMatrix α
| SMatrix α − ◦ SMatrix α.

In this definition, | · |p×q a, abbreviated as
|a|p×q, is a block with the value a in each el-
ement and with the size p × q, where p and q
are not fixed values. Note that the singleton |a|
in Matrix can be regarded as a special case of
|a|p×q in SMatrix, where p = q = 1. With this
definition, we can represent a sparse matrix us-
ing ‘large’ blocks of zeros.

For example, by letting En be the n× n unit
matrix, we can represent E8 using the SMatrix
data structure:

E8 =(((E2−◦ |0|2×2) − ◦ (|0|2×2−◦E2))−◦ |0|4×4)

− ◦ (|0|4×4−◦((E2−◦|0|2×2) − ◦ (|0|2×2−◦E2)))
where

E2 = (|1|1×1−◦ |0|1×1) − ◦ (|0|1×1−◦ |1|1×1)

For the purpose of representing a sparse ma-
trix that has many zeros, one could fix the value
of a block to zero and specify only the size
of the block. However, we did not take this
approach because it lacks flexibility; the block
must be partitioned even though all its elements
are equally updated to some non-zero value. It
is more efficient to retain the block shape as
long as all elements in the block are identical
(their value does not need to be zero) and to
delay partitioning until there are different val-
ues in the block.

Similar to the case of a dense matrix, we as-
sume the following identifications to avoid am-
biguities in the representation.

|a|m×n = |a|m1×n−◦ |a|m2×n

= |a|m×n1 − ◦ |a|m×n2

(m = m1 + m2, n = n1 + n2)

4.2 New Definitions of Matrix Skele-
tons

Using this new formalization of sparse matri-
ces, we re-defined the basic data parallel skele-
tons, as shown in Fig. 3.

In the map skeleton, since all elements in a
block are identical and thus have the same re-
sulting value of a function application, the re-
sult of map is a block of the same size as the
input. Note that for a block of size p × q, it is
not necessary to apply the function pq times;
once is enough.

In the reduce skeleton, for a block of value
a and of size p × q, it is sufficient to compute
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map :: (a → b) → SMatrix a → SMatrix b
map f |a|p×q = |f a|p×q

map f (u−◦ v) = map f u −◦ map f v
map f (x − ◦ y) = map f x − ◦ map f y

reduce :: (a → a → a, a → a → a) → SMatrix a → a
reduce (⊕,⊗) |a|p×q = r (⊕) p (r (⊗) q a)

where r (�) 1 x = x
r (�) (k + 1) x = x � r (�) k x

reduce (⊕,⊗) (u−◦ v) = reduce (⊕,⊗) u ⊕ reduce (⊕,⊗) v
reduce (⊕,⊗) (x − ◦ y) = reduce (⊕,⊗) x ⊗ reduce (⊕,⊗) y

zipwith :: (a → b → c) → SMatrix a → SMatrix b → SMatrix c
zipwith f |a|p×q |b|p×q = |f a b|p×q

zipwith f (u−◦ v) (s−◦ t) = zipwith f u s−◦ zipwith f v t
zipwith f (x − ◦ y) (z − ◦ w) = zipwith f x z − ◦ zipwith f y w
zipwith f |a|p×q (u−◦ v) = map (f a) u−◦ map (f a) v
zipwith f |a|p×q (x − ◦ y) = map (f a) x − ◦ map (f a) y
zipwith f (u−◦ v) |a|p×q = map g u−◦ map g v where g x = f x a
zipwith f (x − ◦ y) |a|p×q = map g x − ◦ map g y where g x = f x a

scan :: (a → a → a, a → a → a) → SMatrix a → SMatrix a
scan (⊕,⊗) |a|p×q = r (⊕′) p (r (⊗′) q |a|1×1)

where definition of r is the same as that of reduce
scan (⊕,⊗) (u−◦ v) = scan (⊕,⊗) u ⊕′ scan (⊕,⊗) v
scan (⊕,⊗) (x − ◦ y) = scan (⊕,⊗) x ⊗′ scan (⊕,⊗) y
where definitions of ⊕′ and ⊗′ are the same as those in Fig. 2

Fig. 3 New formal definitions of basic data parallel skeletons.

a ⊗ a ⊗ · · · ⊗ a only once. Local function r is
used for the repeated application of the binary
operator ⊕ or ⊗ to the same value. Though
r is defined to take linear time for simplicity,
it can be implemented in a divide-and-conquer
manner as will be mentioned in Section 5.3.

The zipwith skeleton is almost the same as
map except that it takes two matrices. If one
is a block and the other is not, the result of
zipwith cannot be a block; the result has to be
constructed using the same constructor,−◦ or − ◦,
as that of the non-block.

In the scan skeleton, the reduction part is al-
most the same as with the reduce skeleton. The
same local function, r, as that of reduce is used
in scan.

5. Implementation of Sparse Matrix
Skeletons

5.1 Data Structures
Using the formalization described in Sec-

tion 4.1, we implemented the sparse matrix
class as a library of SkeTo following two de-
sign principles. First, even if the sparse matrix
skeletons are applied to dense matrices, their
overhead must be within a permissible range,
i.e., small enough compared to that of the exist-
ing dense matrix skeletons. Second, the sparse
matrix skeletons must have exactly the same
interfaces as those of existing dense skeletons.
This is very important from the viewpoint of

compatibility; programmers should encounter
no barrier in using the new sparse skeleton
class.

In this implementation, we separated the
method for holding the element values in a ma-
trix from that for managing the abide structure
of the matrix (how a matrix is constructed).
That is, each processor has the following data
structures for the assigned rectangular area
within a matrix.
• A one-dimensional array holds all the ele-

ments in the assigned area.
• A binary tree whose internal nodes are

either ‘above’ or ‘beside’ holds the abide
structure of the area. A leaf of this tree is
called a sub-matrix and is either a block
of identical values (|a|p×q) or a sub-area
with a rectangular shape that contains non-
identical values. Each internal node and
each leaf has the index information for the
upper-left element and the size informa-
tion. In addition, each leaf has a flag value
indicating whether it is a block or not and
an index table that enables skeletons to ac-
cess a specific element directly.

Figure 4 shows a fragment of the new defi-
nition of the dist_matrix sparse matrix class
with accompanying classes for the tree struc-
ture. The tree structure is represented by an
abstract class ab_tree and its child classes.

For example, the 8 × 8 unit matrix has the
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template <typename A>
class dist_matrix { // new definition for sparse matrix
friend class matrix_skeletons; // class that defines matrix skeletons
int myrank; // rank (processor id) of MPI
int n; // number of rows of the entire matrix
int m; // number of columns of the entire matrix
int localRows; // number of rows of the assigned area
int localCols; // number of columns of the assigned area
int bir; // number of blocks in rows
int bic; // number of blocks in columns
A *ele; // one-dimensional array of elements
ab_tree<A> *t; // tree structure
...

};

template <typename A>
class ab_tree { // abstract class for tree structure
int rows, cols; // number of rows and cols of the tree
int rowidx, colidx; // index information of upper-left corner
...

};

template <typename A>
class above_node : public ab_tree<A> {
ab_tree<A> *up, *down; // two subtrees
...

};

// class beside_node is defined in almost the same manner as above_node

template <typename A>
class sub_matrix : public ab_tree<A> {
bool isBlock; // flag indicating whether it is a block or not
A **idxEle; // index table
...

};

Fig. 4 New class definitions for sparse matrices.

Fig. 5 Tree structure for 8 × 8 unit matrix (A: above
node, B: beside node).

internal representation shown in Fig. 5. There
are three main advantages of this internal repre-
sentation. First, when we separate a sub-matrix
into two smaller sub-matrices or merge two ad-
jacent sub-matrices into a larger sub-matrix, we
do not have to allocate a memory space for the
elements in the new sub-matrix and copy the
elements into this memory area. Second, al-
though this representation does not save the
memory space for elements of a sparse matrix,
it is quite easy to implement the separation of a
sub-matrix and the merging of two sub-matrices
with much flexibility. Third, this representation

substantially matches the SMatrix data type;
skeletons can be naturally implemented in ac-
cordance with their definitions (Fig. 3).

5.2 Tree Structure Construction
When we make a new instance of the sparse

matrix class, elements of a matrix are auto-
matically distributed to each processor by the
constructor of the class. This automatic dis-
tribution is exactly the same as with the ex-
isting dense matrix class. The construction of
a tree structure on each processor consists of
three steps.
Step 1 Vertically and horizontally cut the

assigned rectangular area an appropriate
number of times to separate it into sub-
matrices and build a tree structure in which
‘above’ and ‘beside’ nodes alternately ap-
pear on each path from the root to a leaf.

Step 2 Determine whether each leaf (sub-
matrix) is a block of identical values or not
and store the result in the flag (isBlock of
sub_matrix class in Fig. 4) of the leaf.

Step 3 To avoid waste, recursively merge two
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Fig. 6 Constructing a tree structure for 8 × 8 unit matrix.

// skeleton functions are defined in the matrix_skeletons class
template <typename A, typename F>
void matrix_skeletons::map_i(const F &f, dist_matrix<A> *mat)
{
mat->t->map_i(f);

}

template <typename A> template <typename F>
void above_node<A>::map_i(const F &f)
{
up->map_i(f);
down->map_i(f);

}

// beside_node<A>::map_i is defined almost the same manner as above_node<A>::map_i

template <typename A> template <typename F>
void sub_matrix<A>::map_i(const F &f)
{
if (isBlock) apply f to the representative element;
else apply f to all elements;

}

Fig. 7 Parts of a new implementation of map skeleton.

adjacent leaves with the same parent node
into a larger leaf if one of the following con-
ditions is satisfied.
• The two adjacent leaves are blocks and

their values are equal.
• Neither of the two adjacent leaves is a

block.
Figure 6 shows an example of this process.

In the current implementation, the number of
times of vertically or horizontally cutting is em-
pirically determined to be k1/4, where k is the
vertical or horizontal size. For example, if the
size of the area assigned to some processor is
10,240×10,240, the area is cut 10(≈ 10,2401/4)
times for each direction. Thus, the smallest
sub-matrix is 10× 10 because 10,240/210 = 10.

There are several points to be noted. First,
even if a sub-matrix seems to be too small after
Step 1, many sub-matrices will likely be merged
in Step 3 because it will be a rare case in which
blocks and non-blocks are alternately located
so as to prevent merging. Thus, we will proba-
bly be able to construct a tree structure whose
sub-matrices have appropriate sizes. Second, if
these steps are applied to a dense matrix that
contains no block after Step 2, non-blocks are

eventually integrated into a single sub-matrix
in Step 3. Although this separation and in-
tegration generates an overhead when given a
dense matrix, the experimental results (Sec-
tion 6) showed that this overhead is small.

5.3 Skeleton Implementation
We implemented skeletons for sparse matri-

ces using the formalization described in Sec-
tion 4.1 and the data structures described in
Section 5.1.

In the implementation of the map skeleton,
although the specified function has to be ap-
plied to all elements in each non-block leaf, it
is applied only once to a representative element
for each block. Thus, for a block of size p×q, the
cost of this skeleton is O(1) while map for a non-
block of the same size has a cost of O(pq). Fig-
ure 7 shows a C++ function, map_i, an imple-
mentation of the map skeleton that overwrites
an input matrix. The sparse matrix skeletons
called from a user’s program are defined in the
matrix_skeletons class.

The reduce skeleton first performs reduction
for each leaf (sub-matrix) of the tree struc-
ture and then combines them using two spec-
ified operators (functions) on the basis of the



Vol. 49 No. SIG 3(PRO 36) Parallel Skeletons for Sparse Matrices in SkeTo Skeleton Library 9

template <typename F, typename G>
void matrix_skeletons::reduce(const F &oplus, const G &otimes, dist_matrix<A> *mat, A* res)
{
A val = mat->t->reduce(oplus, otimes); // locally compute the reduce
int bicfloor = (mat->myrank / mat->bic) * mat->bic; // rank of the leftmost processor
// communication in the row direction
for( int stage = 1; stage < mat->bic; stage <<= 1 ) { // communication based on the tree structure

int target = ((mat->myrank % mat->bic) ^ stage) + bicfloor; // target of the communication
if ( target < mat->myrank ) {
send a value;
break;

} else if ( ((mat->myrank % mat->bic) ^ stage) < mat->bic ) { // target exists
A rval;
receive a value into rval;
A tmp = val;
otimes(tmp, rval, &val); // combine rval and value using otimes

}
}
// communication in the column direction
if ( mat->myrank % mat->bic == 0 )

for(int stage = 1; stage < mat->bir; stage <<= 1) {
int target = ((mat->myrank / mat->bic) ^ stage) * mat->bic;
if( target < mat->myrank ) {

send a value;
break;

} else if ( ((mat->myrank / mat->bic) ^ stage) < mat->bir ) {
A rval;
receive a value into rval;
A tmp = val;
oplus(tmp, rval, &val);

}
}

}
*res = val;

}

template <typename A> template <typename F, typename G>
A above_node<A>::reduce(const F &oplus, const G &otimes)
{
A tmp;
oplus(up->reduce(oplus, otimes), down->reduce(oplus, otimes), &tmp);
return tmp;

}

template <typename A> template <typename F, typename G>
A beside_node<A>::reduce(const F &oplus, const G &otimes)
{
A tmp;
otimes(left->reduce(oplus, otimes), right->reduce(oplus, otimes), &tmp);
return tmp;

}

template <typename A> template <typename F, typename G>
A sub_matrix<A>::reduce(const F &oplus, const G &otimes)
{
if (isBlock){

A res = sum(otimes, localCols, get()); // get returns the value of the block
return sum(oplus, localRows, res);

} else{
reduce the values using the code for dense matrix;

}
}

template <typename A> template <typename F>
A sub_matrix<A>::sum(const F &op, int count, const A &val)
{
if( count <= 1 ) return val;
A tmp1 = sum(op, count / 2, val);
A tmp2;
op(tmp1, tmp1, &tmp2);
if ( count % 2 == 0 ) return tmp2;
op(tmp2, val, &tmp1);
return tmp1;

}

Fig. 8 Parts of a new implementation of reduce skeleton.



10 IPSJ Transactions on Programming Mar. 2008

abide structure of the tree. For the reduction
of a block of size p × q, computation time is
O(log p + log q) because the value can be com-
puted in a divide-and-conquer manner. Fig-
ure 8 shows a C++ function for the reduce
skeleton.

The implementation of the zipwith skeleton is
almost the same as that of the map one. For
two blocks of the same size, the specified func-
tion is applied only once to their representative
elements, so the cost is O(1) for a block.

The implementation of the scan skeleton con-
sists of six steps: (1) the local reduction of the
row direction, (2) the communication of the re-
sulting value of the local reduction to a neigh-
boring processor in the row direction, (3) the
local scan of the row direction, (4) the local
reduction of the column direction, (5) the com-
munication of the resulting value of the local
reduction to a neighboring processor in the col-
umn direction, and (6) the local scan of the
column direction. Steps (1) and (4) can be ef-
ficiently implemented for a block.

Because the map and zipwith skeletons up-
date only the representative element of a block,
they cause a somewhat ‘inconsistent’ situation
in which the block’s representative and other el-
ements differ in the one-dimensional array that
holds element values. If we eagerly copy the
representative’s correct value to the other el-
ements, the copying overhead is not negligi-
ble. This overhead is minimized by having each
skeleton defined for sparse matrices manage a
flag value that indicates whether the represen-
tative value has already been copied or not. A
skeleton can then determine the necessity of the
copying and, if necessary, perform the copying
lazily in a demand-driven manner.

In the implementation of the rotr communi-
cation skeleton, we coded a serializer of a tree
structure, which enables each processor to effi-
ciently send/receive the abide structure of the
assigned rectangular area without duplicated
communications for a block having identical
values. With this serializer, both the amount
of exchanged data and the time for construct-
ing a tree structure are reduced.

6. Evaluation

We experimentally evaluated the effective-
ness of the new implementations. The parallel
environment used was a PC cluster system with
16 processors connected by a gigabit Ethernet.
Each PC had an Intel Pentium 4 (3.0 GHz)

CPU and 1GB of main memory. The operating
system was Linux kernel 2.6.8., the C compiler
was GCC 3.3.5 with optimizing level O2, and
the MPI implementation was MPICH 1.2.6.

In some experiments, we used six sparse
matrices taken from the University of Florida
database 19). Figure 9 shows views of these
matrices, where black dots mean non-zero val-
ues.

In the tables in this section, P is the number
of processors, ‘sparse’ means the skeleton for
sparse matrices, and ‘dense’ means the existing
skeleton for dense matrices. In addition, En

stands for the n×n unit matrix and Dn stands
for the n× n dense matrix whose (i, j)-element
is i − j.

6.1 Micro Benchmark
Data structures for representing a sparse ma-

trix are created in the data constructor of
the sparse matrix class. Tree construction de-
scribed in Section 5.2 is an extra work of the
constructor compared to that of the dense ma-
trix class. To evaluate this overhead, we mea-
sured the execution times of data constructors,
each of which is the time needed to distribute
the matrix elements in an array on the root pro-
cessor among processors and to construct the
data structures on each processor in parallel.
The results are shown in Table 1. We can see
that the overhead of tree construction is not no-
ticeable because it is much less than the data
communication time.

Next, to determine whether each of the four
basic data skeletons for a sparse matrix had suf-
ficient performance as a component used in a
large parallel program, we measured the per-
formance of each skeleton for the sparse matrix
class and compared it with that for the existing
dense matrix class.

First, we gave as input a unit matrix, an in-
stance of an ideal sparse matrix, to evaluate the
speedup of the sparse matrix skeletons. Next,
we gave as input a dense matrix to determine
the worst case performances of the sparse ma-
trix skeletons compared to those of the dense
matrix skeletons.

To clarify the basic performance of each
sparse matrix skeleton, we set three experimen-
tal conditions.
• Each C++ function for each skeleton does

not newly allocate the resulting matrix,
which eliminates the data allocation time;
the input matrix or a pre-allocated matrix
is overwritten with the results of map, zip-
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S1 S2 S3 S4 S5 S6

(7,055 × 7,055) (10,974 × 10,974) (656 × 656) (765 × 765) (2,000 × 2,000) (2,283 × 2,283)

Fig. 9 Views of sparse matrices used in experiments.

Table 1 Results of micro benchmark for constructors (data distribution).

distribution of S1 distribution of S4 distribution of D8192

P sparse dense ratio sparse dense ratio sparse dense ratio
(sec) (sec) (%) (msec) (msec) (%) (sec) (sec) (%)

2 3.33 3.28 102 42.2 42.1 100 5.15 4.85 106
4 2.89 2.63 110 23.3 23.4 99 3.67 3.64 101
8 3.19 3.09 103 30.0 27.4 109 4.14 4.22 98

16 3.34 3.31 101 30.1 29.4 102 4.43 4.45 100

Table 2 Results of micro benchmark for data parallel skeletons (n = 8,192).

map (99 ∗ ) En reduce (+, +) En zipwith (+) En En scan (+, +) En

P sparse dense ratio sparse dense ratio sparse dense ratio sparse dense ratio
(msec) (msec) (%) (msec) (msec) (%) (msec) (msec) (%) (msec) (msec) (%)

2 1.48 81.9 1.80 2.08 48.9 4.25 3.35 122 2.73 4,200 6,080 69.1
4 0.784 40.9 1.92 1.85 25.9 7.15 2.56 61.0 4.20 1,780 2,670 66.7
8 0.632 20.8 3.04 2.07 13.8 15.0 1.39 30.9 4.49 905 1,340 67.6

16 0.152 11.7 1.31 2.42 7.39 32.7 1.05 15.9 6.59 340 536 63.5

map (99 ∗ ) Dn reduce (+, +) Dn zipwith (+) Dn Dn scan (+, +) Dn

P sparse dense ratio sparse dense ratio sparse dense ratio sparse dense ratio
(msec) (msec) (%) (msec) (msec) (%) (msec) (msec) (%) (msec) (msec) (%)

2 84.2 81.9 103 44.0 49.0 89.7 119 121 98.7 6,110 6,080 101
4 42.4 40.9 104 22.6 26.0 86.9 60.0 61.2 98.0 2,660 2,670 99.4
8 21.0 20.9 100 12.0 13.4 89.5 30.1 30.7 98.0 1,340 1,340 99.9

16 10.5 10.4 101 6.88 7.34 93.7 15.7 15.7 99.9 538 536 100

with and scan.
• The input matrix for each skeleton is dis-

tributed beforehand to eliminate the time
of the constructor.

• The functions (operators) given to each
skeleton are simple ones such as addition
or multiplication.

The results are shown in Table 2. From
this table, we can see that the map and zip-
with skeletons, given unit matrix E8192, showed
good speedups of less than 10% compared to
those for dense matrices. For the reduce skele-
ton, the speedup was not as good as that for
map or reduce, but it was also satisfactory. For
the scan skeleton, the speedup was almost 2/3.
The reason for this moderate speedup is that,
as described in Section 5.3 only two of the six
computation steps are likely to be improved.

For a dense matrix, D8192, the new skele-
tons for sparse matrices have almost the same
performance as the existing ones. Even in the
worst case, the overhead is within the amount
permissible, 10%. For the reduce, scan, and
zipwith skeletons, most of the experimental re-

sults show that the sparse matrix skeletons were
faster, which means that the overhead, i.e., the
management cost, of the tree structure is neg-
ligible.

There are two points to be noted. First, a
super-linear effect is observed in the results of
scan, because its computation time is mainly
governed by the control structure in its imple-
mentation due to the simplicity of the + opera-
tion. However, this simple operation suffices for
the purpose of this experiment, i.e., the evalua-
tion of the new scan. Second, the parallelization
effects of the sparse matrix skeletons for En are
not as clear as those of the dense matrix skele-
tons. This is because the effect of the sparse
matrix skeletons mainly depends on how a tar-
get matrix is separated and formed using blocks
of identical values. Typically, if a zero matrix
were given to map, we would have almost the
same execution time independently of the num-
ber of processors because each processor is as-
signed a smaller zero matrix represented by a
single block.

For the rotr communication skeleton, we mea-
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Table 3 Results of micro benchmark for communication skeleton (n = 8,192, f z = −1).

rotr f En rotr f Dn

P sparse dense ratio sparse dense ratio
(sec) (sec) (%) (sec) (sec) (%)

2 0.103 4.95 2.09 5.41 4.98 109
4 0.0469 2.50 1.88 2.73 2.52 108
8 0.0303 1.50 2.02 1.61 1.51 107

16 0.0159 0.753 2.12 0.817 0.760 108

double fnorm(dist_matrix<double> &mat) {
matrix_skeletons::map_i(Sqr<double>(), &mat);
double ss;
matrix_skeletons::reduce(Add<double>(), Add<double>(), &mat, &ss);
return sqrt(ss);

}

Fig. 10 Parts of SkeTo code for FNORM.

sured the execution times of a program that
called rotr skeleton many times and calculated
the time needed for one rotation. The results
of this experiment are shown in Table 3. For
the sparse matrix (E8192), we can see the effect
of the serialization; the time needed to rotate is
under 3%. For the dense matrix, the overhead
of the serialization was not large, i.e., within
10%.

6.2 Macro Benchmark
To examine the performance of the proposed

skeletons in practical problems, we measured
the execution times for the following programs
using the SkeTo library.
Frobenius Norm (FNORM) Frobenius

Norm is a norm of a matrix that can be
easily calculated using

fnorm A ≡
⎛
⎝ n∑

i=1

m∑
j=1

|aij |2
⎞
⎠

1/2

,

where A = (aij) is an n × m matrix. A
function that computes this value can be
defined in Haskell as follows.

fnorm = reduce (+, +) ◦ map sqr,
where sqr is a squaring function. SkeTo’s
code for this function is shown in Fig. 10.
This program uses the map and reduce
skeletons.

Maximum Rectangle Sum (MRS) This
problem is to compute the maximum of the
sums of all the rectangular areas in a ma-
trix. For example, for⎛

⎜⎝
−3 5 −4 −8 3 −3
−6 −8 2 −5 4 1
9 −9 3 6 −5 2
5 −7 8 −2 2 −6

⎞
⎟⎠ ,

the answer is 15, which is taken from the
sub-rectangular area with the numbers in

bold. A naive function to solve MRS prob-
lem is defined as

mrs = max ◦ map max ◦
map (map sum) ◦ rects

where
max = reduce(↑, ↑)
sum = reduce(+, +),

where rects generates a list of all possible
sub-rectangles and x ↑ y returns the big-
ger of x and y. An efficient program can
be derived from this naive specification us-
ing program calculation; the detailed pro-
cess is described elsewhere 11). The derived
program uses a tuple of ten elements and
is very complicated. It uses the map, re-
duce, and zipwith skeletons. The SkeTo pro-
gram used in this benchmark is the result of
this optimization, which is also very com-
plicated and thus is omitted here.

Matrix Multiplication (MM) This pro-
gram for matrix multiplication uses Can-
non’s algorithm 13), and is also complex.
Figure 11 shows the SkeTo code for MM
used in this benchmark. The main loop
of this program consists of communications
between processors by matrix rotations and
local computations for sub-matrix (rectan-
gular area) multiplication. For the com-
munications, this program calls communi-
cation skeletons rotr and rotc. For the lo-
cal computations, this program uses nested
for-loops and does not use data parallel
skeletons. Thus the speedup is generated
by the efficient implementation of rotr and
rotc skeletons for sparse matrices.

The results without the times for data distri-
bution (by constructors) are shown in Table 4.
For the programs that combine suitable skele-
tons, our sparse matrix skeletons can reduce ex-
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template <typename C, typename A, typename B>
void MatrixMultiply(dist_matrix<C>& Z, dist_matrix<A>& X, dist_matrix<B>& Y)
{
matrix_skeletons::rotateCols(Neg(), &X);
matrix_skeletons::rotateRows(Neg(), &Y);
int q = X.getBlocksInRow();
for ( int i = 0; i < q; i++ ) {
MatrixMultiplyLocal(Z, X, Y);
matrix_skeletons::rotateColsConst(1, &X);
matrix_skeletons::rotateRowsConst(1, &Y);

}
}

Fig. 11 Parts of SkeTo code for MM.

Table 4 Results of macro benchmark.

FNORM S1 FNORM S2

P sparse dense ratio sparse dense ratio
(msec) (msec) (%) (msec) (msec) (%)

4 13.3 56.8 23.5 43.5 147 29.5
8 4.58 30.2 15.2 13.9 72.4 19.1

16 4.12 15.0 27.8 13.1 37.9 34.5

MRS S3 MRS S4

P sparse dense ratio sparse dense ratio
(sec) (sec) (%) (sec) (sec) (%)

4 8.92 429 2.08 34.3 1,040 3.31
8 8.30 218 3.82 32.0 404 7.91

16 7.26 25.5 28.5 30.4 51.3 59.3

MM S5 MM S6

P sparse dense ratio sparse dense ratio
(sec) (sec) (%) (sec) (sec) (%)

4 5.66 6.69 84.6 8.43 9.76 86.4
9 2.69 3.42 78.6 4.09 4.93 83.0

16 1.60 1.91 83.8 2.52 2.78 90.5

ecution times, in most cases under 35%, com-
pared to the use of existing skeletons for dense
matrices. The reason of the super-linear results
of MRS is that this program needs O(n4) time
for an n × n matrix.

7. Conclusion

We have formalized the sparse matrix data
type by using a block of identical values. We
have also implemented a new C++ class of ef-
ficient sparse matrix skeletons in the SkeTo li-
brary that are based on the new formalization.
These new implementations overcome the inef-
ficiency of existing matrix skeletons when they
are applied to sparse matrices. Experimental
results show that the new skeletons for sparse
matrices perform well compared with existing
skeletons for dense matrices.

Currently, the elements in a sparse matrix
are distributed among the processors in such a
way that each processor is assigned almost the
same number of elements. However, the pro-
cessor loads are not balanced if one processor
is assigned a large block of zeros while another

is assigned a large non-block with various val-
ues. We thus plan to examine the distribution
of matrix elements from the viewpoint of load
balancing. We also plan to work on reducing
the memory space for a block of identical val-
ues.

We will incorporate the result of this work
into a new version of the SkeTo library and re-
lease it on the SkeTo web page 21).
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