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Grammar-based Compression for Unrooted Trees and
Subclass of Plane Graphs Using Integer Linear

Programming

Morihiro Hayashida1,a) Yue Cao1 Yang Zhao2

Abstract: We address a problem of finding generation rules from biological data. In the previous study, the extrac-
tion of generation rules from glycans and RNAs represented by rooted tree structures was examined. Grammars were
defined for rooted ordered and unordered trees, and methods for finding the minimum grammars that produce only
given tree structures were developed. In nature and organisms, however, there are various kinds of structures other
than rooted tree ones. In this study, we relax the limitation of structures to be compressed, and propose grammars rep-
resenting unrooted trees and some subclass of plane graphs together with an integer linear programming-based method
for finding its minimum grammars.

1. Introduction
Data compression is related with information that it contains.

Our purpose is to extract useful information from data through
compression. In the previous study, we developed integer linear
programming-based methods for finding the minimum grammar
that represents given multiple rooted trees, and applied to glycans
and RNAs [1]. It, however, is considered that data in nature can-
not be always represented by rooted trees. Fig. 1 shows rooted
and unrooted trees. The rooted tree in the left is the same as the
unrooted tree in the right if the rooted tree becomes unrooted. Al-
though it is difficult to find substructures in the rooted tree, we can
find several substructures in the unrooted tree. In this study, we
relax the limitation of structures to be compressed, and propose
grammars for unrooted trees and some subclass of planar graphs
with an integer programming-based method for finding the mini-
mum grammar for ordered version of its grammars.

2. Method
We define a grammar for an unrooted edge-labeled tree by 4-

tuple (Σ, Γ, S ,∆) as an extension of [2], where Σ is a set of termi-
nal symbols (labeled edges), Γ is a set of nonterminal symbols,
S is the start symbol in Γ, and ∆ is a set of production rules rep-
resented by Fig. 2. A nonterminal symbol corresponds to a con-
nected unrooted subtree, which links to the remaining part with
at most two nodes, called tags. If a subtree with two tags is not
symmetric, either tag must be determined to link to the node of
one side. That is the reason why direction is attached on a non-

1 Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto
611–0011, Japan

2 The National Institute of Advanced Industrial Science and Technology,
2-4-7, Aomi, Koto, Tokyo 135–0064, Japan

a) morihiro@kuicr.kyoto-u.ac.jp

a
b

a b

b

a

b
a

a b

a b

ab

ab

Fig. 1 Example of rooted and unrooted trees.
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Fig. 2 Production rules for an unrooted tree. Black circles denote tags. A
nonterminal symbol includes at most two tags.

terminal symbol.
In addition to the grammar, we also define a grammar for a sub-

class of planar graphs to deal with graphs including closed paths
by adding production rules represented by Fig. 3.

Fig. 4 shows an example of a plane graph and its grammar that
generates only the graph. The edge-labeled graph is transformed
from the purine chemical compound.

Let G(V, E) be an undirected planar graph with a set V of ver-
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Fig. 3 Additional production rules for a planar graph.
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Fig. 4 Example of a plane graph and its grammar. The edge-labeled graph
(the upper right) is transformed from the purine chemical compound
(the upper left). Dashed circles denote nitrogen atoms.

tices and a set E of labeled edges. Consider the following cutting
procedure from G to G′(V ′, E′) at a vertex i with a set S of ver-
tices, where S ⊂ E(i) = { j ∈ V |(i, j) ∈ E}.
(i) add a new vertex i′ to G (i.e., V ′ = V ∪ {i′}).
(ii) replace edges connected to i which endpoints are in S with

edges connected to i′ (i.e., E′ = E∪{(i′, j)| j ∈ S }− {(i, j)| j ∈
S }).

Then, if G′ is not connected and consists of two connected
components, we say that G is separable with i and S . In a
similar way, we consider the cutting procedure from G at two
vertices i and j with two sets S and T , where S ⊂ E(i) and
T ⊂ E( j). Gi,S , j,T (Vi,S , j,T , Ei,S , j,T ) is defined as a connected sub-
graph of G obtained by the cutting procedure, which includes
non-empty sets S , T , does not include E(i) − S and E( j) − T ,
where i, j ∈ V ∪ {ε}, S ⊂ E(i), T ⊂ E( j), ε means nothing. G is
represented by Gε,∅,ε,∅. Gi,S , j,T is distinguished from G j,T,i,S in al-
most all cases. Suppose that S(Gi,S , j,T ) and I(Gi,S , j,T ) are sets of
all subgraphs Gi′ ,S ′ , j′ ,T ′ and its indices (i′, S ′, j′,T ′), respectively,
of Gi,S , j,T by the cutting procedure. Consider the case that Gi,S , j,T

is decomposed into Gi′ ,S ′ , j′ ,T ′ and Gi′′ ,S ′′ , j′′ ,T ′′ . Let C(Gi,S , j,T ) be
a set of all index combinations (i′, S ′, j′,T ′, i′′, S ′′, j′′,T ′′) that
Vi′ ,S ′ , j′ ,T ′ ∪ Vi′′ ,S ′′ , j′′ ,T ′′ = Vi,S , j,T , Vi′ ,S ′ , j′ ,T ′ ∩ Vi′′ ,S ′′ , j′′ ,T ′′ = {i, j},

Ei′ ,S ′ , j′ ,T ′ ∪ Ei′′ ,S ′′ , j′′ ,T ′′ = Ei,S , j,T , Ei′ ,S ′ , j′ ,T ′ ∩ Ei′′ ,S ′′ , j′′ ,T ′′ = ∅,
Ei′ ,S ′ , j′ ,T ′ , ∅, and Ei′′ ,S ′′ , j′′ ,T ′′ , ∅.
I(G) contains a large number of elements for unordered trees

and planar graphs, and the number of nonterminal symbols
becomes also large. We consider an ordered version of these
grammars, and represent S ∈ E(i) by two nodes, starting and
ending nodes in clockwise direction. Then, a nonterminal
symbol is represented by Gi,s,e, j,t, f for s, e ∈ E(i) and t, f ∈ E( j)
instead of Gi,S , j,T , and we propose the following integer linear
programming formulation for finding the minimum grammar
representing only a given plane graph G.

min
∑

u∈S(G)

pu

subject to
xε,∅,ε,∅ = 1,
xi,s,e, j,t, f = 1 for all (i, s, e, j, t, f ) ∈ I(G) s. t. |Ei,s,e, j,t, f | = 1,
xi,s,e, j,t, f ≤

∑
(i′ ,s′ ,e′ , j′ ,t′ , f ′ ,i′′ ,s′′ ,e′′ , j′′ ,t′′ , f ′′)∈C(Gi,s,e, j,t, f )

yi′ ,s′ ,e′ , j′ ,t′ , f ′ ,i′′ ,s′′ ,e′′ , j′′ ,t′′ , f ′′

for all (i, s, e, j, t, f ) ∈ I(G) s. t. |Ei,s,e, j,t, f | ≥ 2,

yi′ ,s′ ,e′ , j′ ,t′ , f ′ ,i′′ ,s′′ ,e′′ , j′′ ,t′′ , f ′′ ≤
1
2

(xi′ ,s′ ,e′ , j′ ,t′ , f ′ + xi′′ ,s′′ ,e′′ , j′′ ,t′′ , f ′′ ),

su ≤ pu < 1 + su for all u ∈ S(G),

su =
1
|E|

∑
{(i,s,e, j,t, f )∈I(G)|Gi,s,e, j,t, f is isomorphic to u}

xi,s,e, j,t, f .

3. Discussion
In this study, we proposed the definition of grammars for un-

rooted trees and some subclass of planar graphs, and integer lin-
ear programming-based method for finding the minimum gram-
mar representing only a given plane graph. We can prove that the
proposed grammar generates only a planar graph. It, however,
is difficult to concretely show the subclass of planar graphs that
the grammar can generate, and to determine whether or not our
method can be applied to a given plane graph. As future work, we
would like to uncover the subclass that the grammar can generate,
apply the proposed method to actual plane graphs, and extend the
grammar to more complicated structures.
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