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Regular Paper

Product Derivatives of Regular Expressions

Taro Suzuki†1 and Satoshi Okui†2

We propose a novel extension of Brzozowski’s derivative of regular expres-
sions, called product derivatives. It takes two regular expressions and the
meaning of its result is stated as follows: a product derivative of R with respect
to S is a regular expression obtained by the consumption of all the sequences
in the first regular expression by the second, i.e., the result is the product of
Brzozowski’s derivatives of R with respect to sequences in S. We develop an
algorithm for our derivatives in coinductive manner. The termination of the
algorithm is shown based on the proof method by Brandt and Henglein. We
expect the derivative proposed in this talk is an important step to the devel-
opment of the derivatives of a regular hedge expression taking a regular hedge
expression as input, which is useful for transformation of XML documents with
function terms typed with regular hedge expressions. The situation, for exam-
ple, occurs in the transformation of XML documents with the links to the other
Web services, such as Active XML documents.

1. Introduction

The notion of derivative of regular expressions was proposed by Brzozowski to
give an algorithm for generating deterministic finite automata from given regular
expressions 5). Given a finite sequence w of symbols and a regular expression S,
his algorithm computes a regular expression, denoted by w−1S, corresponding
a set of sequence {v | wv ∈ S}. Later, derivatives have been recognized as a
quite useful tool. For instance, it is used to present various computational pro-
cedures in the algebra of regular expressions 6),11) and the equivalence of regular
expressions 2),9). It is also used in the research area on grammatical inference 3),7).
Recently, researchers on XML have paid an attention to derivatives 13) since XML
employs regular expressions as its schema language.

In this paper, we propose an extension of Brzozowski’s derivatives called prod-
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uct derivative, which have arisen from our work on XML transformation based
on regular expression (RE, for short) types 12),14). Our original motivation for
generalizing derivatives comes from the pattern matching involving RE-typed
functions. This naturally arises in the situation where lazy evaluation is unavoid-
able in the XML transformation that involves infinite data structures, which is
often seen in functional programming in Haskell. Moreover, there are situations
peculiar to XML transformation where the pattern matching involving RE-typed
functions is useful. An extension of XML, called Active XML, is developed in
INRIA 1). Active XML documents contain links to Web services, which are dy-
namically replaced with XML documents when the information is needed. Such
links are considered as functions that never should be evaluated in transforma-
tion.

Let us take up an example of transforming contact lists given in an XML
format. Here, a contact list means an unsorted sequence of e-mail addresses or
phone numbers like the following:

<contact>

<email>"taro@mac.com"</email>

<phone>"4391"</phone>

<email>"taro@xp.com"</email>

</contact>

We represent the XML documents using term notation introduced in our previous
paper 14). For instance, the above contact list is written as follows.

contact[email["taro@mac.com"]

phone["4391"]

email["taro@xp.com"]]

We assume that the strings (entities enclosed by " such as "taro@mac.com") are
of type String, the terms of the form email[x] and phone[x], where x of type
String, are of type e and of type p, respectively. Letting x be a variable of type
(e|p)*e(e|p)* and y of type (e|p)+, the function cut, which extracts a proper
prefix of a given contact list including at least one e-mail address, is described as
the transformation rule

cut(contact[x y]) → contact[x]
where x y indicates the concatenation of x and y.
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48 Product Derivatives of Regular Expressions

Now, consider the case in which a contact list is given as a result of inquiries
for external Web services as links embedded in XML documents. Suppose that
three web services are available: gc of type String → (e|p)+ that returns a
contact list of a person, ge of type String → e+ that returns a list of e-mail
addresses of a person, and gp of type String → p+ that returns a list of phone
numbers of a person. Consider the XML document

contact[gc("taro") ge("jiro") gp("goro")]
with links to external Web services. We transform it using the function cut

without the inquiry of the Web services during the transformation so that the
transformed XML document can call Web services embedded.

We would like to perform type-safe pattern matching, i.e., the RE-types of the
values bound to x and y should be a subtype of the type of x and y respectively.
Pattern matching is performed in incremental manner by introducing interme-
diate variables 12). First, we know that x has a binding x �→ gc("taro") x1,
where x1 is an intermediate variable, since the type of x rejects the bind-
ing of x to the empty sequence (). Consider the type of x1, denoted by
Tx1. As gc("taro") should not be evaluated during the transformation, we
should take account of arbitrary non-empty sequences composed of e-mail ad-
dresses and phone numbers as the value of gc("taro"). Thus, a necessary
condition for type-safe pattern match is that for every sequence v ∈ (e|p)+,
Tx1 ⊆ {w | vw ∈ (e|p)*e(e|p)*} = v−1((e|p)*e(e|p)*), where the last ex-
pression is the Brzozowski’s derivative. It follows that Tx1 is the maximal RE-type
satisfying Tx1 ⊆ (v−1(e|p)*e(e|p)*) for all v ∈ (e|p)+, thereby

Tx1 =
⋂

T∈(e|p)+
T−1((e|p)*e(e|p)*) = (e|p)*e(e|p)*.

Likewise, we know that the only possible binding for x1 is x1 �→ ge("jiro") x2

since the type of x1 does not contain the empty sequence. From the inter-
section of the derivatives of (e|p)*e(e|p)* with respect to the elements of
e+, we know that the type of x2 is (e|p)*. Because the type of x2 contains
the empty sequence and that of y does not, finally we obtain the bindings
x �→ gc("taro") ge("jiro") and y �→ gp("goro"). The obtained solution in
the pattern match is type safe because the type of the value bound to x, i.e.,

(e|p)+e+, is included by (e|p)*e(e|p)*, i.e., the type of x, and the type of the
value bound to y, i.e., p+, is included by the type y, i.e., (e|p)+.

The aim of this paper is to give an algorithm for the computation of product
derivatives. This paper is organized as follows. We first recall the notions and
the existent results crucial for this paper in Section 2. Next we formally define
the notion of product derivatives and it is characterized using the greatest fixed
point of a function in Section 3. In Section 4 we consider a general settings: when
a function f is defined as a greatest fixed point of F , an algorithm to compute a
value f(x) at x is constructed by composing computationally defined functions
determined according to F , provided one of them is terminating. We also show
a sufficient condition for termination property of the constituent function. In
Section 5, we show the sufficient condition holds for the product derivatives and
hence an algorithm for generating the product derivatives. Finally, we conclude
the paper with some remarks in Section 6.

2. Preliminaries

In this section we recall the notions and properties on Brzozowski’s derivative
and coinduction.

Regular expressions and their interpretation as sets are defined as usual. As
in the literature, we identify a regular expression R and the regular set repre-
sented by R, otherwise mentioned. Throughout the paper, we denote an alphabet
on which regular expressions are constructed, by Σ, symbols in Σ by a, b, . . ., se-
quences in Σ∗ by u, v, w, and regular expressions by capitals from P to U , primed
or subscripted if necessary. The set of regular expressions (built on Σ) is denoted
by Reg.

In order to know whether a regular expression contains the empty sequence,
denoted by ε, we define the function δ : Reg → Reg as follows: δ(R) = 1 if ε ∈ R;
δ(R) = 0 otherwise. We say a regular expression is nullable if δ(R) = 1.

The following definition of derivatives is given by Brzozowski 5).
Definition 1 Let R be a regular expression and w a finite sequence. The

derivative of R with respect to w, denoted by w−1R, is defined as w−1R = {v |
wv ∈ R}.

He also showed that the derivatives can be computed in inductive way.
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Theorem 1 (Brzozowski 5)) The derivative of R with respect to a symbol
a is inductively computed as follows.

a−10 = a−11 = 0 a−1PQ = (a−1P )Q + δ(P )a−1Q

a−1a = 1 a−1P + Q = a−1P + a−1Q

a−1b = 0 (a �= b) a−1P ∗ = (a−1P )P ∗

The derivivative of R with respect to a sequence is computed as follows: ε−1R =
R and (aw)−1R = w−1(aR).

He also showed the finiteness of derivatives. The regular expressions are similar
if one can be transformed into another via the following set (ACI+) of identities:

R + R = R,

P + Q = Q + P,

(P + Q) + R = P + (Q + R).
Theorem 2 (Brzozowski 5)) Every regular expression has only a finite

number of dissimilar derivatives.
Next we recall the notions on coinduction. We follow the standard definition

of complete lattices and fixed points in the literature. The greatest fixed point
of a function f is denoted by νf . Let f be a function from A to A. An element
x of A is f-consistent if x � f(x). The following proposition, so-called principle
of coinduction, is a consequence of Knaster-Tarski fixed point theorem 15).

Proposition 1 Let f be a monotonic function from a complete lattice A to
itself and x ∈ A. If x is f-consistent then x � νf .

Let (A,�A) and (B,�B) be complete lattices. A function f : A → B is �-
continuous if �{f(x) | x ∈ X} = f(�X) for any subset X of A such that the
elements of X forms a nonincreasing sequence with respect to �. Note that a
�-continuous function is monotonic.

Theorem 3 Let f be a �-continuous function from a complete lattice A to
itself. Then νf = �{fn(	) | n ∈ N}, where N is a set of non-negative integers
and 	 the greatest element of A.

3. Product Derivative

In this section the product derivative is introduced as the intersection of
Brzozowski’s derivatives. We demonstrate that the product derivaties are charac-

terized by fixed points of a function. Finally we show that the product derivative
is the greatest fixed point of a function.

Definition 2 For any regular expressions R and S, the product derivative of
R with respect to S, denoted by R−1S, is defined as follows.

R−1S =
⋂

w∈R

w−1S

For instance, the value of (aa + b)−1(a∗b∗) is b∗ from the following computation.

(aa + b)−1(a∗b∗)
= (aa)−1(a∗b∗) ∩ b−1(a∗b∗)
= a−1(a−1(a∗b∗)) ∩ b∗

= a−1(a∗b∗) ∩ b∗

= a∗b∗ ∩ b∗ = b∗.

The first equation is derived from Definition 2 and the others from Theorem 1. As
an another example, let us compute (a∗)−1(b∗(ab∗)∗). From the above definition,

(a∗)−1(b∗(ab∗)∗)
= ε−1(b∗(ab∗)∗) ∩ a−1(b∗(ab∗)∗) ∩ (aa)−1(b∗(ab∗)∗) ∩ · · · .

Since a−1(b∗(ab∗)∗) = b∗(ab∗)∗ from Theorem 1, we infer that (a∗)−1(b∗(ab∗)∗) =
b∗(ab∗)∗.

We, however, cannot compute the value of (a∗)−1(b∗(ab∗)∗) in inductive man-
ner:

(a∗)−1(b∗(ab∗)∗)
= ε−1(b∗(ab∗)∗) ∩ (aa∗)−1(b∗(ab∗)∗)
= b∗(ab∗)∗ ∩ (a∗)−1(a−1(b∗(ab∗)∗))
= b∗(ab∗)∗ ∩ (a∗)−1(b∗(ab∗)∗).

The recursive equation obtained above implies that the product derivatives are
fixed points of a function and we may need to compute an algorithm based on
fixed points. In this paper we show that such an algorithm really works. First,
we show that a function for product derivatives is characterized as the greatest
fixed point of a function.

Definition 3 We define the function D : (Reg × Reg → Reg) → (Reg ×
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Reg → Reg) as follows.
D(f)(0, S) = Σ∗

D(f)(1, S) = S

D(f)(aR, S) = f(R, a−1S)
D(f)((P + Q)R, S) = f(PR, S) ∩ f(QR, S)
D(f)(P ∗R, S) = f(PP ∗R, S) ∩ f(R, S)

Notice that the function D is ∩-continuous. We show the equivalence of
νD(R, S) and R−1S.

Lemma 1 Let f be a D-consistent function and u ∈ P , v ∈ Q. If
f(Q, u−1S) ⊆ (uv)−1

S then f(PQ, S) ⊆ (uv)−1
S.

Proof. Since u ∈ P and v ∈ Q, P and Q are not equal to 0. The proof
is performed by the induction on the structure of the regular expression P . If
P = 1 then the result immediately follows.

Suppose P is of the form aP ′. Then there exists a u′ ∈ P ′ such that u =
au′. Since f(Q, u′−1(a−1S)) = f(Q, (au′)−1

S) ⊆ (au′v)−1
S = (u′v)−1(a−1S),

the induction hypothesis yields f(P ′Q, a−1S) ⊆ (u′v)−1(a−1S). Thus it fol-
lows f(aP ′Q, S) ⊆ D(f)(aP ′Q, S) = f(P ′Q, a−1S) ⊆ (au′v)−1

S from the D-
consistency of f and the definition of D.

Suppose P is of the form (P1 + P2)P ′. Then there exists a w ∈ Pi for
some i = 1, 2 and u′ ∈ P ′ such that u = wu′. Since f(Q, u′−1(w−1S)) =
f(Q, (wu′)−1S) ⊆ (wu′v)−1S = (u′v)−1(w−1S), the repetitive applications of
the induction hypothesis yields f(PiP

′Q, S) ⊆ (uv)−1
S. Then the result follows

from the D-consistency of f and the definition of D.
Finally, suppose P is of the form R∗P ′. Then u ∈ RiP ′ for some i ≥ 0. We

show the following claim:
For any i ≥ 0, w and T , if w ∈ RiP ′ and f(Q, w−1T ) ⊆ (wv)−1T then
f(R∗P ′Q, T ) ⊆ (wv)−1

T holds.
Since the result immediately follows from this claim, we prove it by the induction
on i.

The base case, i = 0, follows from the first induction hypothesis and the D-
consistency of f . Suppose w = w1w2 where w1 ∈ R and w2 ∈ RiP ′. If we
assume f(Q, w−1T ) ⊆ (wv)−1

T then the second induction hypothesis yields
f(R∗P ′Q, w1

−1T ) ⊆ (wv)−1T and hence, by the first induction hypothesis,

f(RR∗P ′Q, T ) ⊆ (wv)−1T . Therefore the claim follows from the D-consistency
of f .

Theorem 4 R−1S = νD(R, S) for any regular expressions R and S.
Proof. Obviously the product derivative is a fixed point of D. The op-
posite holds if νD(R, S) ⊆ w−1S for all w ∈ R. Since νD is D-consistent,
νD(1, w−1S) ⊆ D(νD)(1, w−1S) = w−1S. Lemma 1 implies νD(R1, S) ⊆ wε−1S

for all w ∈ R, which results in the desired result.

4. Computation of the Greatest Fixed Point

In the previous section, we have shown that the greatest fixed point of D is
a function for product derivatives. But this result is not enough to give an
algorithm for generating product derivatives. We would like to have the greatest
fixed point as a function defined in a more computational way. In order to
obtain such a function, we treat more general settings, inspired from the method
for subtype checking proposed by Gapeyev, et al. 8).

Definition 4 Let A be a set and B a complete lattice with partial order �.
Suppose functions σ : A → fin(A) and γ : A → B are given, where fin(A) means
the set of the finite subsets of A. The function Φσ,γ : (A → B) → (A → B) (a
set of functions determined from σ and γ, precisely) is defined as follows.

Φσ,γ(f)(x) = �{f(y) | y ∈ σ(x)} � γ(x)
Notice that the function Φσ,γ is �-continuous. Thus, from Theorem 3 we obtain

νΦσ,γ = �{Φn
σ,γ(	) | n ∈ N}, where 	 means a function mapping every element

of A to the greatest element of B.
Example 1 Consider A = {a, b, c, d, e} and a function σ defined as follows:

σ(a) = {b, c},
σ(b) = {a},
σ(c) = {d, e},
σ(d) = σ(e) = ∅.

Then the greatest fixed point νΦσ,γ is
νΦσ,γ(a) = νΦσ,γ(b) = �{γ(a), γ(b), γ(c), γ(d), γ(e)},
νΦσ,γ(c) = γ(c) � γ(d) � γ(e),
νΦσ,γ(d) = γ(d),
νΦσ,γ(e) = γ(e).
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Fig. 1 A graph induced from σ in Example 1.

If σ is represented as a graph such that x → y iff y ∈ σ(x), illustrated in Fig. 1,
then νΦσ,γ(x) is the greatest lower bound of the set obtained by applying γ to
reachable nodes from x in the graph.

As illustrated in this example, νΦσ,γ(x) is computed as follows: (1) enumerate
all elements reachable from x in the graph induced from σ; (2) apply γ to the
elements enumerated and compute their greatest lower bound. We introduce a
function corresponding to each computational step mentioned above.

Definition 5 The function gfpσ : fin(A) → A ⇀ fin(A) is defined as fol-
lows.

gfpσ(X)(x) =
if x ∈ X then X

else let {x1, . . . , xn} = σ(x)
in let X0 = X ∪ {x}
in let X1 = gfpσ(X0)(x1)

...
in let Xn = gfpσ(Xn−1)(xn)
in Xn

The function Γγ : fin(A) → B is defined as Γγ(X) = �{γ(x) | x ∈ X}.
Note that for some X the function gfpσ(X) is not totally defined because it

may be non-terminating at some x ∈ A. (Note that the type of gfpσ contains ⇀,
instead of →, as the second arrow.) We show that if gfpσ(∅) is totally defined
then Γγ ◦ gfpσ(∅) = νΦσ,γ holds.

We extend σ to a function on fin(A): σ(X) = ∪x∈Xσ(x). Note that the
extended function σ is monotonic, i.e., if X ⊆ Y then σ(X) ⊆ σ(Y ).

Lemma 2 If gfpσ(X)(x) terminates then X ∪{x} ⊆ gfpσ(X)(x). Moreover,

if x �∈ X then gfpσ(X)(x) includes σ(x).
Proof. Induction on the run of gfpσ(X)(x). If x ∈ X then gfpσ(X)(x) = X

and hence the result follows. Suppose x �∈ X. By the induction hypothesis
Xi−1 ∪ {xi} ⊆ gfpσ(Xi−1)(xi) = Xi for 1 ≤ i ≤ n. Therefore X ∪ {x} ∪ σ(x) =
X0 ∪ σ(x) ⊆ Xn = gfpσ(X)(x).

Lemma 3 If gfpσ(X)(x) terminates then σ(gfpσ(X)(x)\X) ⊆ gfpσ(X)(x).
Proof. Induction on the run of gfpσ(X)(x). If x ∈ X then gfpσ(X)(x) =
X, which results in σ(gfpσ(X)(x)\X) = ∅ ⊆ gfpσ(X)(x). Suppose x �∈ X.
Due to the termination of each gfpσ(Xi−1)(xi) for 1 ≤ i ≤ n, the induction
hypothesis yields σ(Xi\Xi−1) ⊆ gfpσ(Xi−1)(xi). From Lemma 2 we obtain
Xi−1 ⊆ gfpσ(Xi−1)(xi) = Xi for 1 ≤ i ≤ n. Together with X0 = X ∪ {x}, it
follows Xn\X = (Xn\Xn−1) ∪ · · · ∪ (X1\X0) ∪ {x}. Hence

σ(gfpσ(X)(x)\X)
= σ(Xn\X)
= σ(Xn\Xn−1) ∪ · · · ∪ σ(X1\X0) ∪ σ(x)
⊆ Xn ∪ · · · ∪ X1 ∪ σ(x)
= Xn = gfpσ(X)(x)

Lemma 4 If gfpσ(X)(x) and gfpσ(Y )(y) terminate and Y ∪ {y} ⊆
gfpσ(X)(x) with X ⊆ Y , then gfpσ(Y )(y) ⊆ gfpσ(X)(x).
Proof. Induction on the run of gfpσ(Y )(y). If y ∈ Y the result is obvious.
Suppose y �∈ Y . Then, since X ⊆ Y , y �∈ X also holds and hence, by assumption,
we have y ∈ gfpσ(X)(x)\X. Lemma 3 yields σ(y) ⊆ gfpσ(X)(x).

Let σ(y) = {y1, . . . , yn}, Y0 = Y ∪ {y} and Yi = gfpσ(Yi−1)(yi) for 1 ≤ i ≤ n.
We show the claim gfpσ(Yi−1)(yi) ⊆ gfpσ(X)(x) for 1 ≤ i ≤ n, which derives
the desired result since gfpσ(Y )(y) = gfpσ(Yn−1)(yn). The claim is proved by
induction on i. If i = 1 then we infer Y0 ∪ {y1} ⊆ gfpσ(X)(x) and X ⊆ Y0.
Then, by the first induction hypothesis, we have gfpσ(Y0)(y1) ⊆ gfpσ(X)(x).
Now we show gfpσ(Yi)(yi+1) ⊆ gfpσ(X)(x) for i > 0. From Lemma 2 we have
Yj ⊆ gfpσ(Yj)(yj+1) = Yj+1 for 0 ≤ j ≤ i − 1. Hence X ⊆ Yi. From the second
induction hypothesis, we obtain Yi = gfpσ(Yi−1)(yi) ⊆ gfpσ(X)(x). Then the
first induction hypothesis yields gfpσ(Yi)(yi+1) ⊆ gfpσ(X)(x).

Lemma 5 If x �∈ X and gfpσ(X)(x) terminates, Γγ(gfpσ(X)(x)) �
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Φσ,γ(Γγ ◦ gfpσ(X))(x).
Proof. Let σ(x) = {x1, . . . , xn} with n ≥ 0. By definition Φσ,γ(Γγ ◦
gfpσ(X))(x) = �{Γγ(gfpσ(X)(xi)) | 1 ≤ i ≤ n} � γ(x). From Lemma 2 we have
x ∈ gfpσ(X)(x) and hence Γγ(gfpσ(X)(x)) � γ(x). The rest we have to show
is Γγ(gfpσ(X)(x)) � Γγ(gfpσ(X)(xi)) for every 1 ≤ i ≤ n. From Lemma 2 we
have X∪σ(x) ⊆ gfpσ(X)(x). Hence Lemma 4 yields gfpσ(X)(xi) ⊆ gfpσ(X)(x),
which results in Γγ(gfpσ(X)(x)) � Γγ(gfpσ(X)(xi)).

Lemma 6 If gfpσ(X)(x) terminates then for any fixed point f of Φσ,γ we
have Γγ(X) � f(x) � Γγ(gfpσ(X)(x)).
Proof. Induction on the run of gfpσ(X)(x). If x ∈ X then the result follows
because gfpσ(X)(x) = X. Suppose x �∈ X. Since f is a fixed point of Φσ,γ , we
have f(x) = Φσ,γ(f)(x) = γ(x) � f(x1) � · · · � f(xn), where σ(x) = {x1, . . . , xn}
(n ≥ 0). Now we show the following claim by induction on i:

Γγ(X) � γ(x) � f(x1) � · · · � f(xi) � Γγ(Xi) for any 0 ≤ i ≤ n.
Since X0 = X ∪ {x}, we have Γγ(X)� γ(x) � Γγ(X0). We turn to the induction
step. From the second induction hypothesis we obtain Γγ(X) � γ(x) � f(x1) �
· · · � f(xi+1) � Γγ(Xi)� f(xi+1). The first induction hypothesis yields Γγ(Xi)�
f(xi+1) � Γγ(gfpσ(Xi)(xi+1)) = Γγ(Xi+1).

Now we are ready to show the main result in this section.
Theorem 5 If gfpσ(∅) is totally defined then νΦσ,γ = Γγ ◦ gfpσ(∅).

Proof. We first show Γγ ◦ gfpσ(∅) � νΦσ,γ . By Proposition 1 it is enough
to show the Φσ,γ-consistency of Γγ ◦ gfpσ(∅), i.e., Γγ(gfpσ(∅)(x)) � Φσ,γ(Γγ ◦
gfpσ(∅))(x) for any x in A, which immediately follows from Lemma 5 because
x �∈ ∅. Next we show that νΦσ,γ(x) � Γγ(gfpσ(∅)(x)). It is immediately obtained
from Lemma 6 by taking A = ∅ and f = νΦσ,γ . Therefore the result follows.

The above theorem assumes that gfpσ(∅) is totally defined, i.e., gfpσ(∅)(x)
terminates for every x ∈ A. We give a sufficient condition for total definedness
of gfpσ(∅), which is similar to that by Gapeyev, et al. 8).

Definition 6 The function reachσ of type fin(A) → fin(A) is defined as
follows:

reachσ(X) =
⋃

n≥0

σn(X).

Note that X ⊆ reachσ(X). Considering a graph induced from σ illustrated in

Example 1, the set reachσ(X) contains the reachable nodes from the nodes in X.
Lemma 7 reachσ(X) ⊆ reachσ(Y ) if X ⊆ reachσ(Y ).

Proof. Obvious from definition.
Proposition 2 If reachσ(X ∪ {x}) is finite then gfpσ(X)(x) terminates and

the relation gfpσ(X)(x) ⊆ reachσ(X ∪ {x}) holds.
Proof. By induction on the cardinality of reachσ(X ∪ {x})\X. We only
have to show the case reachσ(X ∪ {x})\X is nonempty and x �∈ X. Let
σ(x) = {x1, . . . , xn}. We inductively define sets X0, . . . , Xn in fin(A) as
follows: X0 = X ∪ {x}; Xi+1 = gfpσ(Xi)(xi+1) if gfpσ(Xi)(xi+1) termi-
nates, ∅ otherwise. Now we prove the following claim by induction on i:
gfpσ(Xi−1)(xi) is terminating and gfpσ(Xi−1)(xi) ⊆ reachσ(X0 ∪ {x1, . . . , xi})
for each 1 ≤ i ≤ n. The finiteness of reachσ(X ∪ {x}) implies that reachσ(X0 ∪
{x1, . . . , xi}) is finite. Since X0 = X ∪ {x} and x1 ∈ reachσ(x), Lemma 7
implies reachσ(X0 ∪ {x1}) ⊆ reachσ(X ∪ {x}). Hence reachσ(X0 ∪ {x1}) is
also finite. By the first induction hypothesis gfpσ(X0)(x1) terminates and
gfpσ(X0)(x1) ⊆ reachσ(X0 ∪ {x1}). We show gfpσ(Xi)(xi+1) terminates and
gfpσ(Xi)(xi+1) ⊆ reachσ(X0 ∪ {x1, . . . , xi+1}). Since gfpσ(Xi−1)(xi) termi-
nates from the second induction hypothesis, Xi = gfpσ(Xi−1)(xi) and hence
Xi∪{xi+1} ⊆ reachσ(X0∪{x1, . . . , xi+1}). Lemma 7 yields reachσ(Xi∪{xi+1}) ⊆
reachσ(X0 ∪ {x1, . . . , xi+1}), thus reachσ(Xi ∪ {xi+1}) is finite. Since the cardi-
nality of reachσ(Xi+1 ∪ {xi+1})\Xi+1 is less than that of reachσ(X ∪ {x})\X,
we can infer the claim holds from the first induction hypothesis. From the above
claim we obtain gfpσ(X)(x) = gfpσ(Xn−1)(xn) ⊆ reachσ(X0 ∪ {x1, . . . , xn})
⊆ reachσ(X ∪ {x}).

Now we obtain a sufficient condition for the total definedness of gfpσ as a
corollary of the above proposition.

Corollary 1 gfpσ(∅) is totally defined if reachσ({x}) is finite for every x ∈ A.

5. Termination

In this section we explain that the function D is considered as an instance of
Φσ,γ and that the instantiated gfpσ(∅) is totally defined. The finiteness proof
follows the method proposed by Brandt and Henglein 4), which is also used by
Gapeyev, et al. 8): First, we define a quasi-order �, i.e., a reflexive and transitive
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relation, that satisfies x ∈ reach(y) if x � y. Then we show that {y | y � x} is
finite for any x.

The instantiation of σ is based on the definition of D, the first element of its
argument should be of the form either 0, 1, aR, (P + Q)R or P ∗R, S. This leads
us to the introduction of a restricted form of regular expressions called canonical
form.

Definition 7 A canonical form is a regular expression of the form either 0, 1,
aP , (P + Q)R, or P ∗Q where P, Q, R are canonical forms except 0. A canonical
form is called proper if it is not 0. Regular expressions of the form either a,
R + S or R∗, where R and S proper canonical forms, are called atoms. The set
of canonical forms are denoted by CF .

We denote the syntactic equivalence between canonical forms by ≡. Canonical
forms are considered as list representation of regular expressions: 1 corresponds
to the empty list and the construction of canonical forms given above is regarded
as cons of atoms to lists, which represent canonical forms.

Note that the application of ·, + or ∗ to the canonical forms does not yield
canonical forms. We define the canonical form of regular expressions obtained
by the application of these operations to the canonical forms as follows.

Definition 8 The canonical form of T , denoted by T ↓, where T is of the form
either V W , V + W or V ∗ for canonical forms V and W , is defined as follows.

(0S)↓ ≡ (S0)↓ ≡ 0
(1S)↓ ≡ (S1)↓ ≡ (0 + S)↓ ≡ (S + 0)↓ ≡ S

(0∗)↓ ≡ 1
(P ∗)↓ ≡ P ∗1
(P + Q)↓ ≡ (P + Q)1
((AP )Q)↓ ≡ A(PQ)↓

Here, A denotes an atom, S a canonical form and P and Q proper canonical
forms.

It is easy to see that T↓ really stands for a unique canonical form. From the
viewpoint of list interpretation of canonical forms, the operation ↓ is mostly
considered as an append of two lists or a cons of atoms to the empty list. Thus,
this operation is easily implemented and its complexity is at most linear to the
length of top-level lists.

The following proposition ensures that we restrict ourselves to the canonical
forms, instead of arbitrary regular expressions.

Proposition 3 For any regular expression R, there exists a canonical form
S such that R = S.
Proof. Structural induction on R. The cases of R ≡ 0 and R ≡ 1 are obvious.
If R ≡ a then the canonical form a1 represents the same set as a does. When
R ≡ R1R2, by the induction hypothesis there exist canonical forms R′

i (i = 1, 2)
such that Ri = R′

i. Obviously R = (R′
1R

′
2)↓ . The rest of the proof follows

similarly.
Thanks to the above proposition, we can restrict ourselves to canonical forms

without loss of generality. Moreover, its proof gives us a method to generate a
unique canonical form from a given regular expression; Given any regular expres-
sion R, we can compute the canonical form of R. Therefore, we hereafter deal
with only the canonical forms. We denote canonical forms by capital letters from
P to W and atoms by A and B with primes or subscripts when necessary. We
omit ↓ for readability: for instance, P ∗+ Q and PQ∗ means (P ∗↓ +Q) ↓ and
(PQ∗↓ ) ↓ , respectively. Note that although (P + Q)R (or P ∗Q) is already a
canonical form, it can be regarded as ((P + Q) ↓ R) ↓ (or (P ∗↓ Q) ↓ ) because
(P +Q)R ≡ ((P +Q)↓R)↓ (or P ∗Q ≡ (P ∗↓Q)↓) by the definition of↓. Moreover,
the parentheses enclosing concatenations of canonical forms can be also omitted
due to the following proposition.

Proposition 4 (PQ)R ≡ P (QR) for any canonical forms P , Q and R.
Proof. If either P , Q or R is 0 then the both hand sides are also 0. Otherwise,
the result is obtained by the structural induction on the canonical form P .

Thus, PQ(R + S) stands for either ((PQ)↓ (R + S)↓)↓ or (P (Q(R + S)↓)↓)↓,
both denote the same canonical form due to Proposition 4.

Now we define instances of σ and γ.
Definition 9 The function S : CF×Reg/∼(ACI+)→fin(CF×Reg/∼(ACI+))

is defined as follows.
S(0, S) = ∅
S(1, S) = ∅
S(aR, S) = {(R, a−1S)}
S((P + Q)R, S) = {(PR, S), (QR, S)}
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gfpS(X)(R, S) =

if ∃(P, Q) ∈ X.P ≡ R ∧ P ∼(ACI+) Q

then X
else let X0 = X ∪ {(R, S)}
in if R ≡ 0 or R ≡ 1 then X0

else if R ≡ aP then
gfpS(X0)(P, a−1S)

else if R ≡ (P1 + P2)Q then

let X1 = gfpS(X0)(P1Q, S)

in gfpS(X1)(P2Q, S)

else if R ≡ P ∗Q then

let X1 = gfpS(X0)(Q, S)

in gfpS(X1)(PP ∗Q, S)

Fig. 2 The function gfpS .

S(P ∗R, S) = {(R, S), (PP ∗R, S)}
Here Reg/ ∼(ACI+) is the quotient set of (syntactic) regular expressions by an
equivalence relation induced from (ACI+) presented in Section 2.
We define C : CF × Reg/∼(ACI+)→ CF as follows: for any S, C(R, S) = S if
R ≡ 1; otherwise C(R, S) = Σ∗.

Clearly, from the above definition, the function D introduced in Section 3 can
be regarded as ΦS,C due to Proposition 3. Thus, we can formulate an algorithm
generating the product derivatives by ΓC ◦ gfpS(∅) provided gfpS(∅) is totally
defined. The first step of our algorithm is described in Fig. 2, obtained by
unfolding S in gfpS . We omit the description of the unfolded ΓC , which gives
the second step of our algorithm. Instead, we only note that in ΓC the intersection⋂

plays a role of � in ΓC since we take ⊆ as the partial order.
Consider (a∗)−1(b∗(ab∗)∗) in Section 3 as an example of the computation with

the above algorithm. We show a graph that represents the computation in the
first step of the algorithm in Fig. 3. The function gfpS returns all nodes occur-
ring in the graph. For the leaf nodes of the graph, the function C returns the
second element of the node and for the other nodes Σ∗ are returned. Therefore
we obtain the following result (Actually Σ∗ occurs four times in the second line
below).

ΓC(gfpS(〈a∗, b∗(ab∗)∗〉)
= b∗(ab∗)∗ ∩ (0b∗(ab∗)∗ + b∗(ab∗)∗) ∩ Σ∗

Fig. 3 A graph obtained from (a∗)−1(b∗(ab∗)∗).

(ident) (pre) (post)
P 	1 Q P 	1 Q

S 	1 S P 	1 RQ PR 	1 QR
if R 
≡ 0

(or1) (or2) (star)
P 	1 Q P 	1 Q P 	1 Q

P 	1 R + Q P 	1 Q + R PQ∗ 	1 Q∗

Fig. 4 the rules for postfix relation.

= b∗(ab∗)∗.
Now we introduce a relation on the set of canonical forms.
Definition 10 The postfix relation �1 on CF is defined from the set of rules

described in Fig. 4.
We say the sequence of formulas of the form P �1 Q (�1-formulas) obtained by
the repetitive applications of the above rules starting from (ident) is the (�1)-
derivation. The Adjacent pairs in a (�1)-derivation is called the steps in π. The
last �1-formula of a �1-derivation π is called the conclusion of π, denoted by
conc(π).

The relation � is defined with the above relation �1.
Definition 11 The relation �2 on Reg/∼(ACI+) is defined as w−1S �2 S

for any sequence w ∈ Σ∗ and any canonical form S. The relation � on CF ×
Reg/∼(ACI+) is defined as follows: (P, Q) � (R, S) iff P �1 R and Q �2 S.

Together with the definition of S, Theorem 1 reveals that Q �2 S if (P, Q) ∈
reachS(R, S). Moreover, from Theorem 2 the set {R | R �2 S} is finite for any
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S ∈ Reg/∼(ACI+).
Thus, we only have to show that (P, Q) ∈ reachS(R, S) implies P �1 R and

that {R | R �1 S} is finite for any S ∈ CF . The first result is a consequence of
the following two statements.

Lemma 8 If (R, S) ∈ S(P, Q) then R �1 P .
Proof. We distinguish the following cases according to the structure of the
first argument of S.
aP : We show P �1 aP . From (ident) we have P �1 P . Applying (pre) to it,

we obtain P �1 aP .
(P + Q)R: we obtain PR �1 (P +Q)R by applying (or1) and (post) to P �1 P

in turn. The relation QR �1 (P + Q)R is obtained likewise.
(P ∗Q): We have to show Q �1 P ∗Q and PP ∗Q �1 P ∗Q. The former is obtained

from (pre) to Q �1 Q since P ∗ �≡ 0. The application of (star) to P �1 P

yields PP ∗ �1 P ∗, from which we obtain PP ∗Q �1 P ∗Q by (post).

The proof of the following proposition is found in Appendix A.1
Proposition 5 If P �1 Q and Q �1 R then P �1 R.
The following proposition concludes the first part of the proof.
Proposition 6 If (P, Q) ∈ reachS(R, S) then (P, Q) � (R, S).

Proof. An immediate consequence of Lemma 8 and Proposition 5.
We turn to the second part of the proof.
Lemma 9 The following property holds.

(1) If S �1 0 then S ≡ 0.
(2) If S �1 1 then either S ≡ 0 or S ≡ 1.
(3) 0 �1 S for any canonical form S.
Proof. (1) and (2) are proved by induction on the structure of derivations. (3)
is derived from 0 �1 0 by applying (or1).

Definition 12 The size of a canonical form P , denoted by |P |, and of an
atom A, denoted by |A|, are mutually defined as follows.
canonical forms

• |0| = |1| = 0
• |AP | = |A| + |P |

atom
• |a| = 1
• |P + Q| = |P | + |Q|
• |P ∗| = |P | + 1

Lemma 10 If P and Q are proper canonical forms then |PQ| = |P | + |Q|.
Proof. Induction on the structure of P . If P = 1 then PQ = P . Thus,
|PQ| = |Q| = 0+|Q| = |P |+|Q|. If P = AR then the induction hypothesis yields
|RQ| = |R|+ |Q|. Therefore |(AR)Q| = |A(RQ)| = |A|+ |RQ| = |A|+ |R|+ |Q| =
|AR| + |Q|.

Lemma 11 For any proper canonical form P the set {(Q, R) | P ≡ QR} is
finite.
Proof. Structural induction on P . If P is 1 then, from Definition 8, (1, 1) is
the only element of the above set. Suppose P is of the form AP ′. If P ≡ 1R

then the only possible choice is P ≡ R. If Q is of the form BQ′ then Since
(BQ′)R ≡ B(Q′R), B should be A. By the induction hypothesis, there are a
finite number of the possible choices of Q′ and R satisfying P ′ ≡ Q′R, which
results in the finiteness of the set {(Q, R) | P ≡ QR}.

Definition 13 If a derivation of P �1 Q does not contain any step in which
its premise and conclusion are the same, then it is called non-redundant deriva-
tion of P �1 Q.

Note that we don’t lose any derivable objects using the rules in Definition 10
even if we restrict ourselves to non-redundant derivations. Now we show the
second part of the proof.

Proposition 7 For any S the set {R | R �1 S} is finite.
Proof. We first define Post(S) = {R | R �1 S} and Postα(S) = {R |
∃π ∈ Πα and conc(π) = R �1 S}, where Πα stands for the set of non-redundant
derivations whose last steps is by a rule (α).

We proof the result by induction on |S|. The case either S ≡ 0 or S ≡ 1 is an
immediate consequence of Lemma 9. Suppose S ≡ AT . It is enough to show that
for each rule (α) in Definition 10 the set Postα(AT ) is finite. We distinguish the
following cases according to α.
(ident) Obvious.
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(pre) Let AT ≡ PQ and consider the non-redundant derivations that the left-
hand side of the premise in the last step is Q. Then

⋃
AT≡PQ Post(Q) =

Postpre(AT ). Since the derivations we consider are non-redundant, P �≡ 1.
It follows |Q| < |P | + |Q| = |AT | from Lemma 10. Hence, by the induction
hypothesis, Post(Q) is finite. From Lemma 11 there are finite Q’s satisfying
AT ≡ PQ. Therefore Post(AT ) is finite.

(post) Let AT ≡ PQ and consider the non-redundant derivations that the
left-hand side of the premise in the last step is P . Then

⋃
AT≡PQ{UQ |

U ∈ Post(P )} = Postpost(AT ). Since the derivations we consider are non-
redundant, Q �≡ 1. It follows |P | < |P |+ |Q| = |AT | from Lemma 10. Hence,
by the induction hypothesis, Post(P ) is finite. From Lemma 11 there are
finite P ’s and Q’s satisfying AT ≡ PQ. Therefore Post(AT ) is finite.

(or1) From AT +0 ≡ AT and Lemma 9 (1), we learn 0 ∈ Postor1(AT ). On the
other hand, since we exclude every derivation whose last step is from R �1 AT

to R �1 0 + AT ≡ AT regardless of R, we do not need to consider such R’s.
Only when A is of the form P+Q, the set Postor1(AT ) has the other elements,
which are from Post(Q). Since P is proper, |Q| < |P | + |Q| + |T | = |AT |.
Hence, from the induction hypothesis, Post(Q) is finite and the result follows.

(or2) Similar to the case of (or1).
(star) The only possible case is that A is of the form P ∗, T ≡ 1 and the right-

hand side of the premise of the last step is P . Then Poststar(AT ) = {QP ∗ |
Q ∈ Post(P )}. Since P is proper, |P | < |P | + 1 + |T | = |AT |. Hence, from
the induction hypothesis, Post(P ) is finite and the result follows.

Theorem 6 reachS(x) is finite for any x ∈ CF × Reg/ ∼(ACI+) so that
gfpS(∅) is totally defined.
Proof. Immediate consequence of Propositions 6 and 7 and Theorem 2.

6. Conclusion

In this paper we have proposed a product derivative as an intersection of
Brzozowski’s derivatives. We have given an algorithm generating the product
derivatives as ΓC ◦ gfpS(∅). Complexity estimation of the algorithm is a further
research.

In the motivating example in Section 1, the product derivatives are computed
repetitively. One may think that the presence of intersection in ΓC inhibits the
repetitive computation of product derivatives unless the intersection of regular
expressions are computed before further application of the algorithm to prod-
uct derivatives computed. It is not the case because regular expressions with
intersection only appear as the second element of the pairs to which the algo-
rithm is applied; they simply become (a part of) product derivatives obtained, or
transformed by the application of Brzozowski’s derivative, which has a rule for
intersection: a−1(P ∩ Q) = a−1P ∩ a−1Q. Therefore we can compute the prod-
uct derivatives repetitively without the computation of intersection of regular
expressions.

Of course, the product derivatives produce redundant intersections such as Σ∗∩
R and 0∩R, which can be transformed into R and 0, respectively. The immediate
simplification of the redundant intersections greatly improves the efficiency of the
algorithm. Moreover, R ∩ S may be equal to 0 (in the set interpretation) even
if neither R nor S are not 0. Detection of such a intersection is also a further
research.

We note that the proposed algorithm can be used for checking inclusion of a
regular expression by another: R is included in S if R−1S is nullable. Hosoya,
et al. have proposed an inclusion checking algorithm based on the computation
of greatest fixed points 10). Since inclusion checking is an application of our
algorithm, our algorithm is considered as a generalization of their algorithm.

Finally, we remark that this work is a first step for our purpose. As demon-
strated in Section 1, the proposed notion in this paper is useful for transformation
of XML documents with links to Web services in some cases. Because XML doc-
uments is represented as trees, however, we should consider the tree version of
product derivatives in general case, which is our further research.
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Appendix

A.1 The proof of Proposition 5
Lemma 12 If R �1 TQ then either R �1 Q holds or there exists a canonical

form R′ such that R ≡ R′Q and R′ �1 T .
Proof. The result follows from Lemma 9 (3) when R ≡ 0. The case where
either T or Q is 0 is reduced to the previous case because Lemma 9 (1) yields
R ≡ 0. Suppose neither R, T nor Q is 0. We use structural induction on the
derivations.
(ident) Since R is written TQ, the result holds by taking R′ ≡ T .
(pre) Suppose that from R �1 S we derive R �1 PS using (pre), where PS ≡

TQ (Note that generally P �≡ T and S �≡ Q). Since TQ �= 0, neither P nor

S are 0. We distinguish the following two cases:
(a) Suppose there exists Q′ satisfying Q ≡ Q′S and P ≡ TQ′. Since Q is

not 0, neither is Q′. Hence (pre) is applicable to R �1 S with Q′ and the
result follows.

(b) Suppose there exists T ′ with T ≡ PT ′ and S ≡ T ′Q. By the induction
hypothesis either R �1 Q holds or there exists an R′ with R ≡ R′Q
and R′ �1 T ′. In the former case we are done. In the latter case, the
application of (post) to R′ �1 T ′ yields R ≡ R′Q �1 T ′Q ≡ T .

(post) Suppose that R ≡ UP �1 SP ≡ TQ is derived from U �1 S with
(post). Neither P nor S are 0 since TQ �≡ 0. As in the previous case we
consider two cases.
(a) Suppose there exists Q′ satisfying Q ≡ Q′P and S ≡ TQ′. By the

induction hypothesis either U �1 Q′ holds or U ≡ R′Q and R′ �1 T ′ for
some R′. In the former case UP �1 Q′P ≡ Q is obtained from U �1 Q′

by (post). In the latter case the result follows from R ≡ UP ≡ R′Q′P ≡
R′Q.

(b) Suppose there exists T ′ with T ≡ ST ′ and P ≡ T ′Q. Let R′ ≡ UT ′.
Then R ≡ UP ≡ UT ′Q ≡ R′T . Applying (post) to U �1 S we obtain
R′ ≡ UT ′ �1 ST ′ ≡ T .

(or1) Suppose R �1 P +S ≡ TQ is derived from R �1 S by (or1). When P = 0
then S ≡ TQ and hence the result immediately follows from the induction
hypothesis. Since S �≡ 0 from Lemma 9 (1) and R �≡ 0, there exists two cases:
T ≡ P + S and Q ≡ 1, or T ≡ 1 and Q ≡ P + S. In the former case the
result follows from R ≡ R1 ≡ RQ and R �1 P + S ≡ T . In the latter one,
R �1 P + S ≡ Q holds.

(or2) Similar to (or1).
(star) Suppose R ≡ US∗ �1 S∗ ≡ TQ is derived from U �1 S by (star). Since

R �≡ 0, Lemma 9 (1) yields S �≡ 0. The only possible cases are T ≡ S∗ and
Q ≡ 1, or T ≡ 1 and Q ≡ S∗. The rest of the proof follows that of the case
(or1).

Lemma 13 If P �1 QR∗ then either P ≡ 1 or P ≡ SR∗ with some S.
Proof. If P ≡ 0 then take S ≡ 0. If Q ≡ 0 then P ≡ 0 from Lemma 9 (1) and
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hence the result follows. It R ≡ 0 then by taking S ≡ P we have PR∗ ≡ P1 ≡ P .
Suppose neither P , Q nor R is 0. We prove the result by structural induction on
the derivation of P �1 QR∗.
(ident) Since P ≡ QR∗ the desired result is obtained by taking S ≡ Q.
(pre) Suppose P �1 QR∗ is obtained from P �1 1 by (pre). Lemma 9 (2) and

P ≡ 0 results in P ≡ 1. Let Q ≡ Q1Q2 and suppose by applying (pre) to
P �1 Q2R

∗ we obtain P �1 Q1Q2R
∗ ≡ QR∗. Then the result follows from

Q2 �≡ 0 and the induction hypothesis.
(post) Suppose that the application of (post) to T �1 1 yields P ≡ TQR∗ �1

QR∗. Then Lemma 9 (2) and P �≡ 0 implies T ≡ 1 and hence P ≡ QR∗.
Let Q ≡ Q1Q2 and suppose by applying (post) to T �1 Q1 we have P =
TQ2R

∗ �1 QR∗. Then the desired result is obtained by taking S ≡ TQ2.
(or1) Let T1 + T2 ≡ QR∗ and suppose P �1 T1 + T2 ≡ QR∗ is derived from

P �1 T2 by (or1). If T2 ≡ 0 then Lemma 9 (1) yields P ≡ 0, which contradicts
the assumption. Thus T2 �≡ 0. If neither T1 nor T2 is 0, then T1 + T2 ≡
(T1 + T2)1 ≡ QR∗ implies R ≡ 0, which also contradicts the assumption.
Hence T1 should be 0 and hence T2 = QR∗. Then the result follows from the
induction hypothesis.

(or2) Similar to (or1).
(star) Since R �≡ 0, we have Q ≡ 1. Hence in the last step of the derivation

S �1 R yields P ≡ SR∗ �1 R∗ ≡ R∗Q by (star).

Lemma 14 If PR∗ �1 QR∗ then either P �1 Q or PR∗ �1 R∗ holds.
Proof. P �1 Q is obtained from Lemma 9 (3) when P ≡ 0 and from
Lemma 9 (1) when Q ≡ 0, respectively. If R ≡ 0 then the result follows from
R∗ ≡ 1. Suppose neither P , Q nor R is 0. We use structural induction on the
derivation of PR∗ �1 QR∗.
(ident) Since P ≡ Q, it follows P �1 Q.
(pre) Suppose PR∗ �1 QR∗ is derived from PR∗ �1 1 by (pre). From 9 (2),

however, either P or R is 0, which contradicts the assumption. Next we
assume PR∗ �1 QR∗ is derived from PR∗ �1 Q2R

∗ by (pre), where Q ≡
Q1Q2. Since Q2 should not be 0, the induction hypothesis is applicable and
hence either P �1 Q2 or PR∗ �1 R∗ holds. In the latter case we are done.

In the former case, since Q1 cannot be 0, the application of (pre) to P �1 Q2

yields the desired result.
(post) Suppose PR∗ �1 QR∗ is derived from T �1 1 by (post), where P ≡ TQ.

Then T ≡ 1 from TQR∗ �≡ 0 and Lemma 9 (2) and hence P ≡ Q. It follows
P �1 Q. Next we assume PR∗ �1 QR∗ is derived from T �1 Q1 by (post),
where Q ≡ Q1Q2. Then P ≡ TQ2 and we obtain P ≡ TQ2 �1 Q1Q2 ≡ Q

by the application of (post) to T �1 Q1.
(or1,or2) Similar to the the case (or1) in the proof of Lemma 13.
(star) Since R �≡ 0, to obtain PR∗ �1 QR∗ by (star), Q should be 1. Therefore

PR∗ �1 R∗.

Now we are ready to prove the transitivity of �1.
Proof. [Proof of Proposition 5] We use induction on the lexicographic product
that consists of |R| and the height of the derivation of Q �1 R and that of
P �1 Q.

The base case (P ≡ Q ≡ R ≡ 0 or P ≡ Q ≡ R ≡ 1) is obvious. In the
induction step we distinguish the following cases according to the derivation rule
applied to the last step of the derivation of Q �1 R. Note that R �≡ 0 in the
induction step; otherwise Lemma 9 (1) yields P ≡ Q ≡ 0, which has been already
considered in the base case. The case P �1 Q is derived by (ident) is obvious.
Next we assume the rule used in the last step is neither (post) nor (star). Then
the relation to which the rule is applied is written Q �1 S using some S. Since
R �≡ 0, the definition of �1 implies |S| ≤ |R|. Hence by the induction hypothesis
we obtain P �1 S, to which the application of the same rule as obtained Q �1 R

yields P �1 R.
Next we consider the case Q �1 R is obtained from S �1 T by (post), where

Q ≡ SU and R ≡ TU . If either S, T or U is 0 the result is obvious from
Lemma 9 (1). Otherwise, we distinguish the following cases according to the last
step used to obtain P �1 Q.
(ident) Obvious.
(pre) Suppose P �1 SU is obtained from P �1 V , where SU ≡ WV . We

consider the following two cases.
(a) Suppose V ≡ V ′U and S ≡ WV ′ for some V ′. Note that neither W and
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V ′ is 0 since S �≡ 0. From P �1 V ′U and Lemma 12, either P �1 U

holds or P ≡ P ′U and P ′ �1 V ′ holds for some P ′. In the former case,
since T �≡ 0 the application of (pre) to P �1 U yields P �1 TU ≡ R.
Consider the latter case. Since w �≡ 0, applying (pre) to P ′ �1 V ′ we
obtain P ′ �1 WV ′ ≡ S. Since U �≡ 0 Lemma 10 yields |T | ≤ |TU | and
hence from the induction hypothesis P ′ �1 T . Applying (post) we obtain
P ≡ P ′U �1 TU ≡ R.

(b) Suppose W = SW ′ and U = W ′V for some W ′. Then since SU �≡ 0, we
have W ′ �≡ 0. Therefore, applying (pre) twice to P �1 V with W ′ and T

in turn, the desired result is obtained.
(post) Suppose P �1 SU is obtained from P ′ �1 W by (post), where P ≡ P ′V

and SU ≡ WV . We consider the two cases.
(a) Suppose V ≡ V ′U and S ≡ WV ′ for some V ′. Applying (post) to

P ′ �1 W , we have P ′V ′ �1 WV ′ ≡ S. Since U �≡ 0 Lemma 10 yields
|T | ≤ |TU | and hence from the induction hypothesis P ′V ′ �1 T , to which
the application of (post) produces P ≡ P ′V ′U �1 TU ≡ R.

(b) Suppose W ≡ SW ′ and U ≡ W ′V for some W ′. Applying (post) to
S �1 T , we have W ≡ SW ′ �1 TW ′. Since U ≡ W ′V and U �≡ 0, the
size of TW ′ is less than or equal to that of TU . Moreover, SU �1 TU

and SW ′ �1 TW ′ are both obtained from the application of (post) to
S �1 T and hence from the induction hypothesis we have P ′ �1 TW ′, to
which the application of (post) produces P ≡ P ′V �1 TW ′V ≡ TU ≡ R.

(or1) Suppose P �1 SU is derived from P �1 V , where SU ≡ W + V . If
W ≡ 0 then it follows V ≡ SU and hence the desired result is obtained from
the induction hypothesis. When V ≡ 0, by Lemma 9 (1) we have P ≡ 0 and
hence Lemma 9 (3) yields the desired result. Suppose neither V nor W is 0.
It follows S ≡ W + V and U ≡ 1. Since U �≡ 0 Lemma 10 yields |T | = |TU |.
Therefore, by the induction hypothesis, P �1 T ≡ TU ≡ R.

(or2) Similar to (or1).
(star) Suppose P �1 SU is derived from W �1 V ∗ by (star), where V ∗ ≡ SU

and P ≡ WV ∗. If V ≡ 0 then V ∗ ≡ 1. Thus, from Lemma 9 (2), either

P ≡ 0 or P ≡ 1 and the result follows. Suppose V �≡ 0. Then there are
only two possible cases: S = V ∗ and U = 1, or S = 1 and U = V ∗. In the
former case, Lemma 10 yields |T | ≤ |TU |. From the induction hypothesis
P �1 T ≡ TU ≡ R. In the latter case, since T �≡ 0 (pre) is applicable to
P �1 V ∗ with T and we obtain P �1 TV ∗ ≡ TU ≡ R.

Finally, we consider the case where Q �1 R is derived from S �1 T , where
Q ≡ ST ∗ and R ≡ T ∗. From P �1 ST ∗, Lemma 13 assures that either P ≡ 1
holds or P ≡ UT ∗ holds for some U . In the former case, P �1 R follows
from (ident) and (pre). In the latter case, from Lemma 14 either U �1 S or
UT ∗ �1 T ∗. In the latter case, the result follows from P = UT ∗ and T ∗ = R.
In the former case, since |T | ≤ |T ∗| the induction hypothesis yields U �1 T , to
which the application of (star) deduces P ≡ UT ∗ �1 T ∗ ≡ R.
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