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Abstract: Since many proteins become functional only after they interact with their partner proteins and form 
protein complexes, it is very important to identify the sets of proteins that form complexes. Therefore, several 
high-throughput methods have been proposed to predict complexes, such as MCL, MCODE, CMC, PCP and 
CFinder. These methods show higher performances on predicting protein complexes with size of more than three 
because they are mainly based on the topological structures of protein-protein interaction (PPI) network. However, 
for heterodimeric protein complexes, each complex involving only two proteins, their topological structures are 
too simple to analyze, but the majority of known protein complexes are heterodimeric protein complexes. In this 
paper, we use three promising kernel functions, Min kernel, Metric Learning Pairwise Kernel (MLPK) and Tensor 
Product Pairwise Kernel (TPPK). We also consider the normalized forms of Min kernel, which are MinMax kernel 
and Scaled Min kernel. Then, we combine one of the Min kernels (Min kernel, MinMax kernel and Scaled Min 
kernel) and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic 
profile and subcellular localization properties to predicting heterodimeric protein complexes. Then, we evaluate 
our method by employing C-Support Vector Classification (C-SVC) and carrying out 10-fold cross-validation, 
and calculating the average F-measures. The results suggest that our proposed method improved the 
performance of our previous work, which had been the best existing method so far. 
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1. Introduction     

  Since many proteins become functional only after they interact 
with their partner proteins and form protein complexes, it is very 
important to identify the sets of proteins that form complexes. 
Therefore, several high-throughput methods have been proposed  
Many proteins carry out their biological functions by interacting 
with other proteins to form multi-protein structures, called 
protein complexes [1], which are crucial for a wide range of 
biological process. For example, the ribosome is an assembly of 
protein and RNA subunits responsible for protein translation. 
Therefore, understanding protein functions as well as biological 
processes requires identification of sets of proteins that form 
complexes. A large fraction of known protein complexes are 
heterodimeric, that is, formed by the assembly of two different 
proteins.  For example, the two main protein complex catalogs 
CYC2008 [31] and MIPS [32] include respectively 172 (42%) 
and 64 (29%) heterodimeric protein complexes. Hence, it is 
necessary to develop accurate methods for predicting 
heterodimeric complexes. Here CYC2008 is a comprehensive 
catalogue of 408 manually curated yeast protein complexes 
reliably supported by small-scale experiments, and MIPS 
provides detailed information involving classification schemes 
for analysis of protein sequences, RNA genes and other genetic 
elements [19, 20, 21]. 
  In this paper, our goal is to further improve the prediction 
accuracy for heterodimeric protein complexes. We investigate 
novel kernels to encode the domain composition of proteins 
involved in a complex, because the one used in the previous 
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study was very crude, and employ C-Support Vector 
Classification (C-SVC) to predict heterodimeric protein 
complexes. We use Min kernel and its two normalized forms, 
MinMax kernel and Scaled Min kernel, as well as two pairwise 
kernels, metric learning pairwise kernel (MLPK) and tensor 
product pairwise kernel (TPPK). Compared to previous work 
that they only used a single kernel, we try to combine multiple 
kernels, since proper combination of kernels may achieve better 
performance than only using one. Besides the domain property, 
we also try to use phylogenetic profile property. Since if two 
proteins are present or absent in the same genome, then these 
two proteins are likely to have related functions. Moreover, 
protein subcellular localization property is considered as well. 
Proteins must be localized at their appropriate subcellular 
compartment to perform their function, so that proteins in the 
same location may have similar function. Kernels mentioned 
above are applied to these two properties as well. Then we 
perform ten-fold cross validation, and calculate the average F-
measures. The computational experiments show that the 
combinations of multiple kernels outperform single kernel 
proposed in our previous method, and therefore is superior to 
other existing methods. 

2. Methods 

2.1 Problem 
 We formulate the problem of heterodimeric complex prediction 
as a supervised binary classification problem: given a training 
set of pairs of proteins known to form a complex (positive pairs) 
and pairs of proteins that do not form a complex (negative 
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pairs), we learn a function f(x) to predict if a new pair x of 
proteins can form a complex or not. We use a support vector 
machine (SVM) classifier, with balanced loss penalty to 
compensate for the fact that the numbers of positive examples 
and negative examples can be very unbalanced. 

2.2 Properties and their kernels 
  We explain kernels involving PPI properties, domain 
property, phylogenetic profile property and subcellular 
localization property. Then, we use Min kernel’s normalization 
form and propose combination kernels for predicting 
heterodimeric protein complexes. For the kernels between 
proteins, we mentioned 3 kernels: Min kernel, and two 
normalized versions (MinMax and scaled). We also mentioned 
two ways to make a pairwise kernel: MLPK and TPPK. So we 
consider all possible combinations (3*2 = 6) of these kernels. 

3. Experiments 

In order to compare our proposed method with the method in 
[26], we used the same dataset WI-PHI including 49607 
interacting protein pairs except self-interactions. The weights of 
interactions were calculated in the following way. (1) They used 
the high-throughput yeast two-hybrid data by Ito [3] and Uetz 
[2] as well as several databases such as BioGRID [6], MINT [7] 
and BIND [8] to build the literature-curated physical interaction 
(LCPH) dataset. (2) They constructed a benchmark dataset to 
evaluate high-throughput data. The interactions of the dataset 
were obtained by two independent methods from LCPH-LS, 
which was a low-throughput dataset in LCPH. (3) They 
calculated a log-likelihood score (LLS) to each dataset except 
LCPH-LS. (4) They computed the weight of each interaction by 
multiplying the socioaffinity (SA) indices [1] and the LLSs from 
different datasets. Note that SA index is the log-odds score of 
the number of times that we observed two proteins interact to 
each other to the expected value in the dataset. Also, we 
prepared the same dataset from CYC2008 [31] for training and 
testing as the previous study. We defined a positive example as a 
pair of proteins included in WI-PHI as well as a heterodimeric 
protein complex included in CYC2008. A negative example was 
defined as a pair of proteins included in WI-PHI, which 
meanwhile should not be any heterodimeric protein complex but 
be in a subset of some other complexes in CYC2008. As a 
result, we had 152 positive examples and 5345 negative 
examples. 

3.1 Results 
We present a comparison of the previously described 
combination kernels to the best existing method [26]. These 
three figures indicate that all the combination kernels except 
kernels that combined with TPPK kernel perform better than 
previously proposed Domain Composition kernel for every 
value of alpha. However, TPPK combined kernels are just a 
little lower than Domain Composition kernel. This result is not 
surprising because we mentioned before that Domain 
Composition kernel is either 1 or 0, and our proposed 
combination kernels are not binary, but are allowed to have 
many possible values. Therefore, the result of them may be 

expected not worse than that of Domain Composition kernel. 
In addition, we observed that Normalized Min-MLPK kernel 
and MinMax-MLPK kernel had better performances in most 
cases. Their curves crossed over each other at several points but 
almost better than other combination kernels. This observation 
shows that the combination of Min kernel and MLPK kernel 
works well, and MinMax kernel or Normalization is necessary 
for improving prediction accuracy. The result shows the 
performance of each combination kernel on their best average 
precision, recall and F-measure. Normalized Min-MLPK kernel 
had the best performance on precision and Min-TPPK kernel 
had the best performance on recall. Normalized Min-MLPK 
kernel achieved the best performance (F-measure increased 
from 63.1% [26] to 68.6%) and all the proposed methods that 
combined with MLPK kernel outperform Domain Composition 
kernel. 

4. Concluding Remarks 

  We applied several kernels based on PPI, domain, localization 
and profiles information to predicting heterodimeric protein 
complexes. To evaluate our proposed method, we performed ten-
fold cross-validation computational experiments for the 
combination kernel of Min kernel, MinMax kernel and MLPK 
kernel by plugging and TPPK kernel by summation.  The results 
suggest that our proposed method improved the performance of 
our previous work, which had been the best existing method so 
far. In particular, the combination kernel Normalized Min-MLPK 
has the best performance. The paper [27] showed that 
combination of MLPK and TPPK together almost always had 
best results. 
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