
Content Reuse Detection in Text Documents

Pei Wang† Chuan Xiao‡ Yoshiharu Ishikawa† §
† Graduate School of Information Science, Nagoya University

‡ Institute for Advanced Research, Nagoya University
§ National Insititute of Informatics

1 Introduction

Text document collection typically contains reused
information. Events or facts may be restated with re-
formulations and additions by various sources. Iden-
tifying text reuse enables us to find original sources
of facts and track information flow, and thus becomes
an important task in text analysis.
We develop a novel method for content reuse detec-

tion in text documents. Our basic idea is to use slid-
ing windows, namely, a fixed number of words start-
ing from every position in the document. A pair of
sliding windows that differ by no more than τ words
is regarded as reused contents. In order to efficiently
identify sliding window pairs that meet this con-
straint, we develop a filter-and-refine method, i.e.,
first find a set of promising candidates and then ver-
ify if they satisfy the constraint. We propose the
notion of k-wise signatures, each containing k words
in a sliding window. A pair of sliding windows must
share at least one k-wise signature to become a can-
didate. An inverted index is built on the k-wise sig-
natures extracted from the sliding windows of docu-
ments so that candidates can be efficiently generated.

2 Preliminaries

We define a document r as a sequence of tokens
from a finite universe U ∗. A sliding window x of size
w is w consecutive tokens in a document r, denoted
as x ⊑ r. We also use r[i . . j] to denote a sliding
window that starts from the i-the token and ends
with the j-th token in r. By regarding each sliding
window as a multiset of tokens, the overlap similarity
between the two sliding windows x and y is defined as
overlap(x, y) = |x ∩ y|. Multiplicities are considered
when computing the intersection of two multisets.
From the perspective of dissimilarity, we define the

distance between two sliding windows as d(x, y) =
w − overlap(x, y). E.g., the distance between two
sliding windows x = as soon as possible and y =
yes soon yes as is d(x, y) = w−|x∩y| = 4−2 = 2.
Given a set of data documents R, a query docu-

ment q, a sliding window size w, our task is to find
all sliding window pairs ⟨x, y⟩, such that x is from
a data document, y is from the query document,
and the distance between x and y is no more than
a given threshold τ ; i.e., { ⟨x, y⟩ | x ⊑ r, r ∈ R, y ⊑
q, d(x, y) ≤ τ }.
For example, consider two data documents “have

∗We tokenize documents into English words in our exam-
ples, but the proposed method is independent of tokenization
scheme.

no more than” and “have more than two”, and a
query document “no less than two”. The windows
size is 3 and the threshold is 2. Two results will be
returned: ⟨no more than, no less than⟩ and ⟨more
than two, less than two⟩.
3 K-wise Signature Scheme

A näıve method to solve the problem is to enumer-
ate all sliding windows for the data documents and
the query document, and compare every window pair
to compute their distance.
The näıve method exhaustively compare all slid-

ing windows and thus becomes infeasible for large
amount of data. One remedy is to consider promising
window pairs only by leveraging the prefix filtering
principle [1]:

Theorem 1 (Prefix Filtering Principle). Consider two
multisets x and y, and their tokens are sorted in a
global order O of the token universe U . Let the prefix
of x be the first τ+1 tokens of x. If d(x, y) ≤ τ , then
the prefix of x and the prefix of y must share at least
one token.

The prefix filtering principle indicates that if we
sort the tokens in the global order O, we only need to
consider the pairs of windows that share at least one
token in their prefixes. The prefix filtering principle
is further extended to the first τ + k tokens [3, 2] :

Theorem 2 (Extended Prefix Filtering Principle). Let
k-prefix of x be the first τ+k tokens of k. If d(x, y) ≤
τ , then the k-prefix of x and the k-prefix of y must
share at least k token.

Due to the stricter constraint, using k-prefixes ex-
hibits better selectivity than using 1-prefixes. Based
on the extended prefix filtering principle, an imme-
diate solution is to build an inverted index for the
first τ + k tokens of all the sliding windows. An in-
verted index is a data structure that maps a token
t to a list of window identifers (called postings list)
that contain t. The main problem of this method
is that the postings lists of some tokens can be very
long because these tokens are frequent in the data
documents. Accessing long postings lists incur sig-
nificant overhead. Next we propose the notion of
k-wise signature to to alleviate this problem.
A k-wise signature is a combination of k tokens.

Based on the above observations, for each window
we generate all k-combinations of the tokens in its
k-prefix. If two windows satisfy the distance con-
straint, they share at least one identical signature.
For example, given a window’s 3-prefix { a, b, c, d, e },

Copyright 2015 Information Processing Society of Japan.
All Rights Reserved.1-669

5N-04

情報処理学会第77回全国大会

{abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde} are gen-
erated as its 3-wise signatures. If its distance to a
query window is no larger than τ , there must be at
least one identical 3-wise signature between the two
windows.
To generate k-wise signature for each sliding win-

dow, an intuitive baseline is to materialize all sliding
windows, compute signatures, and build inverted in-
dex for the signatures. However, this method suffers
from the following two drawbacks:

• Materializing all the sliding windows is time-
consuming.

• Consecutive sliding windows share many k-wise
signatures. Common signatures are generated
multiple times.

We propose a dynamic index generation method
to fix above problems. The intuition is that instead
of mapping k-wise signatures to a list of windows in
the inverted index, we map each signature to an in-
terval [a, b], indicating that every window with start-
ing position in the range of [a, b] has this signature.
For every data document, we get the first window
by reading the first w tokens into a buffer, and sort
them by the global order and mark its window ID
as an interval starting point. k-wise signatures are
generated. An interval with left bound 1 is created
for each of these k-wise signatures. When we move
to the next window, the first token of the previous
window is deleted from the buffer and its rank before
deletion is returned. Then we insert the last token
of the current window into the buffer and its rank is
returned as well. If either rank is in within τ + k,
we close the relevant signatures’ intervals by setting
their right bounds, and open new intervals for new
signatures.

4 Candidate Generation

We now get every signature’s inverted list which
is composed of its corresponding window intervals.
We would like the candidate IDs to be in form of
(queryWindowID, candidate intervals in data) for
the smooth of verification. We must consider the sit-
uation that by simply traversing the query’s inverted
lists and push back candidate window intervals, there
would be many duplicates elements. We here trim
the candidate lists for each query window ID: com-
bine the overlap intervals and keep them in order.
For example, for query window ID 2, we may get a
trimmed list: (10, 15), (18, 20), (25, 40), window in
these intervals are query window 2’s candidate win-
dow. However for (10, 15) and (18, 20), it may save
efforts if we combine them as one interval(10, 20),
namely adding in some false positives on purpose.
We explain this in next section.

5 Candidate Verification

We describe how to verify candidates efficiently
with hash map data structure in this section. The

point is to make use of the continuity of sliding win-
dows.
We continue with above example. For query win-

dow 2, suppose its candidate intervals are (10, 15),
(18, 20), (25, 40). In intialization phase, build a hash
map for query window 2 whose key is token and value
is token’s appearance times in current window(save
a query map copy). Then traverse data window 10
one by one. If current token is not in query map,
then set this token’s appearance as -1. Otherwise
if the token’s appearance is not bigger than 0, then
minus 1. If the token’s appearance is bigger than 0,
this means query window and data window has sim-
ilar token and plus 1 for the counter. We finally get
an initial counter number sim(query window 2, data
window 10). To make use of the continuity of sliding
windows, we don’t have to start from scratch again
for data window 11. We have a look at the kicked
out token t1 (the first token in window 10) and new-
coming token t2 (the last token in window 11), minus
one for map[t1] and plus one for map[t2], rewrite the
counter only if map[t1] > 0 and map[t2] ≥ 0. Excute
this operation until interval ends (namely data win-
dow 15 here). As for new candidate window interval
(18, 20), since a copy of original query window map
has been saved, we can repeat above operations for
this new interval smoothly. Note here data window
15 and 18 is actually very near and it is potentially
not cost-effective enough. The cost of initializing a
new interval is 2w (traverse the starting window +
copy the original query map), and the cost of pro-
cessing a token in an interval is 2. So only when
window interval gap is no larger than w, we use the
above method. Otherwise we open a new hash map
for verification.

6 Conclusion

In this paper, we proposed an effective exact con-
tent detection method which is derived from the state-
of-art prefix-filterting and verification framework. This
work especially well when window size is not too
large and threshold is not too low. For each win-
dow, we have to computer

(
k+τ
k

)
number of signa-

tures, which is too big to afford when window gets
long or prefix becomes long. We leave it as a future
problem to support these cases.

7 Acknowledgements

This research is supported by KAKENHI(25280039).

Reference
[1] Surajit Chaudhuri, Venkatesh Ganti, and Raghav

Kaushik. A primitive operator for similarity joins in data
cleaning. In ICDE, 2006.

[2] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we
beat the prefix filtering?: an adaptive framework for sim-
ilarity join and search. In ACM SIGMOD, pages 85–96,
2012.

[3] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and
Guoren Wang. Efficient similarity joins for near-duplicate
detection. ACM TODS, 36(3), 2011.

Copyright 2015 Information Processing Society of Japan.
All Rights Reserved.1-670

情報処理学会第77回全国大会

