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A computation algorithm for the configuration of BLE devices using
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Abstract: The number of devices which use Bluetooth low-energy (BLE) technology is increasing rapidly.
Although the cost of the BLE components is decreasing, the installation costs remain high. When many
BLE devices are installed, determination of the locations for installation, referred to as the configuration,
becomes complicated and labor intensive.
In this research, we investigate computational methods for configuring BLE devices in a given region. We
propose a computation method using k-means method, and present numerical results. We then evaluate the
proposed method in terms of the number of generation points and the number of BLE devices to be installed.
We also introduce a measure for the configuration.
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1. Introduction

Bluetooth low energy (BLE), is a low-energy commu-

nication mechanism [1]. Various devices are equipped to

use BLE signals, and are referred to here as BLE devices.

BLE devices have a wide range of applications, for ex-

ample, in the guide service system in Ueno Zoological Gar-

dens and Hama-rikyu Gardens [2], the guide system for

Himeji [3], the interactive security system for Narita Air-
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port [4], and the parking system at Nagoya [5].

Research has been conducted on using BLE devices for

indoor position detection, such as Ishizuka et al. [6], who

proposed a pedestrian dead reckoning method. Onishi [7]

proposed a method using the ordered order-k Voronoi di-

agrams [8], pp.144-151.

The cost of manufacturing BLE devices is decreasing as

the production volume increases, however the labor cost

for installation remains high, or is even increasing. The

reason for this is the work flow for installation. Currently,

the devices are installed by trial and error i.e., the in-

stallation of BLE devices (beacons) and measurement of
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signals is repeated until a good configuration is obtained.

Here, we address the following problem.

[Problem] Given a connected region R in the

Euclidean plane and a positive integer k, we com-

pute a set SP = {sp1, . . . , spk} of k points in R,

where we minimize the sum of the squares of the

distances between any two points in R and the

nearest spi from the points.

To formulate the above problem as an optimization

problem, we introduce a set P ⊂ R of points and an

objective function as follows.

ϕ(P ) =
k∑

i=1

∑

p∈Pi

dist(p, spi)
2,

where Pi is the set of points in P nearest to pi and dist(·, ·)
is the Euclidean distance. We also define the normalized

objective function ϕ.

ϕ =
1

|P |ϕ(P ).

Here ϕ is the mean of the squares of the Euclidean dis-

tances and is independent of the size of P . So, we can

compare ϕ for different sets.

The problem above is similar to the facility location

problem, which considers the minimization of the sum of

the square of the distances between points and the near-

est facility [9]. In [9], a region, a density function over the

region and a positive integer k are given, and the (local)

optimal value of the objective function is then computed

by the steepest descent method. Since the facility location

problem is NP-hard, many algorithms for approximating

the solution have been proposed, and are reviewed in [10].

Our contributions are (1) we propose a method that

requires only the connected region and a positive inte-

ger k > 0; (2) we show that the number k is dependent

on the number of BLE devices used. This paper is or-

ganized as follows. Two related works on the k-means

and k-means++ method are introduced in Section 2. The

proposed method is described in Section 3. Numerical

experiments are shown in Section 4. We discuss the ex-

periments in Section 5.

2. Related Work

2.1 k-means method

MacQueen proposed the k-means method for dividing

the set P into k clusters, which is called non-hierarchical

clustering [11]. The k-means method is outlined in Algo-

rithm 1.

Algorithm 1 k-means method

Require: P = {p1, p2, . . . , pn};
Require: k;

1: Select k points from P , called SP = {sp1, . . . , spk};
2: Compute ϕ(P );

3: repeat

4: ϕ′ ← ϕ(P );

5: Divide P into Pi(i = 1, . . . k) s.t. Pi = {pj ∈ P :

dist(pj , spi) < dist(pj , spl) l �= i}, where dist(p, q) is a

distance function between p, q.

6: for i = 1 to k do

7: spi ← 1

|Pi|
∑

p∈Pi

p ;

8: end for

9: Compute the objective function ϕ(P ) ←
k∑

i=1

∑

p∈Pi

dist(p, spi)
2;

10: until (ϕ′ ≤ ϕ(P ))

11: return Pi(i = 1, . . . k);

Algorithm 1 is used to iteratively calculate and mini-

mize the objective function ϕ. Calculating the minimum

objective function explicitly using the k-means method re-

quires O(nkd) computation time [12], where n is the num-

ber of points and d is the dimension of the points. Various

polynomial-time approximation scheme algorithms have

been proposed [13], [14]. It is known that the k-means

method outputs the local optimal solution from the ini-

tial points. A method for iterating the k-means method

for different initial points is called the random method in

this paper.

2.2 Selection of initial points

There are a number of methods for selecting the initial

points. Ostrovsky et al. proposed a selection method [15];

if the set P of points satisfies the conditions for the op-

timal k-means solution, the random selection from P is

O(1)-competitive *1.

Arthur and Sergei proposed the k-means++ method

[16]. The k-means++ method is outlined in Algorithm

2. For any set of points, the algorithm always computes

a value of ϕ less than Θ(log k) times the optimal value.

In Algorithm 2, the selection of a spi in Step 3 is depen-

dent on the distance from the nearest spi of the previous

step.

3. Proposed Method

In this section, we present our proposed method. Let

R and k be the connected region and a positive integer,

*1 An approximate algorithm is O(f)-competitive when the
value of ϕ of the algorithm always satisfies E[ϕ] ≤ O(f)·
(optimal value).
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Algorithm 2 k-means++ method

Require: P = {p1, p2, . . . , pn};
Require: k;

1: Select one point sp1 from P randomly;

2: repeat

3: Choose the next point spi from P with probability
dist(p, spl)∑
p dist(p, spl)

, where dist(p, q) is the distance function

and spl is the nearest point to p among the selected points;

4: until (k points are selected)

5: apply the k-means method, using SP = {sp1, . . . , spk} as

the initial points;

respectively. We propose Algorithm 3 for computing a set

SP of k points from R and k.

Algorithm 3 Proposed method for computing the con-

figuration of BLE devices
Require: Connected region R;

Require: k;

1: Fix a positive integer n;

2: for randomly generate sets of n points P = {pi | pi ∈ R, i =

1, . . . , n} do

3: Apply the k-means method to P ;

4: end for

5: Choose the cluster with the smallest value of the objective

function ϕ(P );

6: return all centroids of the cluster;

In Algorithm 3, the number n is fixed and sets of n

points are simulated. We repeat the simulation of points

until the estimate for ϕ(P ) is within a predefined toler-

ance level. Then, we select the cluster with the smallest

value of φ(P ).

The k-means method also introduces randomness into

the selection of points in Step 1, Algorithm 1. The k-

means++ method has randomness in Steps 1 and 3 of

Algorithm 2. We use some sets SP of selection points

from P to obtain a better configuration.

1 Configurations of BLE devices (◦: old, •: best for 1000

points, ×: best for 7000 points)

Figure 1 shows different configurations of the BLE de-

vices. The configuration ◦ was determined manually by

the author, and the others were computed by the proposed

algorithm. In Fig. 1, • and × represent the best config-

urations among the 100 configurations for 5 BLE devices

with 1000 and 7000 points, respectively.

4. Experimental Results

4.1 Overview of experiments

In this section, we describe the performance of our

method for a real-world application.

Our experiments were divided into two cases. One con-

sidered different numbers of generation points, n. The

second considered different numbers of BLE devices, k.

The results of these experiments are shown in Sections

4.2 and 4.3, respectively. We present the results for the

application of our method to a real-world example in Sec-

tion 4.4.

1 Computer specifications.

Model Name Think Pad X230

Manufacturer Lenovo

OS Windows 7

CPU Intel(R) Core(TM) i7-3520M (2.90 GHz)

Main Memory 16 GB

Language Perl v5.14.2

Table 1 gives the specifications of the computer on

which the experiments were conducted. The experiment

was conducted as follows. First, for fixed n and k, gener-

ate a set P of n points in R randomly. Then, select 10

different sets SP of k points from P using the random and

k-means++ methods. For each pair P and SP , apply the

k-means method. Repeat for 10 different P . A total of

100 experiments were executed for pairs of n and k. The

mean, minimum and maximum of the objective function

for these 100 experiments are presented in from Table 2

to Table 7.

4.2 Number of points

In this section, we describe the results of our numer-

ical experiments on varying the number n of generation

points. We fixed the number of BLE devices at k = 5,

and increased n from 1000 to 10000 in steps of 1000.

Table 2 shows the mean computation time (msec) per

experiment. The second to fourth rows are the calculation

times for the random method. The second row is the selec-

tion time for the initial points SP . The third row is the

computation time for the k-means method. The fourth
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2 Mean of computation time (msec), k = 5

method n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

selection 42 51 53 56 62 66 85 81 90 84

random k-means 330 631 1017 1640 1970 2461 2617 3029 3343 3827

total 372 682 1070 1696 2032 2527 2702 3110 3433 3911

selection 78 123 155 193 232 279 327 384 427 479

k-means++ k-means 368 586 1170 1422 1762 2239 2894 2991 3182 3853

total 446 709 1325 1615 1993 2518 3221 3375 3609 4332

row is the sum of the selection time and the computation

times in the above rows. The fifth to seventh rows are

the computation times for the k-means++ method. The

interpretation of these rows is the same as for the random

method.

Table 3 is the average number of repetitions required to

reach convergence for the k-means method. The second

and third rows are the averages for the random method

and for the k-means method, respectively.

Table 4 presents the simulated values of the normalized

objective function ϕ. The second to fourth lines are the

values for the random method. The second line is the av-

erage values of ϕ. The third and fourth lines are the min-

imum and the maximum values of ϕ, respectively. The

fifth to seventh lines are for k-means++ method. Each

line is the same as that for random method.

2 Values of the normalized objective function

Figure 2 is a graph of the second, fifth and sixth rows

of Table 4. The x-axis of Fig. 2 is the number of points

n and the y-axis is the value of ϕ.

4.3 Number of beacons

In this section, we show the results for different num-

bers of BLE devices, k, in the numerical experiments. We

fixed n = 5000 and set k at 5, 6, 7, 8, 9, 10, 15 and 20.

Table 5 shows the mean computation time (msec) for

the experiments. The interpretation of the rows is the

same as for Table 2.

Table 6 is the average number of repetitions required

for convergence with the k-means method. The interpre-

tation of the rows is the same as for Table 3.

Table 7 shows the simulated values of the normalized

objective function ϕ. The interpretation of the rows is

the same as for Table4.

3 Values of the normalized objective function

Figure 3 is a graph of the second, fifth and sixth rows

of Table 7. The x-axis of Fig. 3 is the number k of BLE

devices and the y-axis is the value of ϕ.

4.4 Validation in a real-world application

We installed 5 BLE devices on the 7th floor of Build-

ing 18 in Tokai University. We tried two configurations of

BLE devices to evaluate the efficiency of our method. One

configuration was ◦ as shown in Fig. 1, and the other was

•, which had the minimum value for the objective function

among all experiments.

8 Three means of accuracy rates

method first second third #measurement place

◦ [7] 0.855 0.489 0.286 136

• (proposed) 0.916 0.533 0.291 126

Table 8 shows the mean accuracy at each location. At

each location, we measure the RSSI from the BLE devices

and sort the devices based on the RSSI. When the sort or-

der is the same as the order of distance between the place

and the beacons, the measurement is correct. The detail

of correctness is in [7].
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3 Mean of repetitions, k = 5

n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

random 17.57 18.22 21.58 23.18 23.94 24.27 23.54 23.54 23.55 23.47

k-means++ 16.03 17.32 20.29 21.36 21.56 23.12 21.54 23.03 22.67 23.47

4 Values of the objective function, k = 5

method n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

average 53378 53177 53362 53345 53171 53170 53469 52584 52490 52847

random minimum 50144 50348 51206 51613 51527 51507 51352 52584 52490 52847

maximum 66392 65187 70630 65149 66817 56740 64727 55616 55800 56051

average 52509 52680 52685 52813 52398 52784 52721 52605 52397 52677

k-means++ minimum 50144 50347 51206 51613 51527 51507 51352 51563 51582 51736

maximum 63296 65395 64618 65149 56061 56740 64344 55616 55800 56051

5. Discussion

5.1 Number of points

5.1.1 Computation time.

We discuss the computation time for different numbers

of points, n. We compare the second (random method)

and fifth rows (k-means method) in Table 2, which is the

average time for selecting initial points SP from the set

P of generation points. While the times for the random

method are almost unchanged, those for the k-means++

method are proportional to n, because there are repeti-

tions of the computed distances among P in Step 3, Algo-

rithm 2. Moreover, the computation times of the k-means

method for the k-means++ method (sixth row) are al-

most the same as those for the random method (third

row), which also follows from the average number of rep-

etitions (Table 3). Since the computation time for the

k-means method is much larger than the selection time,

the total computation time for the k-means++ method is

almost the same as that for the random method.

5.1.2 Value of the normalized objective function.

The mean values of the normalized objective function

for the k-means++ method are smaller than those for the

random method. The minimum values for these methods

are almost the same between the third and sixth rows of

Table 4.

The curve of the minimum values in Fig 2 increases

when n ≤ 4000 and has little change when n > 4000. The

curve has two local minimum values; 50144(n = 1000)

and 51352(n = 7000). The configuration for the case of

n = 7000 is illustrated for × in Fig. 1. The upper three

BLE devices had the same position and the lower two

were slightly shifted to the left. The value of the objec-

tive function for n = 1000 reached the minimum for all

experiments, illustrated for • in Fig. 1. We approximate

the given region R with points in the proposed method.

Therefore, a sufficient number of points are needed to ob-

tain the optimal solution. Methods for determining the

value for n are left as an area for future work.

5.2 Number of beacons

5.2.1 Computation time.

The average selection time for the k-means++ method

(fourth row, Table 5) increases when the number k of

beacons increases. The total times for the k-means++

method are smaller than those for the random method.

The reason is that the times of the k-means method for

the k-means++ method are smaller than the times for

the random method. The difference in these computa-

tion times follows from the mean number of repetitions

required in the k-means method. Each repetition of the k-

means method requires O(kn) distance calculations. The

larger the number of repetitions required, the larger the

total computation time.

5.2.2 Value of the normalized objective function.

The average values of the normalized objective function

decreased when k increased in our experiments (Figure 3).

Thus, we obtain the following fact.

Fact: The normalized objective function ϕ

monotonically decreases with increasing number

of beacons k.

From this fact, we can vary k to determine the power of

the signal, for a given BLE device location. Since the

power is inversely proportional to the distance squared,

we can calculate a threshold distance from the BLE de-

vice within which the device will have sufficient power.

The value of ϕ is the square of the mean distance from

the BLE device. Therefore, we increase k until ϕ is smaller

than the square of the threshold.

The mean values for the k-means++method are smaller
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5 Mean of computation time (msec), n = 5000

method k 5 6 7 8 9 10 15 20

selection 62 49 49 49 48 48 49 50

random k-means 1970 1758 1799 2247 2791 3126 6266 9979

total 2032 1807 1848 2296 2839 3174 6315 10029

selection 232 227 280 327 392 452 892 1413

k-means++ k-means 1762 1579 1536 1990 2199 2850 5460 7355

total 1994 1806 1816 2317 2591 3302 6352 8768

6 Number of repetitions, n = 5000

k 5 6 7 8 9 10 15 20

random 23.94 26.63 24.02 29.21 33.32 33.99 51.3 64.99

k-means++ 21.56 23.57 20.85 29.21 28.07 31.63 43.54 47.15

than those for the random method (Figure 3). The

minimum values for the k-means++ method are almost

the same as those for the random method when k =

5, 6, . . . , 10. The minimum values for the k-means++

method are smaller than those for the random method

when k = 15, 20 (third and sixth rows of Table 7).

The maximum values for the k-means++ method (sev-

enth row, Table 7) are much smaller than those for

the random method (fourth row) when k = 15, 20.

This means that the k-means++ method is Θ(log k)-

competitive.

5.3 Measurement accuracy rate

From Table 8, the accuracy rate for the nearest and the

second nearest points in the measurement locations for

the proposed method is larger than that for the previous

method [7]. The increase in the accuracy rate is 6.1% for

the nearest and 4.4% for the second nearest points. While

the nearest BLE device is useful for position detection,

the second nearest BLE device is unreliable. The results

suggest that the accuracy of position detection can be in-

creased using ordered order-k Voronoi diagrams and/or

the installation of more BLE devices for the real place.

6. Conclusion

We proposed an algorithm for computing k (> 0) points

in a region R s.t. the objective function ϕ has a minimum

value for the computed k points (Algorithm 3). This algo-

rithm is based on the k-means method. So, we generate a

set P of n points in R, then we apply the k-means method

to P . Since the k-means method is approximate, the pro-

posed method also represents an approximation. We nu-

merically evaluated the performance of the proposed al-

gorithm.

We conducted the experiments using two selection

methods for the initial points: the random method and

the k-means++ method. We varied two parameters in

the experiments: the number of generation points n, or

the number of BLE devices, k.

Two approximations were considered for the proposed

algorithm: an approximation of R, and that in the k-

means method. The former approximation is outlined in

Step 2, Algorithm 3. First we generated some sets of n

points. The larger the number n is, the better the ap-

proximation of R is. In our experiments, we found a local

optimal value when n = 7, 000. Thus, we need to try

some n to compute ϕ for suitable R. The approxima-

tion in k-means method considers the selection of initial

points. So, we try to use k-means++ method, or 10 SPs

in our experiments.

The computation time for the k-means method is short.

The execution time for one approximation using the k-

means method is about 10.0 seconds for n = 5, 000, k = 20

(random method) and 4.33 seconds for n = 10, 000, k = 5

(k-means++ method). We can thus use much of the avail-

able computation time for simulating P , or selection of SP

in the k-means method.

When k increases, the computation time is large and

the value of ϕ is small. It was necessary to introduce a

method for determining a k which provides an appropriate

balance between computation time and accuracy. Using

the binary search method, we determined a number k,

then computed a configuration of k BLE devices and ϕ.

If ϕ is smaller than the distance squared depending on the

BLE devices, then k is twice. We repeat this step until ϕ

is larger than the square of the threshold distance T . Let

K be the number of BLE devices when ϕ > T . The opti-

mal number of BLE devices is in between K/2 and K. So,

we compute the ϕ for 3K/4(= (K/2+K)/2) BLE devices.

If the ϕ is smaller than T , then the ϕ for (3K/4+K/2)/2
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7 Values of the objective function, n = 5000

method k 5 6 7 8 9 10 15 20

average 53171 39384 32337 27655 24715 22349 16122 9571

random minimum 51527 37127 29931 26739 23656 21258 13195 9004

maximum 66817 51389 44026 52557 30082 24442 55838 23834

average 52398 38860 31842 27655 24567 22138 13647 9204

k-means++ minimum 51527 37127 29931 26739 23656 21258 13146 8907

maximum 56061 52897 44026 52557 26697 23846 15580 10036

is calculated. Otherwise ϕ for (K/2 +K)/2, recursively.
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