
IPSJ SIG Technical Report

A Comprehensive Analysis of Branch Prediction in
Multi-core Processors

Lin Meng1 WenWenWang2 ShigeruOyanagi3

Abstract: Branch prediction is an effective method for improving performance of the processor. This paper focus
on the comprehensive analysis of branch prediction in multi-core processors for considering the effective of branch
prediction to the performance of multi-core processors. The experimental items of branch prediction include the kinds,
multi-thread numbers of the applications. These experiments use the Zsim simulator and using the benchmark of
Parsec.

1. Introduction

Currently multi-core processors which have 2 or more cores,
is wildly used. The current general core of multi-core processors
is a processor, which uses pipelining and superscalar processor
technique. These cores have the function of fetch, decode, ex-
ecution, memory access and writeback. Hence, the the branch
prediction is an effective method for reducing the control hazard
and improving performance of the processor .

This paper focus on the comprehensive analysis of branch pre-
diction in multi-core processors for considering the effective of
branch prediction to the performance of multi-core processors.
The experimental items of branch prediction include the kinds,
multi-thread numbers of the applications. These experiments use
the Zsim simulator and using the benchmark of Parsec.

2. Related Work

2.1 Multi-core Processors
Multi-core processors are a single computing component with

two or more independent actual processing units. The unit is
called core too. The current general core is a processor, which
using pipelining and superscalar processing technique. the core
has the function of fetch, decode, execution, memory access and
writeback. Between the every cores, the multi-core have a shared
cache for sharing the data.

The typical multi-core processes include the Intel Xeon, Sun
UltraSPARC, AMD Opteron and IBM Cell.

Intel Xeon (Clovertown)[1]: The Clovetown is the Quad-Core
of Xeon Processor 5300 Series. The processor have 4 cores,
32KB-instruction and 32KB-data cache as L1 cache in per core.
Figure 1 shows the configuration of Xeon 5300 series.

1 Department of Electronicand Computer Engineering, Ritsumeikan Uni-
versity,Kusatsu, Shiga, Japan

2 Department of Computer Science and Engineering, University of Min-
nesota at Twin Cities, Minneapolis, Minnesota, USA

3 College of Information Science and Engineering, Ritsumeikan Univer-
sity,Kusatsu, Shiga, Japan

Fig. 1 Intel Xeon e5300 series.

Fig. 2 Oracle’s SPARC T5 series.

Sun SPARC (T5)[2]: The Sun SPARC T5 processor is a single
chip multi-core processor and contains 16 cores processor. Each
core processor has full hardware support for eight strands, two in-
teger execution pipelines, one floating-point execution pipeline,
and one memory pipeline. Figure 2 shows the configuration of
Oracle’s SPARC T5.

AMD Opteron 6200[3]: The ADM Opteron 6200 processor
up to 16 Bulldozer cores. L1 instruction cache and L2 cahche are

ⓒ 2016 Information Processing Society of Japan 1

Vol.2016-SE-192 No.11
Vol.2016-EMB-41 No.11

2016/6/3



IPSJ SIG Technical Report

shared between the cores. Every core has a private data cache L1.
L3 cache is shared at the chip level.

IBM Cell [4]: Cell processor is a kind of heterogeneous proces-
sor which has a PPE（PowerPC Processor Element）as general-
purpose processor for control the Operating system and several
Cell Broadband Engines（CBE）for the execution of Fast real-
time processing of multimedia data.

2.2 Branch Prediction
Control hazard is a serous problem to improve the perfor-

mance, which is cased by branch instructions in current pro-
cessors. Branch prediction is an effective method to reduce
control hazard for improving the performance of the proces-
sors. Current branch predictor uses caches to keep the history
of TakennotTaken for predict the jump direction of branch, and
lots of these caches use global history to utilize the correlation
among recently executed branches.

Despite the steady improvements that have been made, it is dif-
ficult to completely avoid conflict aliasing, hence many branches
are still miss-predicted.

With increasing the caches size and complexity, the predict ac-
curacy can be improved, however the power consume problem
become more serous.

This paper aim to search for the optimal branch predictor for
Multi-core processors by analyzing the branch predictor Here we
survey and list some current predictors. The predictors who keeps
one caches are call single predictor, the others are call hybrid pre-
dictor [5].
2.2.1 Single predictor

Bimodal[6]: Bimodal predictor is the first branch predictor
which was proposed in 1981. Bimodal predictor uses a 2 bits
saturating counter to keep the behavior of branch. These 2 bits
saturating counters configure the PHT (Pattern History Table)
which is indexed by the lower branch instruction address bits. Be-
cause Bimodal predictor uses 2 bits saturating counter and lower
branch instructions address, the prediction just utilize the corre-
lation among the last 4 branch histories of the predicted branch.
Bimodal branch is very simple, predict the branch quickly. How-
ever if there are branch with the same lower branch instruction
address bits is executed, the entry of the predictor will be pol-
luted, and miss-prediction will happen. In a words, Bimodal pre-
diction is polluted very easily. Figure 3 configuration of Bimodal
predictor.

Gshare[7]: Gshare predictor is widely used in current proces-
sors. Gshare predictor uses the exclusive OR of GBH (global
branch history) and branch address to make the PHT index. One
of the main reasons of miss-predictions is conflict aliasing, which
is caused by the different branches accessing the same PHT entry.
Because it uses the GBH, warming up time for GBH is necessary.
Hence,when the processor change the application or change the
context frequently, the prediction accuracy will reduced. Figure
3 configuration of Gshare predictor.
2.2.2 Hybrid predictor

The widely used base predictors are Bimodal and Gshare pre-
dictors. Several predictors using this approach as hybrid predic-
tors are shown as follows.

Fig. 3 SingleBranch Predictors.

Fig. 4 CombiningBranch Predictors.

Combining[7]: Combining predictor consists of a Bimodal
predictor which works well for local history and a Gshare predic-
tor which works well for global history. A selector is constructed
by 2 bits saturating counter to select the result from either Bi-
modal predictor or Gshare predictor. Figure 4 configuration of
Combining predictor.

Bimode[8]: Bimode predictor is consists of two Gshare predic-
tors and a selector predictor. one of the Gshare predictors for the
branches biased toward Taken (Taken Gshare predictor), and the
other for the branches biased toward NotTaken (NotTaken Gsahre
predictor). The selector predictor uses ChoicePHT to choose the
result from two Gshare predictors. Bimode predictor can reduce
conflict aliasing by dividing biased branches into different PHTs.

Bimode-Plus[11]: Bimode-Plus uses ones of branch behaviors
which is that some branches are strongly biased toward one di-
rection (Taken or NotTaken) until the program finishes. Bimode-
Plus predictor provides a Bias Table which keeps Taken bit and
NotTaken bit to detect the branches which are strongly biased to-
ward Taken or NotTaken. When the strongly biased branches are
detected, the predictor uses Bias Table without using the result
of Bimode predictor nor updating into Bimode Predictor. By this
way, Bimode-Plus predictor reduces the conflict aliasing between
the strongly biased branches and normal branches.

Agree[10]: Agree predictor keeps the Taken biased bit and

ⓒ 2016 Information Processing Society of Japan 2

Vol.2016-SE-192 No.11
Vol.2016-EMB-41 No.11

2016/6/3



IPSJ SIG Technical Report

Table 1 Processor configuration

Issue 6-issue
Cores x86 Out-of-Order cores
Line size 64
L1I 32KB, 4-way-setassociate, 3 latency
L1D 32KB, 8-way-setassociate, 3 latency
L2I 2MB, 8-way-setassociate, 7 latency
L2D 2MB, 8-way-setassociate, 7 latency
L3 12MB, 6-way, 27 latency
mem DDR3-1066-CL8, hash-h3, 4bank

NotTakenbiased bit in BTB. PHT keeps the result whether the
prediction is same to the biased bit. When the branch result is
same to the biased bit, the entry of PHT is incremented, other-
wise it is decremented. Exclusive OR of the biased bit and the
PHT result is used for prediction.

Hybrid[9]: Hybrid predictor keeps several predictors (2bc,
Gshare, GAS, AVG) to predict the branch. BTB keeps the re-
sult of each predictor, and is used at prediction to select the most
accurate one among the several predictors.

TAGE,L-TAGE [12], [13]: These predictors use PPM (predic-
tion by partial matching) to search the patterns in the branch di-
rection history[14]. This method has 4 PHTs which are accessed
by the exclusive OR of different parts of GBHR and branch ad-
dress. Every PHT entry has a tag (a part of branch address) to
protect the conflict. Hence, this method uses the pattern of GBHR
to improve the prediction accuracy.

3. Analyzing the Branch Prediction in Multi-
core Processors

3.1 Experimental condition
These experiments use the Zsim simulator and the benchmark

is Parsec. Zsim is an fast and accurate microarchitectural simu-
lation of thousand-Core systems. Zsim introduces several sim-
ulation techniques that significantly speed up both single and
multi-thread performance, enabling fast and accurate simulation
of large-scale systems [15].

The PARSEC (Princeton Application Repository for Shared-
Memory Computers) is a benchmark suite composed of multi-
threaded programs. The PARSEC benchmarks satisfy the Multi-
threaded Application, Emerging Workloads, Diversity, State-of-
Art Algorithms and Research Support for chip-multiprocessors
[16].

3.2 Analyzing by the thread numbers
We change the thread numbers of the benchmark to get the

experimental results about the IPC(Instruction Per Cycle) and
MPKI (Miss-prediction in 1K instruction). Figure 5 shows the
default branch predictor in Zsim, the first Level BHSR (branch
shift register) is consisted as Bimodal and the second level PHT
is consisted as Gshare predictor. We use the default size of the
branch predictor.

Figure 6 shows the IPC and MPKI in the case of 4-thread, Fig-
ure 7 shows the IPC and MPKI in the case of 8-thread, We found
that when the MPKI is larger, the IPC will become lower. In
the case of 4-thread, the MPKI of dedup, ferret, fluidanimate and
x264, MPKI are different, especially in the fluidanimage the dif-
ference are very large.

Fig. 5 Default predictor in Zsim.

In the case of 8-thread, the differences of MPKI also disappear
in the benchmark of facesim, ferret. It means that when the thread
number is increased, the executed path are changed, causing the
miss-prediction increases.

Because benchmark swaptions just uses one core, hence the
MPKI and IPC are 0 in the core1, core2 and core3.

3.3 Analyzing on the several branch predictors
We equip the Gshare predictor and Bimodal predictor into

Zsim for analyzing the relationship between the performance and
branch predictor in Multi-core processor.

Figure 8 shows the experimental results about IPC and MPKI
by using Bimodal predictor, Figure 9 shows the experimental re-
sults about IPC and MPKI by using Gshare predictor.

By comparing the MPKI between Figure??, Figure 8 and Fig-
ure 9, we found default predictor is better than Gshare and Bi-
modal predictor. However, the default predictor is not the best
predictor, because that Bimodal predictor is better than default
predictor in benchmark freqmine, Gshare predictor is better than
default predictor in benchmark facesim.

From the experimental results, we find that in the same appli-
cation
• the MPKI of every cores are different
• when increasing the thread number, the MPKI will increase.
• the MPKI may different by using the different branch pre-

dictor, and the best predictor are not exist.
Hence, by these conclusions we aim to equip heterogeneous

branch predictors in the multi-core processors for improve the
performance of the processor. The heterogeneous branch predic-
tor means, in the multi-core processor, the branch predictors are
different in the cores.

4. Conclusion

Branch prediction is an effective method for improving perfor-
mance of the processor. This paper focus on the comprehensive
analysis of branch prediction in multi-core processors for con-
sidering the effective of branch prediction to the performance of
multi-core processors. The experimental items of branch predic-
tion include the kinds, multi-thread numbers of the applications.
These experiments use the Zsim simulator and using the bench-
mark of Parsec. From the experimental results, we find that in the

ⓒ 2016 Information Processing Society of Japan 3

Vol.2016-SE-192 No.11
Vol.2016-EMB-41 No.11

2016/6/3



IPSJ SIG Technical Report

Fig. 6 Experimentalresults on 4-thread.

Fig. 7 Experimentalresults on 8-thread.

same application, the MPKI of every cores are different, when
increasing the thread number the MPKI will increase. the MPKI
may different by using the different branch predictor, and the best
predictor are not exist. Future work is equipping a heterogeneous
branch predictors in the multi-core processors for improve the
performance of the processor.

Acknowledgments This work was supported by JSPS KAK-
ENHI Grant Numbers 15K00163 (Grant-in-Aid for Scientific Re-

Fig. 8 Experimentalresults by using Bimodal Predictor.

Fig. 9 Experimentalresults by using Gshare Predictor.

search C) and 26870713 (Grant-in-Aid for Young Scientists B).

References

[1] Quad-Core IntelR XeonR Processor 5300 Series datasheet, 1993.
[2] An Oracle White Paper: Oracle’s SPARC T5-2, SPARC T5-4, SPARC

T5-8, and SPARC T5-1B Server Architecture, 2014.
[3] AMD Opteron 6200 Series Processor.
[4] Y. KUROSAWA, Y. Watanabe, and H. Tago :Cell Broadband Engine

Next-Generation Processor, Toshiba Review, Vol.61, No.6 (2006).

ⓒ 2016 Information Processing Society of Japan 4

Vol.2016-SE-192 No.11
Vol.2016-EMB-41 No.11

2016/6/3



IPSJ SIG Technical Report

[5] L.Meng, K. Yamazaki, S. Oyanagi:A Novel Branch Predictor Using
Local History for Miss-Prediction. Proceedings of the International
Conference on Computer Design (CDES), 2012.

[6] J.E.Smith:A Study of Branch Prediction Strategies, Proc. of 8th Inter-
national Symposium on Computer Architecture (ISCA), pp.135-148,
1981.

[7] S.McFarling:Combining Branch Predictors, Technical report TN-36,
Digital Western Research Laboratory,1993.

[8] Chih-Chieh Lee, I-Cheng K. Chen and Trevor N. Mudge:The bi-mode
branch predictor, Proceedings of the 30th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pp.4-13, 1997.

[9] M.Evers, P-Y.Chang and Y.N.Patt, :Using Hybrid Branch Predictors
to Improve Branch Prediction Accuracy in the Presence of Context
Switches, Proc. of 23th International Symposium on Computer Archi-
tecture (ISCA), pp.3-11, 1996.

[10] E.Sprangle, Robert S. Chappell, Mitch Alsup and Yale N. Patt, :The
Agree Predictor: A Mechanism for Reducing Negative Branch His-
tory, Proc. of 24th International Symposium on Computer Architec-
ture (ISCA), pp.284-291, June 1997.

[11] K.Kise, T.Katagiri, H.Honda and T.Yuba,:The Bimode-Plus Branch
Predictor, IPSJ Trans.ACS-10, pp.85-102,2005.

[12] A.Seznec,:The L-TAGE branch predictor, The 2nd JILP Champi-
onship Branch Prediction Competition (CBP-2), vol.9, 2007.

[13] M.pierre, : A PPM-Like, tag-based predictor, The 1st JILP Champi-
onship Branch Prediction Competition (CBP-1), vol.7, April 2005.

[14] I.-C.K.Chen, J.T.Coffey and T.N.Mudge, :Analysis of branch predic-
tion via data compression, ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems-
VII, pp.128-137, 1996.

[15] S. Daniel and K.Christos :ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems, Proc. of 40th Inter-
national Symposium on Computer Architecture (ISCA), pp.475-486,
2013.

[16] C. Bienia : Benchmarking Modern Multiprocessors, Ph.D. Thesis.
Princeton University, 2011.

ⓒ 2016 Information Processing Society of Japan 5

Vol.2016-SE-192 No.11
Vol.2016-EMB-41 No.11

2016/6/3


