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Estimating Code Size After a Complete Code-Clone Merge

Buford Edwards III1,a) YuhaoWu1,b) MakotoMatsushita1,c) Katsuro Inoue1,d)

Abstract: Code clone detection tools can identify portions of code that are the same. Using the data from these code
clone detection tools we can estimate the number of lines of code that can be removed from a given source code if
we could possibly remove all code clones and replace them with function calls to a shared function. The aims of this
paper are to describe the methods and algorithms by which we can theoretically estimate the resulting code size. We
also briefly discuss the application of the algorithm and take a look at a prototype implementing this algorithm.

1. Introduction
As software system evolves for a long time, it increasingly

contains a lot of duplicate code (code clones) in its source files
for feature extensions and/or maintenance purposes [3]. System
owners can recognize the existence of code clones relatively eas-
ily with code clone detection tools [7], but it is not easy to de-
termine whether or not those code clones are harmful for mainte-
nance activities and if they need to be merged (refactored) [6].

One measure of whether or not to perform refactoring would be
quantitative evaluation of code clones. We would want to know
the total code clone size of the current system, and what the max-
imum reduction we will get in total is if we perform refactoring
on all detected clones. The total code clone size can be easily
calculated from code clone detection tools, but the latter is not
known. These measures might be an important guide towards the
decision of refactoring.

This paper aims to present an algorithm for determining the
total amount in terms of lines of code that can be refactored
from a source file by removing all instances of code clones
from that source file without changing the functionality of the
source code. We have named the algorithm Complete Code-
Clone Merge (hereafter CCM), and we have implemented a pro-
totype tool, which utilizes the output from a code clone detection
tool, CCFinderX [11] as its required input, and which reports
the sizes of the refactored system where all clone instances are
merged and removed. This tool reports an estimated size of the
ideally refactored system, but it does not show the code of the
refactored system itself.

It has long been established that code clones can drive up main-
tenance costs for the developer [9]. Combined with the fact that
companies spend a large portion of their resources devoted en-
tirely to code maintenance already, code clones are an important
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issue for developers in charge of maintenance to take into con-
sideration. Luckily there are many tools that have been devel-
oped that aid maintenance teams in locating code clones for the
purposes of refactoring. We expect that this algorithm and the
prototype tool built from it will be another valuable resource de-
velopers can use to aid in their maintenance of systems as it pro-
vides a way of estimating how much one can theoretically reduce
through refactoring code clones from the source code.

Starting in Section 2 we will review code clones as well as
what is meant by refactoring code clones, and discuss some re-
lated works in Section 3. The basic approach to this algorithm
is described in Section 4 through illustration and the inclusion of
formulas detailing how the size of the refactored source code is to
be calculated in terms of total lines of code. This section begins
with the most basic application of CCM, followed by more com-
plex examples, and finally with a subsection devoted to a detailed
look at the completed algorithm. In Section 5 and Section 6 we
will take a look at the prototype tool which utilizes this algorithm
and the results of its application. Finally we conclude the paper
in Section 7.

2. Code Clones and Refactoring
Code clones are sections of code that are the same or very sim-

ilar to each other. How similar the sections must be for them to
be considered as clones depends on what kind of clone it is and
how one measures their similarity. There are four types of code
clones that are usually recognized [8]. Type-1 code clones are are
identical, with possible variances due only to whitespace or lay-
out. Type-2 clones may have differences in identifier names and
in values. Type-3 clones, in addition to the differences in Type-2
clones, may have more changes such as additions, deletions, and
altered statements caused by editing. Finally, Type-4 clones are
semantic, meaning the sections of code have the same function,
but may have a different structure and/or syntax. Code clones are
often a target for code refactoring.

Code refactoring is the process of restructuring preexistent
code without changing the external behavior or final execution
result [2]. The purposes of refactoring are typically to reduce the
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Fig. 1 Basic idea behind CCM.

overall complexity of the code which may reduce maintenance
costs and improve overall readability. One technique to refactor
code clones is to extract them from the code and create a shared
function that contains the cloned portion, then create calls to that
shared function [4]. This is the method by which we are structur-
ing our algorithm.

3. Related Works
As previously mentioned there is a lot of research already ex-

isting regarding code clones, both how to detect them, and their
impact on maintenance. We know code clones are have been
shown to increase maintenance costs, and inconsistent changes to
cloned sections of code can create faults in the program and lead
to incorrect and unintentional program behavior [8]. Indeed, Juer-
gens et al., in their report “Do Code clones Matter?” concludes
that “nearly every second unintentionally inconsistent change to
a clone leads to a fault” [5].

In addition, some other researches suggest that as a project in-
creases in size it becomes much more likely for unintentional
code clones to appear [1]. There are a number of reasons why
this may be the case. Reasons may include, but are not limited
to, things such as poor communication between programmers on
projects that require multiple programmers, as well as develop-
ment cycles with limited time constraints where copy-and-paste
programming may yield quick short-term results but ultimately
lead to more expensive maintenance costs. We recognize that if
large size projects are especially susceptible to an increased num-
ber of code clones, then there is an inherent benefit to creating an
algorithm to make this calculation for us, as doing so by hand no

longer becomes a reasonable, time-effective procedure.
Due to the nature of code clones, the tools used to detect them,

and refactoring, this paper later touches on the problem of over-
lapping code clones, which has been discussed in detail by other
researchers [10]. Many code clone detection tools find portions
of code that overlap one another, or detect clones that exist within
another clone (embedded clones). This paper does not attempt to
solve the issue of overlapping clones in clone detection software,
but it does try to work around it.

4. Complete Code-Clone Merge
The idea of CCM is relatively simple in theory. We have a

source file S of a certain line length |S | and we wish to remove all
code clones to create a refactored source file S’ of a certain line
length |S ′| by creating a shared function f for each unique code
clone. Each unique code clone will be identified by an ID. The
original code clones are then replaced with a call to their respec-
tive shared functions fID within the original source code so as to
not alter the overall function of the source code. See Figure 1 for
an illustration.

When creating a shared function let the function have the nec-
essary lines for initialization and termination. We will represent
the number of lines necessary for initialization and termination
as some constant IT . Additionally, in place of the removed code
clone let us add the necessary lines to call the shared function.
We will assign constant FC to represent the number of lines nec-
essary for the function call. For there to be a reduction in size,
we assume each code clone length is at least of line length IT +
FC + 2, thus CloneLength ≥ IT + FC + 2. We know the amount
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Fig. 2 Source code with 100 lines, only code clone A.

of times the code clone appears in the source code, henceforth re-
ferred to as population or POP, is at least 2 (there can be no POP
less than this by definition). FC must also be at least one line in
length, otherwise there is no replacement call and we would be
altering the overall function of the source file. If the assumption
concerning code clone length holds we can expect that if S con-
tains any code clones, then after the complete code clone merge
|S ′| < |S |.

4.1 Basic Cases and Examples
Perhaps ones of the most basic cases we can consider would

be only one code clone pair with no overlapping code clones, as
there is only one clone, and a POP of 2. Take Figure 2 as the
example. For this case, the equation to find |S ′| is as follows:

|S ′| = |S | + (−CloneLength × POP + FC × POP

+CloneLength + IT )

Using the formula we get the following result, assuming IT = 2
and FC = 1:

|S ′| = 100 + (−15 × 2 + 1 × 2 + 15 + 2)

= 100 + (−11)

= 89

From this basic example we can see a total of 11 lines are re-
moved from the overall length of the source code. We can dis-
cover the |S ′| value for Figure 1 as well. However, let us consider
a simplified equation that will give us the same results if our as-
sumptions hold true about the length of the code clones.

Whether by counting manually (as is possible to do here with
the small size examples in Figure 1 and Figure 2) or through the
use of clone detection software, we can count the total lines of

code clones, henceforth referred to as T LOC. There are n num-
ber of code clones for any given source. For Figure 2, we need
to only consider one code clone because n was equal to 1. How-
ever, in Figure 1, for example, n = 2. When there exists more
than one kind of code clone there may also be a different number
of FC required for each clone as this is determined based on the
individual clone’s POP. So for each individual clone we need to
determine the summation of CloneLength + IT + FC(POP). We
will refer to this summation as the add back value, AB.

AB =
n∑

ID=1

CloneLengthID + IT + FC × POPID

Please note that this method for determining add back is not
the completed solution to handle all cases, as we have not yet
considered overlapping code clones. We will consider that more
advanced case in Section 4.2. However, once we have determined
AB, the basic formula for determining the refactored source code
size is much more straightforward and will remain the same. It is
as follows:

|S ′| = |S | − T LOC + AB

4.2 Overlapping and Embedded Clones
Overlapping code clones are sections of code that are identified

as code clones which share a portion of their code with another
unique code clone. See Figure 3 for a visualization and exam-
ple of an overlapping code clone. When overlapping code clones
exist, it is no longer possible to simply insert a function call for
each code clone. If this were done, the portion of the code that is
overlapped would be executed more times than intended.

Using Figure 3 as an example, if code clones A and B are refac-
tored out, without accounting for the overlap portion C, and if the
the respective function calls for A and B are placed at the lines
where code clones A and B begin, the overlap portion C would
have its code executed one more time than in the original source.
Because our goal is for S ′ to have the same execution result as S
this would be unacceptable.
4.2.1 Chunking Method

The solution is then to recognize the overlapping portion of
code as a code clone and separate it from any surrounding code
clones it may be embedded in. In the case of the example in Fig-
ure 3, code clone C is embedded in both clones A and B. When
C is explicitly separated from clones A and B, the original clones
A and B are modified into new code clone “chunks.” In the case
of Figure 3, the chunks A’, B’, and C are recognized. We have
nicknamed this solution the “Chunking Method.” Now instead of
making a function for which to call A and B, a function is created
that only calls the lines containing the “chunk portion.” In this
case, for A and B, chunks A’ and B’ are the sections of code that
do not include code clone C. Additionally, a function is created to
call chunk C (which is itself a separate code clone). Chunks A’,
B’, and C each have a chunk size of 1.

Take note that in some cases, it may be possible to have more
than one clone embedded within another clone. In such cases, it
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Fig. 3 Overlapping Code Clone Example

Fig. 4 Code Clone Requiring Multiple Chunks

may be necessary to split a code clone into even more chunks if
an embedded code clone is located at a point that divides the code
clone it is embedded within. See Figure 4 for a visualization and
example. This type of case is not uncommon and will be seen
again later on.

4.3 Attributes
In order to represent code clones overlapping for the purposes

of this algorithm we will recognize the attributes of each line in

the target source code S . Each line in S either contains a line
that is detected as part of a code clone, or it does not. In some
cases, as with embedded and overlapping code clones, a line may
be part of more than one code clone. The ID, one or more, as-
sociated with a code clone will be part of that line’s attributes.
If the line has no attributes, we know it is not part of a detected
code clone. We will use Figure 5 as an example how we construct
the attribute list. This example corresponds to the overlap portion
found in Figure 3. For the sake of simplicity, we will say code
clone A and B are both 15 lines in length, while code clone C is
5 lines in length.

Looking at this attribute list it is easy to see where the over-
lap exists, and what lines exist to form code clone C. Likewise, it
should be clear which parts form chunks A’ and B’.

4.4 CCM Algorithm
CCM requires a target source code S and cloned snippet se-

quence L composed of three tuples, {unique clone ID (ID), start-
ing line (SL), ending line (EL)} as input, and the structure of the
refactored source code set S’ where clones in L are merged into
new shared functions f and |S’| (size of S’). CCM consists of fol-
lowing five steps:
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Fig. 5 Attribute list example

Step 0 (preparation): Remove all lines in S that are either
empty (whitespace) or contain only comments. For each line in
S , prepare an attribute set of clone ID, which is initially empty.

Step 1: For each tuple t in L, add an ID to the attribute set of
all lines between S L and EL (including those lines).

Step 2: For each ID, create one complete cloned snippet as a
new shared function f ID. The attribute set of each line is the
union of the corresponding line’s attributes for each clone in-
stance with the same ID.

Step 3: Scan S from the beginning.
• If the change of attribute happens during scanning, we insert

a calling statement for a function, except for the lines going
back to empty.

• Delete lines with non-empty attribute.
• Count the number of lines deleted, and also added for the

function calls.
The resulting source code is a part of S ′, and the count is also

a part of |S ′|.

Step 4: In the same manner, scan each f ID,
• Delete the lines having a lower ID than f ID.

Fig. 6 From S to S ′

• If a change of attribute happens, insert a termination state-
ment just before the change, and also insert an initialization
statement just after the change (if the line is not deleted).

• Delete the lines with attributes with lower ID than f ID.
The resulting collection of f ID will be another part of S ′, and

the count of the lines remaining and inserted are another part of
|S ′|.

Step 5: Merge and add the results of Step 3 and 4, and formu-
late S ′ and |S ′| respectively.

The time complexity for above Step 0 through 5 are O(1),
O(|L| × MaxOverlapLevel(L)), O(|S | × MaxOverlapLevel(L) ×
MaxOverlapLevel(L)), O(|S | × MaxOverlapLevel(L)), O(|L| ×
MaxOverlapLevel(L)) and O(1) where MaxOverlapLevel(L) is
the max number of levels of overlapping snippets L. Note
that Step 2 can be performed by scanning S and creating each
f ID and its attributes at the same time. This process can be
merged into Step 1. If we assume MaxOverlapLevel(L) is no
more than C (a constant value), the total time complexity be-
comes O(|S |) + O(|L|). The space complexity of CCM is O(|S | ×
MaxOverlapLevel(L)) + O(|L| × MaxOverlapLevel(L)); if same
assumption shown above holds here, O(|S |) + O(|L|).

5. CCM Prototype
A prototype tool based on the CCM algorithm has been de-

veloped. Using the target source code S and clone data gathered
through the use of clone detection software CCFinderX as input
the tool will generate data concerning total refactor size as well
as an S’ file with comments substituting for function calls (Figure
6).

6. Prototype Application
Three examples of source codes and results the CCM Tool has

been run are detailed below. They are written in Java or C. How-
ever, CCM is not limited to Java source codes. The prototype
tool itself is limited to only those languages which CCFinderX
can detect clones for.

6.1 Multilap.java
The first is a Java source code of relatively few lines written
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Fig. 7 Multilap.java Visualization

Table 1 Multilap.java Clone Data

CID POP LENGTH CSIZE CHUNKS
A 2 30 8 1
B 2 31 9 1
C 3 22 15 2
D 5 7 7 1
E 2 19 12 2

Table 2 Multilap Results

Initial Size: 154
Total Clone Length: 138
Reduced Size: 100

LOCs Reduced: 54
Percent Reduction: 35.064934

purposely to contain code clones and to demonstrate how CCM
handles both overlapping code clones and multi-layered over-
laps. Multi-layered overlaps are when code clones are embedded
within two or more other detected clones.

In the example presented by Figure 7, we have a total of five
different code clones and each code clone is assigned a unique
clone ID. Although CCFinderX assigns different numbers for
each clone ID, we will replace these with letters A through E just
for the sake of explanation, the tool itself keeps the ID CCFind-
erX assigns.

In this example, clone A and B overlap, and the overlap portion
we will refer to as clone C. Within code clone C, there is clone D,
which splits code clone C into two chunks. Clone D can also be
found splitting code clone E into two chunks as well.

It is from the data in this graph that is used for the final calcu-
lations. We first determine the total number of lines that must be
included from the code clone sections themselves which comes
from a summation of the CSIZE (chunk size) column of the data
table (Table 1).

TotalCS IZE = 8 + 9 + 15 + 7 + 12

= 51

Next we count the number of chunks that are required per code
clone. Clones A, B, and D each have a chunk value of 1. How-
ever, because they must be split due to another embedded code
clone, clones C and E both have a chunk value of 2. We then
multiply this number by 2, as this tool assumes the initialization
and termination statements for each of the shared functions are
both one line each.

TotalIT = TotalChunks × IT

= (1 + 1 + 2 + 1 + 2) × 2

= 14

Finally we determine the number of function calls that are re-
quired by the source code. Beginning from the top of the source
code, whenever a new code clone appears we insert a function
call statement which we will assume to be 1 line in length. For
example, the first clone that appears is A, so we insert a calling
statement in place of that code clone. As we continue we next
come across C, we insert; we find D, insert; come across C, in-
sert, then B and so on until the end of the source code. Each time
we increment the function call counter FC.

FC = 19

We then add all of these values together to determine the AB value
and complete the final calculation. AB is now taking into account
all cases, including overlapping and embedded clones.

AB = TotalCS IZE + TotalIT + FC

= 51 + 14 + 19

= 84

|S ′| = |S | − T LOC + AB

= 154 − 138 + 84

= 100

Once we have done this calculation we now know the Initial Size
(|S |) of the source file, the Total Clone Length, and Reduced Size
(|S ′|) of the source code. Using this information we can deter-
mine the Lines of Code (LOC) Reduced by calculating |S | − |S ′|.
We then use LOC Reduced to determine the Percent Reduction.

PercentReduction = (LOCReduced/|S |) ∗ 100

= (54/154) ∗ 100

= (.35064934) ∗ 100

= 35.064934

Table 2 summarizes the results.

6.2 Java JDK
The prototype tool was also run on the entirety of the Java JDK

1.8.0 77-b03 and results were gathered [12][13]. See Table 3 for
the results. Note that the total code length in terms of line num-
bers is not including lines of whitespace.
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Fig. 8 Java JDK POP Frequency Graph

Table 3 Java JDK Results
Initial Size: 813546
Total Clone Length: 207072
Reduced Size: 708139

LOCs Reduced: 105407
Percent Reduction: 12.95649

As can be seen in Table 3 the total percentage of code that can
be theoretically refactored using the method we have described in
this paper is approximately 13%. This result seems reasonable if
we consider the graph displaying the POP frequencies (Figure 8).
From the graph we can easily recognize that, at least in the case of
the Java JDK, code clones with a POP of 2 are the most common
without several thousand more code clones appearing to have a
POP of 2 compared even to those with a POP of 3. Considering
that code clone volume for this example is approximately 25%
(TotalCloneLength/InitialS ize×100), if we assumed every code
clone had a POP of 2 then we would expect to reduce the total
volume by about half using the algorithm we have described in
this paper. This is because we are essentially reducing the POP
of each code clone to 1 by introducing a shared function and sub-
stituting function calls where these code clones may appear.

6.3 Quake engine
Another example of a large scale source code yielding similar

results to that of the Java JDK is the Quake engine. The Quake
engine is a game engine written in the C programming language
by id Software to run their video game Quake. It was chosen for
testing because the source code is available to the public and the
code itself consists of several hundred-thousands of lines of code
[14]. The results of the test can be observed in Table 4.

Table 4 Quake engine Results

Initial Size: 216722
Total Clone Length: 49098
Reduced Size: 194324

LOCs Reduced: 22398
Percent Reduction: 10.3349

From these results we can observe that the total code clone
volume is approximately 22.7%. Because the results tell us the
percent that can be refactored by removing code clones is ap-
proximately 10.3%, we can expect for clones with a POP of 2 to
again be the overwhelming majority of clones that are detected
(Figure 9). And again that is precisely what we observe when we
graph the frequency of POP values from this source.

7. Conclusions
Through the application of this algorithm we are able to de-

termine what percentage could theoretically be refactored if we
could merge all instances of code clones, effectively removing all
clones from a given source code. The results discussed in the
application section seem reasonable as we took a look at the fre-
quency of different POP values. It may be of further interest to
research POP frequency from many different large sources. If a
trend appears where the most common POP of a code clone is
consistently 2, then it may be possible to make the assumption
that the total code clone volume that can be refactored by merg-
ing code clones would be approximately half that of the total code
clone volume as was the case with the Java JDK and to a some-
what lesser extent the Quake engine.
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