3M - 09

PRINTEPS におけるマルチヒューマンロボット連携チャネルの設計 ~小学校授業実践への適用~

菅 陽哉[†] 西本 智浩[†] 赤柴 駿介[‡] 柊原 礼士[§] 桑山 美冴[§] 山口 高平[‡] 慶應義塾大学大学院理工学研究科[†] 慶應義塾大学理工学部[‡] 慶應義塾幼稚舎理科室[§]

1.はじめに

現在、知識推論、音声対話理解、画像センシング、マニピュレーションなどに関連するソフトウェアモジュールを再構成するだけで、人と機械が協働可能な総合知能アプリケーションを開発するプラットフォーム PRINTEPS(Practical INTEligence aPplicationS)の研究を進めている[1].

本稿では、複数の人と複数の機械(ロボット)が連携する環境において、PRINTEPS の利用方法を検討し、小学校教育実践への適用について述べる.

2.教師とロボットの連携システム

本稿で提案する、教師と複数のロボットの連携システムの概要が図 1 である. 本システムは、アクター間の連携チャネルを中心としており、アクターごとのワークフローはこの連携チャネルに基づいて関連付いている. また、知識の教示が NAO、進捗把握が Sota、興味関心の向上が Jaco2 と、それぞれの持つ連携チャネルのねらいに対応している.

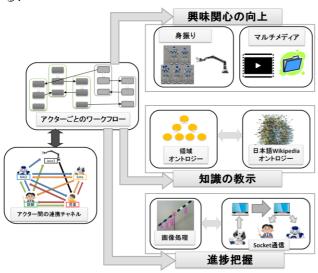


図1 教師とロボットの連携システムの概要

「Designing Multi-Human-Robot Coordinating Channel in PRINTEPS (PRactical INTElligent aPplicationS platfrom) ∼Appling PRINTEPS to Primary School Classroom∼」 †Chihiro Nishimoto, Haruya Suga Graduate School of Science and Technology, Keio University ‡Shunsuke Akashiba, Takahira Yamaguchi Science and Technology, Keio University §Reiji Kukihara, Misae Kuwayama Science, Keio Yochisha Elementary School

3.連携チャネル

連携チャネルとは、複数のロボットや教師、児童といったアクターが自身とは別のアクターと連携する際の経路であり、その経路で伝えるコンテクターへの連携チャネルをまとめたものが表 1~を 5 である. NAO は図 1 のように、教師の補助の示とが主なねらいとなっている. Sota は図 2 のように、実験状況の写真を撮り、画像処理等によって児童の実験進捗具合を把握し、ディスが主なねらいとなっている. Jaco2 は図 3 のように、実験用てこにおもりを付けるといった、進捗把握に見せることで、児童の興味関心の向上を促すことが主なねらいとなっている.

表 1 NAO からの連携チャネル

連携相手	連携内容	媒体	ねらい
教師	会話	発話音声	教師との会話によって授業を進行する
	会話	発話音声	児童に話しかけて児童の興味を引く
	オントロジー の知識	発話音声	専門知識や一般的な知識を児童に 伝えることで、児童の気づきを促す
児童	画像. 動画	ディスプレイ	音声や文字だけでは伝わらない 大きな情報を児童に効果的に伝える
	身振り	NAOの ボディ	児童にNAOに対して親近感を持たせる
Sota	動作命令	コンピュータ	ワークフロー通りに授業を進行させる
Jaco2	動作命令	コンピュータ	ワークフロー通りに授業を進行させる NAOが得た情報から指定の位置に ものを動かす

表 2 Sota からの連携チャネル

連携相手	連携内容	媒体	ねらい
NAO	実験の進捗状況	コンピュータ	教師から依頼があった場合、進捗状況に応じて NAOが児童に実験のアドバイスをするため
教師	実験の進捗状況	ディスプレイ	PCを介して教師が班ごとの実験の進捗状況を 把握することで、個別の対応を可能にする
	画像認識結果	発話音声	正誤の判定を1問ごとにすることで 児童の問題に答える意欲を高める
児童	実験のアドバイス	発話音声	なぜ答えの予想が間違ってしまい どうすれば正解に近づけるのかを 児童に気づかせる

表 3 Jaco2 からの連携チャネル

連携相手	連携内容	媒体	ねらい
児童	ものを動かす動作	Jaco2の本体	Jaco2によってものを動かすことによって 児童の興味を引き、 その動作でしたことを児童に印象付ける

表 4 教師からの連携チャネル

連携相手	連携内容	媒体	ねらい
NAO	会話	発話音声	音声認識によってNAOに情報を伝えることで ワークフローを分岐させて授業を進行する
児童	通常の 授業と同様	発話音声	通常の授業と同様

表 5 児童からの連携チャネル

連携相手	連携内容	媒体	ねらい
NAO	会話	発話音声	音声認識によってNAOに言葉を伝える
Sota	ボタンを押す	Sotaの 本体	Sotaのボタンを押すことで実験中の 画像処理を始めるきっかけとする
児童	通常の 授業と同様	発話音声	通常の授業と同様

図2 NAO授業イメージ図

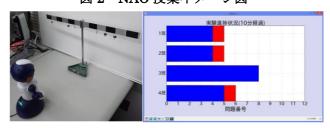
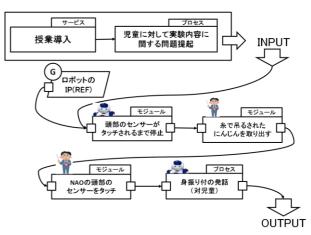


図3 Sota 授業イメージ図


図 4 Jaco2 授業イメージ図

4. PRINTEPS による実装

図 5 は、5 節のケーススタディの授業における『授業導入』というサービスのうちの一つのプロセスである『児童に対して実験内容に関する問題提起』をモジュール単位に展開したものである.このように、PRINTEPS によって、ソフトウェアモジュールを授業のワークフローを基にして、並べることによって、簡単に授業のためのロボット アプリケーションを実装できる.また、教師や児童をアクターとするモジュールは、アプリケーション内での動作は無い空のモジュールであり、メモ書きのように使用する.

5.ケーススタディ

連携チャネルを使用した授業を行う際のケーススタディを、小学校 6 年生の理科における「てこのはたらきのきまり」という単元の中の、てこの規則性を見つける実験とした. 具体的には、実験用てこがつりあうようにおもりを吊るすといった実験を行い、その結果からてこには「重さ×支点

図 5 ケーススタディにおける授業の実装図(一部)

からの距離が一致する」という規則があると児童 に理解させるというものである。今回使用するロボットは以下の3種類である。

- ・NAO[2]…Aldebaran 社製のコミュニケーションロボット,音声認識,音声発話,タッチセンサーによる動作制御が可能で,教師のアシスタントの役割をする.
- ・Sota[3]…ヴイストン社製のコミュニケーションロボット,カメラがあり画像の撮影が可能,児童の実験班ごとに配置し,児童のサポートの役割をする.
- ・Jaco2[4]…Kinova 社製のロボットアーム, NAO や Sota にはできない, ものを掴み動かすことができる.

6.おわりに

2015 年 1 月中旬に慶應義塾幼稚舎にてケーススタディの授業を実施予定である.実験結果については口頭発表にて報告する.

謝辞

本研究の一部は、科学技術振興機構(JST)戦略的 想像研究推進事業(CREST)「実践知能アプリケー ション構築フレームワーク PRINTEPS の開発と社 会実践」の支援によって実施した.

参考文献

- [1] 山口高平,中野有紀子,斎藤英雄,森田武史,青木義満,萩原将文,斎藤俊太,"知能共進化のための実践知能アプリケーションプラットフォーム PRINTEPS",第 29 回人工知能学会全国大会,1I4-2, 2015
- [2] NAO, https://www.aldebaran.com/en/huma noid-robot/nao-robot
- [3] Sota, http://www.vstone.co.jp/products/sota/
- [4] Jaco2, http://www.kinovarobotics.com/servi ce-robotics/products/robot-arms/