
Generating Test Cases for GUI-based Android Applications  
by Modeling and Change Analysis 

Jose Lorenzo San Miguel Shingo Takada 

Keio University 

 

 

1. INTRODUCTION 
The popularity of Android application (apps) has 

grown significantly. Having a short time-to-market 

release presents a major challenge for app developers. 

Before developers release their apps, testing is 

important to ensure the quality of their products.  

Android application testing is still a major challenge 

to app developers. There are a number of existing 

automated GUI testing methods and tools for Android 

that have already been studied, implemented, and 

evaluated [3, 4, 6, 8].  However, according to a study 

by Joorabchi, et al. [5], 64% of the survey respondents 

preferred to use manual testing in practice. On the other 

hand, existing test automation techniques are meant to 

be used with a single version of the app. To the best of 

our knowledge, existing testing methods lacked 

consideration in adapting to changes made to the apps. 

Inspired by these findings, we propose an approach 

to test case generation for Android GUI testing that 

resembles manual testing by using state models and 

supports the evolution of apps through change analysis. 

This paper gives an overview of our on-going work 

which is the continuation of our previous proposal [7]. 

The rest of the paper is organized as follows: Section 

2 contains related works, Section 3 presents our 

methodology, and Section 4 states our conclusions.  

 

2. RELATED WORKS 

There are a number of works related to Android GUI 

testing. Gomez, et al. [4] created a tool called RERAN, 

or record-and-replay, which allows captured low-level 

event streams to be replayed with accurate timing. Choi, 

et al. [3] proposed using machine learning to create an 

abstraction of the GUI and to achieve code coverage 

quickly. The key point of their approach is to reduce the 

number of app restarts and to guide the test execution 

without the need of the precise model of the app. 

Linares-Vásquez, et al. [6] mined app usages to create 

executable test scenarios. They created a tool coined as 

MonkeyLab, a framework based on Record-Mine-

Generate-Validate. Their primary focus was to create 

executable scenarios that would resemble manual 

testing. Yang, et al [8] implemented a static analysis 

tool called GATOR. Their work formulated algorithms 

to construct Window Transition Graph (WTG) which is 

directly applicable for GUI model construction for 

program understanding, testing, and dynamic 

exploration.  

 

3. METHODOLOGY 

Our approach is based on the following five 

components: GUI Modeling, Usage Modeling, Event 
Sequence Analysis, Test Case Generation, and Change 
Analysis. System architecture is shown in Figure 1.  

 

3.1 GUI Modeling 
This step models an approximate behavior of the app 

using a state machine. Each activity (e.g., login and 

home page) is represented as a state while events (e.g., 

button click) are represented as state transitions. The 

GUI Model is created from the output of a third-party 

tool called GATOR [1]. Our approach gathers the 

feasible paths of the AUT (Application Under Test) 

generated by GATOR. The resulting feasible paths are 

used to create the GUI Model. 
 

3.2 Usage Modeling 
The goal of this step is for our method to resemble 

manual testing by collecting normal end-user usage. To 

gather the app usages, an Agent runs in the background 

and monitors the app while it is being used. The usage 

logs generated by the Agent are collected to output the 

Usage Models. These are state machine representations 

of user-generated actions. The Usage Models are 

combined with the GUI Model to obtain a single state 

machine called Behavioral Model. 

 

3.3 Event Sequence Analysis 
We define an Event Sequence as the code execution 

path relative to the state transitions in the Behavioral 
Model. The required inputs for this method are the 

Behavioral Model and the AUT’s call graph called 

Structural Model. The call graph is created by using an 

existing framework called Soot [7]. Figure 2 illustrates 

an example of Event Sequence Analysis processing. 

To create an Event Sequence, consider the path {A}–
E1→{A}–E2→{B} in the Behavioral Model. Events E1 

and E2 correspond to an event in the Android context. 
Corresponding event handlers for these events (i.e., 

E1H and E2H in Structural Model) are used as entry 

“Generating Test Cases for GUI-based Android 
Applications by Modeling and Change Analysis” 

† Jose Lorenzo San Miguel・Keio University 

‡ Shingo Takada・Keio University 

 
 

Copyright     2016 Information Processing Society of Japan.
All Rights Reserved.1-331

1J-08

情報処理学会第78回全国大会



points for the code execution. 

Using the Structural Model, this analysis derives the 

code execution path, which starts from event handlers 

E1H and E2H. In Figure 2, E1H executes function f1() 

while E2H executes f2() and then f3(). 
 

3.4 Test Case Generation 

Our work defines a test case as the combination of an 

Event Sequence and a desired output called Assertion. 

Test values are retrieved from an artifacts database 

which contains a base of “what to test” items (e.g., text 

field values).  

 

3.5 Change Analysis 

Our approach uses Change Analysis to compare the 

differences of the Structural Models of the current and 

new apps. Our work includes static analysis techniques 

to determine the call graph nodes that were affected by 

the changes. This change information is made available 

to testers via a Web UI for them to categorize the 

changes. Changes are categorized into Functional 
Change (may require update of test cases) or Bug Fix 

(test cases must not be updated but needs to be retested). 

In our approach, Change Analysis is done once Test 

Case Generation for the current app has been 

completed. Figure 3 shows an example of this method. 

In the given call graphs, change was made in function 

f1() by adding a function call to f4() and was  
categorized as Functional Change. From the list of 

existing event sequences, we analyzed that SEQ-001 

was affected by the change since it calls the updated 

function f1(). Hence, SEQ-001 is invalidated. 

From the Test Suite, our method determines the test 

cases that use the affected event sequence (i.e., SEQ-

001). In the example, test case TC-001 uses SEQ-001. 

Therefore, we consider TC-001 as an invalid test case. 

To cope with the changes, Event Sequence Analysis 

and Test Case Generation is performed again. In the 

given figure, SEQ-003 is the new event sequence while 

TC-003 is generated using SEQ-003. 

 
4. CONCLUSION 

We presented our approach to test case generation, 

which uses includes GUI Modeling, Usage Modeling, 

Event Sequence Analysis, and Change Analysis. 

 

5. REFERENCES 
[1] GATOR. http://web.cse.ohio-state.edu/presto/ 

software/gator/. (Last accessed: 11-Nov-2015). 

[2] Soot. http://sable.github.io/soot/. (Last accessed: 

25-Dec-2015). 

[3] W. Choi, et al. Guided GUI Testing of Android 

Apps with Minimal Restart and Approximate 

Learning. In OOPSLA’13, pages 623–640, 2013. 

[4] L. Gomez, et al. RERAN: Timing- and Touch-

Sensitive Record and Replay for Android. In 

Proc. of ICSE’13, pages 72–81, 2013. 

[5] M. E. Joorabchi, et al. Real Challenges in Mobile 

App Development. In Proc. of ESEM’13, pages 

15–24, 2013. 

[6] M. Linares-Vásquez, et al. Mining Android App 

Usages For Generating Actionable GUI-based 

Execution Scenarios. In Proc. of MSR’15, pages 

111–122, 2015. 

[7] J. L. San Miguel, et al. Generating Test Cases for 

Android Applications through GUI Modeling, 

Usage Modeling, and Change Analysis. In 

C3S2E15, pages 146–147, 2015.  

[8] S. Yang, et al. Static Window Transition Graphs 

for Android. In Proc. of ASE’15, 2015. 

Figure 1: System Architecture 

Figure 2: Example of Event Sequence Analysis 

Figure 3: Example of Change Analysis 

Copyright     2016 Information Processing Society of Japan.
All Rights Reserved.1-332

情報処理学会第78回全国大会


