
Mobile Application Testing Focusing on External Events
Siena Yu† Shingo Takada‡

Keio University

1. INTRODUCTION

Mobile application testing is not as simple compared

to other applications such as web applications. User

inputs in web applications are limited to keyboard and

mouse only. However, the presence of hardware

components in mobile devices, such as phone

capability, GPS, and hardware sensors, affects the

testing of mobile applications and makes it complicated.

In this paper, we implemented our approach on test

case generation for Android applications, which was

presented in our previous paper [7]. Our approach

focuses on external events and considers both explicit

and implicit types of external events, which are events

that are handled and not handled by the mobile

application code, respectively.

An implicit event is an event that may occur which is

not explicitly handled within an Android application

code. Such event should also be tested. For example, an

application may have code to handle the case where

GPS becomes available, but if it does not have the code

to handle the case where GPS becomes unavailable,

what happens? Our work focuses on such cases.

The remainder of this paper is structured as follows.

Section 2 discusses the related works. Section 3 then

describes our approach. Lastly, section 4 presents the

conclusion.

2. RELATED WORKS
There are several works on testing mobile

applications, but most of them focus on GUI inputs.

Amalfitano, et al. [3] created a tool called

AndroidRipper for automatically testing Android

applications based on GUI Ripping. Anand, et al. [4]

and Jensen, et al. [5] used concolic testing to generate

event sequences in their tools ACTEve and Collider.

These works are successful in automatically generating

test cases for mobile applications. However, they did

not consider the external events that may affect the

mobile application.

There are few works on testing mobile applications

focusing on external events. Amalfitano, et al. [2] and

Morgado, et al. [6] used dynamic analysis of the mobile

application in their proposed approaches. Both of them

manually defined patterns of events to be used in

generating test cases. Adamsen, et al. [1] proposed an

approach by using existing test suite and executing

them in adverse conditions. They used event sequences

that do not affect the outcome of the tests and injected

these into test cases.

However, these works only considered explicit

events, which are events that are handled by the mobile

application. There are some events that a mobile

application should handle and ensure that it will not

crash even if these events are not handled by the code.

We refer to these events as implicit events.

3. OUR APPROACH

In this section, we will describe the architecture of

our proposed approach as shown in Figure 1. The

system is composed of six major parts: (1) Event

Repository, (2) Event-Pattern Repository, (3) Event-

Pattern Generator, (4) Static Code Analyzer, (5) Basic

Test Case Generator, and (6) Augmented Test Case

Generator.

The Event Repository stores the different external

events and their corresponding categories. These are

manually defined. Some examples of external events

are shown in Table 1.

These events can be combined to form different

event-patterns that can be used to create new test cases.

Some example of event-patterns are shown in Table 21.

The Event-Pattern Generator is responsible for

generating these event-patterns and storing it in the

Event-Pattern Repository. Events from the same

category are combined to form event-patterns. A

condition can be added to each event to remove

unnecessary or impossible combinations. Example

conditions are (1) “Idle cannot be an initial event and

only comes after Ringing or Off-hook”, (2) “Off-hook

cannot be an initial event and only comes after

Ringing”, and (3) “Ringing cannot be a last event”.

Given these conditions, we can generate event-patterns

P1 and P2 for category “Phone Call” as shown in Table

2.

The Static Code Analyzer uses static analysis of the

Android code to detect the external events that the

mobile application can sense and react to. Then, the

1Note that we have elided “Becomes” from Table 2, e.g.,

“Ringing” denotes “Becomes Ringing”. “Becomes” will be

elided in the rest of this paper.

“Mobile Application Testing Focusing on External
Events”

† Siena Yu・Keio University

‡ Shingo Takada・Keio University

Copyright 2016 Information Processing Society of Japan.
All Rights Reserved.1-325

1J-05

情報処理学会第78回全国大会

events detected are grouped into categories and these

categories will be used to retrieve event-patterns from

the repository. This will ensure that all events from the

same category will be considered in creating test cases,

which will cover both the explicit and implicit events.

For example, the event “GPS Available” may be

handled by the code (explicit event), but the event

“GPS Unavailable” may not (implicit event).

Users can supply events or categories of events in the

Keywords to ensure these events are considered in

generating test cases. This enables the generation of test

cases for implicit events. For example, even though an

app may not explicitly handle phone call events, the

user may want to generate test cases for phone call

events. Our approach also recommends categories of

events to be tested. Users can choose from these

recommendations. This will also generate test cases for

implicit events.

There are two Test Case Generators. First, the Basic

Test Case Generator generates test cases in

conventional manner, which focuses on GUI or internal

events, based on Android Code information. Then, the

second, the Augmented Test Case Generator,

incorporates the event-patterns to the test cases

generated by the Basic Test Case Generator using

information from Keywords and Static Code Analyzer.

Each pattern can be inserted at the start, middle, or end

of a Basic Test Case. For example, we have the basic

test case: (1) “Click Settings” and (2) “Check Display

Location”; and the event-pattern: (A) “Ringing” and

(B) “Idle”. The augmented test cases would be (TC1)

“A, B, 1, 2”, (TC2) “1, A, B, 2”, and (TC3) “1, 2, A,

B”.

We show an example of generating test cases. The

user specifies “Phone Call” in Keywords and the Static

Code Analyzer detects the event “GPS Available” (E4

in Table 1). Based on the information from the

Keywords, the implicit events are E1, E2, and E3. Then,

based on the information from the Static Code Analyzer,

the explicit event is E4 and the implicit event is E5. The

Augmented Test Case Generator will then retrieve

event-patterns from the detected categories of events,

which are “Phone Call” and “GPS”. The event-patterns

from these categories will be incorporated to the test

cases generated by the Basic Test Case Generator to

form new test cases that consider external events.

4. CONCLUSION
In this paper, we proposed an approach for test case

generation for Android applications, which focuses on

external events. Our approach considers both the

explicit and implicit types of external events.

5. REFERENCES

[1] C. Q. Adamsen, G. Mezzetti, and A. Møller.

Systematic execution of Android test suites in

adverse conditions. In Proc. of ISSTA’15, pages

83–93, 2015.

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, and

N. Amatucci. Considering context events in event-

based testing of mobile applications. In Proc. Of

ICST’13, pages 126–133, 2013.

[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, S.

De Carmine, and A. M. Memon. Using GUI

ripping for automated testing of Android

applications. In Proc. of ASE’12, pages 258–261,

2012.

[4] S. Anand, M. Naik, M. J. Harrold, and H. Yang.

Automated concolic testing of smartphone apps. In

Proc. of FSE’12, 2012. 11 pages.

[5] C. S. Jensen, M. R. Prasad, and A. Møller.

Automated testing with targeted event sequence

generation. In Proc. of ISSTA’13, pages 67–77,

2013.

[6] I. C. Morgado, A. C. R. Paiva, and J. P. Faria.

Automated pattern-based testing of mobile

applications. In Proc. of QUATIC’14, pages 294–

299, 2014.

[7] S. Yu, and S. Takada. External Event-Based Test

Cases for Mobile Application. In Proc. of

C3S2E’15, pages 148-149, 2015.

Category Event ID#

Phone Call

Becomes Idle E1

Becomes Off-hook E2

Becomes Ringing E3

GPS
Becomes Available E4

Becomes Unavailable E5

Category Event-Pattern ID#

Phone Call
Ringing, Off-hook, Idle P1

Ringing, Idle P2

GPS
Available, Unavailable P3

Unavailable, Available P4 Figure 1: Architecture

Table 1: External Events

Table 2: Event-Patterns

Copyright 2016 Information Processing Society of Japan.
All Rights Reserved.1-326

情報処理学会第78回全国大会

