Riemannian preconditioning for tensor completion

Hiroyuki Kasai＊
The University of Electro－Communications

Bamdev Mishra
Amazon Development Centre India

1 Introduction

This paper addresses the problem of low－rank ten－ sor completion when the rank is a priori known or esti－ mated．Without loss of generality，we focus on 3－order tensors．Given a tensor $\mathcal{X}^{n_{1} \times n_{2} \times n_{3}}$ ，whose entries $\mathcal{X}_{i_{1}, i_{2}, i_{3}}^{\star}$ are only known for some indices $\left(i_{1}, i_{2}, i_{3}\right) \in$ Ω ，where Ω is a subset of the complete set of indices $\left\{\left(i_{1}, i_{2}, i_{3}\right): i_{d} \in\left\{1, \ldots, n_{d}\right\}, d \in\{1,2,3\}\right\}$ ，the fixed－ rank tensor completion problem is formulated as

$$
\begin{equation*}
\min _{\boldsymbol{\mathcal { X }} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}} \frac{1}{|\Omega|}\left\|\boldsymbol{\mathcal { P }}_{\Omega}(\boldsymbol{\mathcal { X }})-\mathcal{P}_{\Omega}\left(\boldsymbol{\mathcal { X }}^{\star}\right)\right\|_{F}^{2} \tag{1}
\end{equation*}
$$

subject to $\operatorname{rank}(\mathcal{X})=\mathbf{r}$ ，
where the operator $\mathcal{P}_{\Omega}(\mathcal{X})_{i_{1} i_{2} i_{3}}=\mathcal{X}_{i_{1} i_{2} i_{3}}$ if $\left(i_{1}, i_{2}, i_{3}\right) \in \Omega$ and $\mathcal{P}_{\Omega}(\mathcal{X})_{i_{1} i_{2} i_{3}}=0$ otherwise and （with a slight abuse of notation）$\|\cdot\|_{F}$ is the Frobe－ nius norm． $\operatorname{rank}(\boldsymbol{\mathcal { X }})\left(=\mathbf{r}=\left(r_{1}, r_{2}, r_{3}\right)\right)$ ，called the multilinear rank of $\boldsymbol{\mathcal { X }}$ ，is the set of the ranks of for each of mode－d unfolding matrices．$r_{d} \ll n_{d}$ enforces a low－rank structure．The optimization problem（1） has many variants $[1,2,3]$ ．We exploits Tucker de－ composition［4，Section 4］of a low－rank tensor \mathcal{X} to develop large－scale algorithms for（1），e．g．，in $[5,6]$ ． The present paper exploits both the symmetry present in Tucker decomposition and the least－squares struc－ ture of the cost function of（1）by using the concept of preconditioning．We build upon the recent work ［7］that suggests to use Riemannian preconditioning with a tailored metric（inner product）in the Rieman－ nian optimization framework on quotient manifolds ［ $8,9,10]$ ．Our proposed preconditioned nonlinear con－ jugate gradient algorithm is implemented in the Mat－ lab toolbox Manopt［11］and it outperforms state－of－ the－art methods．We also provide a generic Manopt factory（a manifold description Matlab file）．

2 A new metric and geometry

The quotient and least－squares structures． The Tucker decomposition of a tensor $\mathcal{X} \in$ $\mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ of rank $\mathbf{r} \quad\left(=\left(r_{1}, r_{2}, r_{3}\right)\right)$ is［4，Sec－ tion 4．1］ $\mathcal{X}=\mathcal{G} \times{ }_{1} \mathbf{U}_{1} \times{ }_{2} \mathbf{U}_{2} \times{ }_{3} \mathbf{U}_{3}$ ，where $\mathbf{U}_{d} \in$ $\operatorname{St}\left(r_{d}, n_{d}\right)$ for $d \in\{1,2,3\}$ belongs to the Stiefel manifold of matrices of size $n_{d} \times r_{d}$ with or－ thogonal columns and $\mathcal{G} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ ．Tucker

[^0]decomposition is not unique as $\boldsymbol{\mathcal { X }}$ remains un－ changed under the transformation $\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}, \mathcal{G}\right) \mapsto$ $\left(\mathbf{U}_{1} \mathbf{O}_{1}, \mathbf{U}_{2} \mathbf{O}_{2}, \mathbf{U}_{3} \mathbf{O}_{3}, \mathcal{G} \times{ }_{1} \mathbf{O}_{1}^{T} \times{ }_{2} \mathbf{O}_{2}^{T} \times{ }_{3} \mathbf{O}_{3}^{T}\right)$ for all $\mathbf{O}_{d} \in \mathcal{O}\left(r_{d}\right)$ ，which is the set of orthogonal ma－ trices of size of $r_{d} \times r_{d}$ ．We encode the trans－ formation in an abstract search space of equiv－ alence classes，defined as，$\left[\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}, \mathcal{G}\right)\right]:=$ $\left\{\left(\mathbf{U}_{1} \mathbf{O}_{1}, \mathbf{U}_{2} \mathbf{O}_{2}, \mathbf{U}_{3} \mathbf{O}_{3}, \mathcal{G} \times{ }_{1} \mathbf{O}_{1}^{T} \times{ }_{2} \mathbf{O}_{2}^{T} \times{ }_{3} \mathbf{O}_{3}^{T}\right): \mathbf{O}_{d} \in\right.$ $\left.\mathcal{O}\left(r_{d}\right)\right\}$ ．The set of equivalence classes is the quotient manifold［12，Theorem 9．16］ $\mathcal{M} / \sim:=\mathcal{M} /\left(\mathcal{O}\left(r_{1}\right) \times\right.$ $\left.\mathcal{O}\left(r_{2}\right) \times \mathcal{O}\left(r_{3}\right)\right)$ ，where \mathcal{M} is called the total space that is the product space $\mathcal{M}:=\operatorname{St}\left(r_{1}, n_{1}\right) \times \operatorname{St}\left(r_{2}, n_{2}\right) \times$ $\operatorname{St}\left(r_{3}, n_{3}\right) \times \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ ．Due to the invariance of the Tucker decomposition，the local minima of（1）in \mathcal{M} are not isolated，but they become isolated on \mathcal{M} / \sim ．Consequently，the problem（1）is an opti－ mization problem on a quotient manifold［8，9，10］by endowing \mathcal{M} / \sim with a Riemannian structure．An－ other structure that is present in（1）is the least－ squares structure of the cost function．A way to exploit it is to endow the search space with a met－ ric（inner product）induced by the Hessian of the cost function［13］．Since applying this approach［7， Section 5］directly for（1）is computationally costly， we consider a simplified cost function by assuming that Ω contains the full set of indices，i．e．，we focus on $\left\|\mathcal{X}-\mathcal{X}^{\star}\right\|_{F}^{2}$ ．The block diagonal approximation of the Hessian of $\left\|\mathcal{X}-\mathcal{X}^{\star}\right\|_{F}^{2}$ in $\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}, \mathcal{G}\right)$ is $\left(\left(\mathbf{G}_{1} \mathbf{G}_{1}^{T}\right) \otimes \mathbf{I}_{n_{1}},\left(\mathbf{G}_{2} \mathbf{G}_{2}^{T}\right) \otimes \mathbf{I}_{n_{2}},\left(\mathbf{G}_{3} \mathbf{G}_{3}^{T}\right) \otimes \mathbf{I}_{n_{3}}, \mathbf{I}_{r_{1} r_{2} r_{3}}\right)$, where \mathbf{G}_{d} is the mode－d unfolding of \mathcal{G} ．

A novel Riemannian metric and its moti－ vation．An element x in the total space \mathcal{M} has the matrix representation $\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}, \mathcal{G}\right)$ ．Conse－ quently，the tangent space $T_{x} \mathcal{M}$ is the Cartesian prod－ uct of the tangent spaces of the individual mani－ folds，i．e．，$T_{x} \mathcal{M}$ has the matrix characterization［10］ $T_{x} \mathcal{M}=\left\{\left(\mathbf{Z}_{\mathbf{U}_{1}}, \mathbf{Z}_{\mathbf{U}_{2}}, \mathbf{Z}_{\mathbf{U}_{3}}, \mathbf{Z}_{\mathcal{G}}\right) \in \mathbb{R}^{n_{1} \times r_{1}} \times \mathbb{R}^{n_{2} \times r_{2}} \times\right.$ $\mathbb{R}^{n_{3} \times r_{3}} \times \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}: \mathbf{U}_{d}^{T} \mathbf{Z}_{\mathbf{U}_{d}}+\mathbf{Z}_{\mathbf{U}_{d}}^{T} \mathbf{U}_{d}=0$ ，for $d \in$ $\{1,2,3\}\}$ ．The earlier discussion on symmetry and least－squares structure leads to the novel metric g_{x} ： $T_{x} \mathcal{M} \times T_{x} \mathcal{M} \rightarrow \mathbb{R}$

$$
\begin{align*}
g_{x}\left(\xi_{x}, \eta_{x}\right) & =\left\langle\xi_{\mathbf{U}_{1}}, \eta_{\mathbf{U}_{1}}\left(\mathbf{G}_{1} \mathbf{G}_{1}^{T}\right)\right\rangle+\left\langle\xi_{\mathbf{U}_{2}}, \eta_{\mathbf{U}_{2}}\left(\mathbf{G}_{2} \mathbf{G}_{2}^{T}\right)\right\rangle \\
& +\left\langle\xi_{\mathbf{U}_{3}}, \eta_{\mathbf{U}_{3}}\left(\mathbf{G}_{3} \mathbf{G}_{3}^{T}\right)\right\rangle+\left\langle\xi_{\mathcal{G}}, \eta_{\mathcal{G}}\right\rangle, \tag{2}
\end{align*}
$$

where $\xi_{x}, \eta_{x} \in T_{x} \mathcal{M}$ are tangent vectors with matrix characterizations，$\left(\xi_{\mathbf{U}_{1}}, \xi_{\mathbf{U}_{2}}, \xi_{\mathbf{U}_{3}}, \xi_{\mathcal{G}}\right)$ and $\left(\eta_{\mathbf{U}_{1}}, \eta_{\mathbf{U}_{2}}, \eta_{\mathbf{U}_{3}}, \eta_{\mathcal{G}}\right)$ ，respectively and $\langle\cdot, \cdot\rangle$ is the Eu－ clidean inner product．As contrasts to the classical Euclidean metric，the metric（2）scales the level sets of the cost function on the search space that leads a preconditioning effect on the algorithms．

Table 1：Ingredients to implement an off－the－shelf conjugate gradient algorithm for（1）．

Vertical tangent vectors in \mathcal{V}_{x}	$\begin{aligned} & \left\{\left(\mathbf{U}_{1} \boldsymbol{\Omega}_{1}, \mathbf{U}_{2} \boldsymbol{\Omega}_{2}, \mathbf{U}_{3} \boldsymbol{\Omega}_{3},-\left(\mathcal{G} \times{ }_{1} \boldsymbol{\Omega}_{1}+\mathcal{G} \times_{2} \boldsymbol{\Omega}_{2}+\mathcal{G} \times{ }_{3} \boldsymbol{\Omega}_{3}\right)\right):\right. \\ & \left.\boldsymbol{\Omega}_{d} \in \mathbb{R}^{r_{d} \times r_{d}}, \boldsymbol{\Omega}_{d}^{T}=-\boldsymbol{\Omega}_{d}, \text { for } d \in\{1,2,3\}\right\} \end{aligned}$
Horizontal tangent vectors in \mathcal{H}_{x}	$\begin{aligned} & \left\{\left(\zeta_{\mathbf{U}_{1}}, \zeta_{\mathbf{U}_{\mathcal{L}}}, \zeta_{\mathbf{U}_{3}}, \zeta_{\mathcal{G}}\right) \in T_{x} \mathcal{M}:\right. \\ & \left.\left(\mathbf{G}_{d} \mathbf{G}_{d}^{T}\right) \zeta_{\mathbf{U}_{d}} \mathbf{U}_{d}+\zeta_{\mathbf{G}_{d}} \mathbf{G}_{d}^{T} \text { is symmetric, for } d \in\{1,2,3\}\right\} \end{aligned}$
$\Psi(\cdot)$ projects an ambient vector $\left(\mathbf{Y}_{\mathbf{U}_{1}}, \mathbf{Y}_{\mathbf{U}_{2}}, \mathbf{Y}_{\mathbf{U}_{3}}, \mathbf{Y}_{\mathcal{G}}\right)$ onto $T_{x} \mathcal{M}$	$\begin{aligned} & \left(\mathbf{Y}_{\mathbf{U}_{1}}-\mathbf{U}_{1} \mathbf{S}_{\mathbf{U}_{1}}\left(\mathbf{G}_{1} \mathbf{G}_{1}^{T}\right)^{-1}, \mathbf{Y}_{\mathbf{U}_{2}}-\mathbf{U}_{2} \mathbf{S}_{\mathbf{U}_{2}}\left(\mathbf{G}_{2} \mathbf{G}_{2}^{T}\right)^{-1},\right. \\ & \left.\mathbf{Y}_{\mathbf{U}_{3}}-\mathbf{U}_{3} \mathbf{S}_{\mathbf{U}_{3}}\left(\mathbf{G}_{3} \mathbf{G}_{3}^{T}\right)^{-1}, \mathbf{Y}_{\mathcal{G}}\right) \text {, where } \mathbf{S}_{\mathbf{U}_{d}} \text { for } d \in\{1,2,3\} \text { are } \\ & \text { solutions to } \mathbf{S}_{\mathbf{U}_{d}} \mathbf{G}_{d} \mathbf{G}_{d}^{T}+\mathbf{G}_{d} \mathbf{G}_{d}^{T} \mathbf{S}_{\mathbf{U}_{d}}=\mathbf{G}_{d} \mathbf{G}_{d}^{T}\left(\mathbf{Y}_{\mathbf{U}_{d}} \mathbf{U}_{d}+\mathbf{U}_{d}^{T} \mathbf{Y}_{\mathbf{U}_{d}}\right) \mathbf{G}_{d} \mathbf{G}_{d}^{T} \end{aligned}$
$\Pi(\cdot)$ projects a tangent vector ξ onto \mathcal{H}_{x}	$\begin{aligned} & \left(\xi_{\mathbf{U}_{1}}-\mathbf{U}_{1} \boldsymbol{\Omega}_{1}, \xi_{\mathbf{U}_{2}}-\mathbf{U}_{2} \boldsymbol{\Omega}_{2}, \xi_{\mathbf{U}_{3}}-\mathbf{U}_{3} \boldsymbol{\Omega}_{3},\right. \\ & \left.\xi_{\mathcal{G}}-\left(-\left(\boldsymbol{\mathcal { G }} \times{ }_{1} \boldsymbol{\Omega}_{1}+\boldsymbol{\mathcal { G }} \times_{2} \boldsymbol{\Omega}_{2}+\boldsymbol{\mathcal { G }} \times{ }_{3} \boldsymbol{\Omega}_{3}\right)\right)\right), \text { where } \boldsymbol{\Omega}_{d} \end{aligned}$ are solutions to particular coupled Lyapunov equations．
$\operatorname{egrad}_{x} f$	$\begin{aligned} & \left(\mathbf{S}_{1}\left(\mathbf{U}_{3} \otimes \mathbf{U}_{2}\right) \mathbf{G}_{1}^{T}\left(\mathbf{G}_{1} \mathbf{G}_{1}^{T}\right)^{-1}, \mathbf{S}_{2}\left(\mathbf{U}_{3} \otimes \mathbf{U}_{1}\right) \mathbf{G}_{2}^{T}\left(\mathbf{G}_{2} \mathbf{G}_{2}^{T}\right)^{-1},\right. \\ & \left.\left.\mathbf{S}_{3}\left(\mathbf{U}_{2} \otimes \mathbf{U}_{1}\right) \mathbf{G}_{3}^{T}\left(\mathbf{G}_{3} \mathbf{G}_{3}^{T}\right)^{-1}, \mathcal{S} \times 1 \mathbf{U}_{1}^{T} \times_{2} \mathbf{U}_{2}^{T} \times_{3} \mathbf{U}_{3}^{T}\right) \times_{3} \mathbf{U}_{3}^{T}\right), \\ & \text { where } \mathcal{S}=\frac{2}{\|\Omega\|}\left(\boldsymbol{P}_{\Omega}\left(\boldsymbol{\mathcal { G }} \times_{1} \mathbf{U}_{1} \times_{2} \mathbf{U}_{2} \times_{3} \mathbf{U}_{3}\right)-\mathcal{P}_{\Omega}\left(\mathcal{X}^{\star}\right)\right) . \end{aligned}$

A new geometry and the conjugate gradient． Based on this proposed Riemannian metric，the new geometry is finally formulated as Table 1．This is the ingredients to implement the Riemannian conjugate gradient algorithm［8，Section 8．3］．

3 Numerical comparisons

We show numerical comparisons of our proposed algorithm with state－of－the－art algorithms that in－ clude TOpt［5］and geomCG［6］，for comparisons with Tucker decomposition based algorithms，and HaL－ RTC［1］，Latent［2］，and Hard［3］as nuclear norm minimization algorithms．Case $\mathbf{1}$ considers syn－ thetic small－scale tensors of size $100 \times 100 \times 100$ ， $150 \times 150 \times 150$ ，and $200 \times 200 \times 200$ and rank $\mathbf{r}=(10,10,10)$ are considered．OS is $\{10,20,30\}$ ． Figure 1（a）shows that the convergence behavior of our proposed algorithm is either competitive or faster than the others．Next，Case 2 considers large－scale tensors of size $3000 \times 3000 \times 3000,5000 \times 5000 \times 5000$ ， and $10000 \times 10000 \times 10000$ and ranks $\mathbf{r}=(5,5,5)$ and $(10,10,10)$ ．OS is 10 ．Our proposed algorithm outperforms geomCG in Figure 1（b）．

Fig．1：Experiments results．

4 Conclusion

We have proposed a preconditioned nonlinear con－ jugate gradient algorithm for the tensor completion problem by exploiting the fundamental structures of symmetry，due to non－uniqueness of Tucker decompo－ sition，and least－squares of the cost function．The full version of this paper is on［14］．

References

［1］J．Liu，P．Musialski，P．Wonka，and J．Ye．Ten－ sor completion for estimating missing values in vi－ sual data．IEEE Trans．Pattern Anal．Mach．Intell．， 35（1）：208－220， 2013.
［2］R．Tomioka，K．Hayashi，and H．Kashima．Esti－ mation of low－rank tensors via convex optimization． arXiv， 2011.
［3］M．Signoretto，Q．T．Dinh，L．D．Lathauwer，and J．A．K．Suykens．Learning with tensors：a frame－ work based on convex optimization and spectral reg－ ularization．Mach．Learn．，94（3）：303－351， 2014.
［4］T．G．Kolda and B．W．Bader．Tensor decompositions and applications．SIAM Review，51（3）：455－500， 2009.
［5］M．Filipović and A．Jukić．Tucker factorization with missing data with application to low－n－rank tensor completion．Multidim．Syst．Sign．P．， 2013.
［6］D．Kressner，M．Steinlechner，and B．Vandereycken． Low－rank tensor completion by Riemannian opti－ mization．BIT Numer．Math．，54（2）：447－468， 2014.
［7］B．Mishra and R．Sepulchre．Riemannian precondi－ tioning．arXiv， 2014.
［8］P．－A．Absil，R．Mahony，and R．Sepulchre．Optimiza－ tion Algorithms on Matrix Manifolds．Princeton Uni－ versity Press， 2008.
［9］S．T．Smith．Optimization techniques on Riemannian manifold．In A．Bloch，editor，Hamiltonian and Gra－ dient Flows，Algorithms and Control，volume 3，pages 113－136．Amer．Math．Soc．，Providence，RI， 1994.
［10］A．Edelman，T．A．Arias，and S．T．Smith．The ge－ ometry of algorithms with orthogonality constraints． SIAM J．Matrix Anal．Appl．，20（2）：303－353， 1998.
［11］N．Boumal and R．Sepulchre B．Mishra，P．A．Ab－ sil．Manopt：a matlab toolbox for manopt：a Mat－ lab toolbox foroptimization on manifolds．JMLR， 15（1）：1455－1459， 2014.
［12］J．M．Lee．Introduction to smooth manifolds，vol－ ume 218 of Graduate Texts in Mathematics．Springer－ Verlag，New York，second edition， 2003.
［13］J．Nocedal and S．J．Wright．Numerical Optimization． Springer Series in Operations Research．Springer， 2006.
［14］Hiroyuki Kasai and Bamdev Mishra．Riemannian preconditioning for tensor completion．arXiv， 2015.

[^0]: ＊This work was initiated while Bamdev Mishra was with the Department of Electrical Engineering and Computer Sci－ ence，University of Liège， 4000 Liège，Belgium and was visiting the Department of Engineering（Control Group），University of Cambridge，Cambridge，UK．H．Kasai is（partly）supported by the Ministry of Internal Affairs and Communications，Japan，as the SCOPE Project（150201002）．B．Mishra was supported as an FNRS research fellow（Belgian Fund for Scientific Research）． The scientific responsibility rests with its authors．

