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1 Introduction
This paper addresses the problem of low-rank ten-

sor completion when the rank is a priori known or esti-
mated. Without loss of generality, we focus on 3-order
tensors. Given a tensor Xn1×n2×n3 , whose entries
X ⋆

i1,i2,i3
are only known for some indices (i1, i2, i3) ∈

Ω, where Ω is a subset of the complete set of indices
{(i1, i2, i3) : id ∈ {1, . . . , nd}, d ∈ {1, 2, 3}}, the fixed-
rank tensor completion problem is formulated as

min
X∈Rn1×n2×n3

1

|Ω|
∥PΩ(X )−PΩ(X ⋆)∥2F

subject to rank(X ) = r,

(1)

where the operator PΩ(X )i1i2i3 = Xi1i2i3 if
(i1, i2, i3) ∈ Ω and PΩ(X )i1i2i3 = 0 otherwise and
(with a slight abuse of notation) ∥ · ∥F is the Frobe-
nius norm. rank(X ) (= r = (r1, r2, r3)), called the
multilinear rank of X , is the set of the ranks of for
each of mode-d unfolding matrices. rd ≪ nd enforces
a low-rank structure. The optimization problem (1)
has many variants [1, 2, 3]. We exploits Tucker de-
composition [4, Section 4] of a low-rank tensor X to
develop large-scale algorithms for (1), e.g., in [5, 6].
The present paper exploits both the symmetry present
in Tucker decomposition and the least-squares struc-
ture of the cost function of (1) by using the concept
of preconditioning. We build upon the recent work
[7] that suggests to use Riemannian preconditioning
with a tailored metric (inner product) in the Rieman-
nian optimization framework on quotient manifolds
[8, 9, 10]. Our proposed preconditioned nonlinear con-
jugate gradient algorithm is implemented in the Mat-
lab toolbox Manopt [11] and it outperforms state-of-
the-art methods. We also provide a generic Manopt
factory (a manifold description Matlab file).

2 A new metric and geometry
The quotient and least-squares structures.

The Tucker decomposition of a tensor X ∈
Rn1×n2×n3 of rank r (=(r1, r2, r3)) is [4, Sec-
tion 4.1] X = G×1U1×2U2×3U3, where Ud ∈
St(rd, nd) for d ∈ {1, 2, 3} belongs to the Stiefel
manifold of matrices of size nd × rd with or-
thogonal columns and G ∈ Rr1×r2×r3 . Tucker
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decomposition is not unique as X remains un-
changed under the transformation (U1,U2,U3,G) 7→
(U1O1,U2O2,U3O3,G×1O

T
1 ×2O

T
2 ×3O

T
3 ) for all

Od ∈ O(rd), which is the set of orthogonal ma-
trices of size of rd × rd. We encode the trans-
formation in an abstract search space of equiv-
alence classes, defined as, [(U1,U2,U3,G)] :=
{(U1O1,U2O2,U3O3,G×1O

T
1 ×2O

T
2 ×3O

T
3 ) : Od ∈

O(rd)}. The set of equivalence classes is the quotient
manifold [12, Theorem 9.16] M/ ∼:= M/(O(r1) ×
O(r2)×O(r3)), where M is called the total space that
is the product space M := St(r1, n1) × St(r2, n2) ×
St(r3, n3) × Rr1×r2×r3 . Due to the invariance of the
Tucker decomposition, the local minima of (1) in
M are not isolated, but they become isolated on
M/ ∼. Consequently, the problem (1) is an opti-
mization problem on a quotient manifold [8, 9, 10] by
endowing M/ ∼ with a Riemannian structure. An-
other structure that is present in (1) is the least-
squares structure of the cost function. A way to
exploit it is to endow the search space with a met-
ric (inner product) induced by the Hessian of the
cost function [13]. Since applying this approach [7,
Section 5] directly for (1) is computationally costly,
we consider a simplified cost function by assuming
that Ω contains the full set of indices, i.e., we focus
on ∥X − X ⋆∥2F . The block diagonal approximation
of the Hessian of ∥X − X ⋆∥2F in (U1,U2,U3,G) is
((G1G

T
1 )⊗In1 , (G2G

T
2 )⊗In2 , (G3G

T
3 )⊗In3 , Ir1r2r3),

where Gd is the mode-d unfolding of G.
A novel Riemannian metric and its moti-

vation. An element x in the total space M has
the matrix representation (U1,U2,U3,G). Conse-
quently, the tangent space TxM is the Cartesian prod-
uct of the tangent spaces of the individual mani-
folds, i.e., TxM has the matrix characterization [10]
TxM = {(ZU1 ,ZU2 ,ZU3 ,ZG) ∈ Rn1×r1 × Rn2×r2 ×
Rn3×r3 × Rr1×r2×r3 : UT

d ZUd
+ ZT

Ud
Ud = 0, for d ∈

{1, 2, 3}}. The earlier discussion on symmetry and
least-squares structure leads to the novel metric gx :
TxM× TxM → R

gx(ξx, ηx) = ⟨ξU1 , ηU1(G1G
T
1 )⟩+ ⟨ξU2 , ηU2(G2G

T
2 )⟩

+⟨ξU3 , ηU3(G3G
T
3 )⟩+ ⟨ξG , ηG⟩,

(2)
where ξx, ηx ∈ TxM are tangent vectors with
matrix characterizations, (ξU1 , ξU2 , ξU3 , ξG) and
(ηU1 , ηU2 , ηU3 , ηG), respectively and ⟨·, ·⟩ is the Eu-
clidean inner product. As contrasts to the classical
Euclidean metric, the metric (2) scales the level sets
of the cost function on the search space that leads a
preconditioning effect on the algorithms.
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Table 1: Ingredients to implement an off-the-shelf conjugate gradient algorithm for (1).
Vertical tangent {(U1Ω1,U2Ω2,U3Ω3,−(G×1Ω1 + G×2Ω2 + G×3Ω3)) :
vectors in Vx Ωd ∈ Rrd×rd ,ΩT

d = −Ωd, for d ∈ {1, 2, 3}}
Horizontal tangent {(ζU1

, ζU2
, ζU3

, ζG) ∈ TxM :

vectors in Hx (GdG
T
d )ζ

T
Ud

Ud + ζGd
GT

d is symmetric, for d ∈ {1, 2, 3}}
Ψ(·) projects an ambient (YU1

−U1SU1
(G1G

T
1 )

−1,YU2
−U2SU2

(G2G
T
2 )

−1,
vector (YU1

,YU2
,YU3

,YG) YU3
−U3SU3

(G3G
T
3 )

−1,YG), where SUd
for d ∈ {1, 2, 3} are

onto TxM solutions to SUd
GdG

T
d +GdG

T
d SUd

= GdG
T
d (Y

T
Ud

Ud +UT
d YUd

)GdG
T
d

Π(·) projects a tangent (ξU1
−U1Ω1, ξU2

−U2Ω2, ξU3
−U3Ω3,

vector ξ onto Hx ξG − (−(G×1Ω1 + G×2Ω2 + G×3Ω3))), where Ωd

are solutions to particular coupled Lyapunov equations.
egradxf (S1(U3 ⊗U2)G

T
1 (G1G

T
1 )

−1,S2(U3 ⊗U1)G
T
2 (G2G

T
2 )

−1,
S3(U2 ⊗U1)G

T
3 (G3G

T
3 )

−1,S ×1 U
T
1 ×2 U

T
2 ×3 U

T
3 )×3 U

T
3 ),

where S = 2
|Ω| (PΩ(G×1U1×2U2×3U3)−PΩ(X ⋆)).

A new geometry and the conjugate gradient.
Based on this proposed Riemannian metric, the new
geometry is finally formulated as Table 1. This is the
ingredients to implement the Riemannian conjugate
gradient algorithm [8, Section 8.3].

3 Numerical comparisons
We show numerical comparisons of our proposed

algorithm with state-of-the-art algorithms that in-
clude TOpt [5] and geomCG [6], for comparisons with
Tucker decomposition based algorithms, and HaL-
RTC [1], Latent [2], and Hard [3] as nuclear norm
minimization algorithms. Case 1 considers syn-
thetic small-scale tensors of size 100 × 100 × 100,
150 × 150 × 150, and 200 × 200 × 200 and rank
r = (10, 10, 10) are considered. OS is {10, 20, 30}.
Figure 1(a) shows that the convergence behavior of
our proposed algorithm is either competitive or faster
than the others. Next, Case 2 considers large-scale
tensors of size 3000×3000×3000, 5000×5000×5000,
and 10000 × 10000 × 10000 and ranks r = (5, 5, 5)
and (10, 10, 10). OS is 10. Our proposed algorithm
outperforms geomCG in Figure 1(b).
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(a) Case 1: small-scale tensors.
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(b) Case 2: large-scale tensors.

Fig. 1: Experiments results.

4 Conclusion
We have proposed a preconditioned nonlinear con-

jugate gradient algorithm for the tensor completion
problem by exploiting the fundamental structures of
symmetry, due to non-uniqueness of Tucker decompo-
sition, and least-squares of the cost function. The full
version of this paper is on [14].
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