TE AL 2 5 T8 Rl = [E R &

5G-09

Efficient User Space Scheduling Library for FreeRT'OS

Robin Kase t

Thiem Van Chu f

Kenji Kise f

f Graduate School of Information Science and Engineering, Tokyo Institute of Technology

1 Introduction

At present, there is a gap between practical imple-
mentations of task scheduling on popular Real-Time
Operating Systems (RTOS) and theoretical real-time
scheduling. This is due to the overhead required when
the RTOS offers advanced features. Moreover, imple-
menting advanced scheduling features consumes vast
amount of development time. With a real-time sched-
uler library implemented in user space, the user can
choose whether to skip the overhead, or use more ad-
vanced theories. At the moment, there are already sev-
eral scheduling frameworks for FreeRTOS. However,
they either do not provide advanced scheduling poli-
cies, or require high scheduling overhead.

This paper proposes a low overhead task schedul-
ing library for FreeRTOS (LOTFree) implemented in
user space that supports periodic tasks, dependable
Timing-Error-Detection, Rate-Monotonic Scheduling
(RMS) policy, and Deadline-Monotonic Scheduling
(DMS) policy. LOTFree supplies theoretical real-time
scheduling features to speed up development of com-
plex projects, and make FreeRTOS friendlier to stu-
dents who have newly studied real-time scheduling.

2 FreeRTOS

FreeRTOS is an open source RTOS that has been
ported to many microcontrollers. It is a microkernel
mainly written in C which requires low memory foot-
print and low overhead. Since the kernel is designed to
be simple and small, it does not contain advanced OS
features such as file system and IO support. Instead,
these features are supported by library extensions.

The default scheduling mechanism in FreeRTOS is
implemented inside the tick interrupt. The tick inter-
rupt checks if the currently running task has highest
priority. If a task with higher priority is ready, context
switch is issued if preemption is enabled. Tasks with
equal priorities are scheduled in round-robin manner if
time slicing is enabled.

3 Related Work

Heterogeneous Scheduler Task (HST)[1] is an ex-
isting open source scheduler for FreeRTOS that im-
plements advanced scheduling policies such as Earli-
est Deadline First (EDF) in the user space, and sup-
ports non-periodic tasks as sporadic tasks and aperi-
odic tasks, which are scheduled with background exe-
cution. However, its implementation requires slightly
more than twice as much overhead as FreeRTOS na-
tive scheduler for context switches[1]. The overhead is
mainly caused by the scheduler task.

Fig. 1(a) illustrates the context switches between

1-103

A
" cs] [ResuME] [cs]
;) :
2 1| 2 |s 4 5/ &
Sy CCTIRPCLORY TRRE ITY TETTITSITIEORIE, Abks SERE Joorerannniaan
8 !
N HST i
P TITIT T I T Ty T rrres ‘ {
Task 1 Task2|
1- Task 1 Ended or is Blocked t

2-C5 to HST due fo xTaskNotifyGive{ HST)
3- vTaskResume(Task 2)

4- Return from vTaskResume()

5- ulTaskNotify Take[HST)

6-CSto Task 2

(a) HST context switches within RMS [1]

Kernel

[CS]

Priority

Task 1

Task 2

—»
1 -Task 1 Ended or is Blocked t
2 - Context switch to Task 2

(b) LOTFree context switches within RMS

Figure 1: HST and LOTFree context switch examples

tasks in HST for any kind of scheduling policy, includ-
ing RMS. When Task 1 has finished its execution or is
blocked, a context switch to the scheduler task occurs.
The scheduler task then unsuspends Task 2 and blocks
itself. All other tasks remain suspended, and the ker-
nel will therefore make context switch to Task 2. The
scheduler task is also switched in during each tick in-
terrupt to check whether the current user task should
continue its execution, or another user task should get
CPU burst, based on the scheduling policy. In this
way, the scheduler task controls which task will get
CPU burst based on the scheduling policy.

As the scheduler task is switched in each tick in-
terrupt, task release, task completion, task block,
and task suspension, flexibility for implementing dif-
ferent scheduling policies, especially dynamic priority

Copyright ©2016 Information Processing Society of Japan.
All Rights Reserved.

TE AL 2 5 T8 Rl = [E R &

scheduling policies as EDF, is provided. However, sim-
ple scheduling policies that should not require large
overhead is forced to require overhead nearly as much
as complex scheduling policies. Moreover the context
switches to the scheduler task are too frequent.

Another disadvantage of HST is that the Timing-
Error-Detection lacks handling of cases when the dead-
line counter or/and tick counter overflows. This can
lead to misdetection of Timing-Error when deadline
counter overflows, and Timing-Error may not be de-
tected when tick counter overflows.

4 Proposal of LOTFree

LOTFree has a scheduler task which is a periodic
task with highest priority. Thus, the scheduler task
will not be switched in for each tick interrupt, or be-
fore context switches between user tasks. It will only be
switched in once during each period that can be set by
the user, and will therefore reduce the scheduler over-
head drastically compared to HST. At the moment, the
scheduler task is only used for Timing-Error-Detection.
However, it will be more active in features that are
planned to be implemented in future work.

Since RMS and DMS are fixed priority scheduling
policies, LOTFree calculates and assigns priorities to
each task with kernel Application Programming Inter-
face (API), before FreeRTOS native scheduler starts
when using these policies. The native scheduler will
then handle all context switches to tasks according
to their priorities. Thus, FreeRTOS native scheduler
alone is enough for these scheduling policies, and the
scheduler task is not needed for RMS and DMS if
Timing-Error-Detection is disabled in LOTFree. Fig.
1(b) illustrates the absence of additional overhead dur-
ing context switches between tasks for fixed priority
scheduling policies as RMS or DMS in LOTFree.

Dynamic priority scheduling policies can be imple-
mented by letting the scheduler task calculate new pri-
orities according to the policy, and assign them to user
tasks each time the scheduler task is released. The
kernel will then schedule all tasks according to their
priorities until next time scheduler task period where
all user task priorities are recalculated again. As the
scheduler task period can be set by the user, context
switches to the scheduler task can be adjusted to any
desired frequency.

There are some configurations of FreeRTOS that
must be considered by the user when using LOTFree.
Preemption, time slicing and tick hook must be en-
abled, and the number of priorities available to tasks
should be configured to number of tasks + 1 (for the
scheduler task), so that each task can have its own pri-
ority.

Two types of Timing-Error-Detection are provided in
LOTFree, one for detecting tasks that have exceeded
their maximal execution time, and the other for detect-
ing tasks that have missed their deadline. An example
scenario of maximal execution time excess handling is

1-104

period maximal execution time

phase x deadline

N
T(d)l pl el d)
T1 resumed
T1(0, 40, 19, 29

0 10 20\30 40 50 60 70 80 90 100110120130 140150

Maximal execution time exceeded, T1 suspended

Figure 2: Timing-Error-Detection handling excess of max-
imal execution time.

T1 released and restarted

T1(0, 40, 19, 29)

0 10 20 30\40 50 60 70 80 90 100110120130 140 150

Deadline missed, T1 is deleted and recreated
Figure 3: Timing-Error-Detection handling deadline miss.

described in Fig. 2. If maximal execution time excess of
a task is detected, it will be suspended by the scheduler
task until the next period of the suspended task. An
example scenario of deadline miss handling is described
in Fig. 3. If deadline miss of a task is detected, it will
be deleted and recreated with phase set to start of its
next period by the scheduler task. These two Timing-
Error-Detections can also be programmed to take care
of thinkable cases when the tick counter or/and dead-
line counter overflows.

5 Conclusion & Future Work

A new scheduling library for FreeRTOS LOTFree is
proposed. LOTFree requires less overhead than HST,
since LOTFree does not need to switch in the scheduler
task as frequently as HST. The user can program pe-
riodic tasks with simpler interface with LOTFree. Fi-
nally, the Timing-Error-Detection in LOTFree is also
designed to take care of cases when the tick counter
or/and deadline counter overflows.

LOTFree is planned to be extended with features
as EDF scheduling policy, Priority-Inheritance proto-
col, and Periodic Server for scheduling non-periodic
tasks, and will be distributed with open source license.
The overhead of LOTFree will be evaluated, and the
Timing-Error-Detection functionalities will be tested
for extreme situations when the tick counter or/and
deadline counter overflows.

References

[1] Francisco E Paez, Jose M Urriza, Ricardo Cayssials,
and Javier D Orozco. Freertos user mode scheduler
for mixed critical systems. In Sizth Argentine Con-
ference on Embedded Systems (CASE), pp. 37-42.
IEEE, 2015.

Copyright ©2016 Information Processing Society of Japan.
All Rights Reserved.

