
Enabling Fast Thousand-Core Processor Emulation using FPGAs

Thiem Van Chu † Kenji Kise †

† Graduate School of Information Science and Engineering, Tokyo Institute of Technology

1 Introduction

The microprocessor industry has shifted to integrat-

ing multiple processor cores on a chip due to the power

wall and the limitation of instruction-level parallelism

techniques. Multi/many-core processors have now be-

come main stream. Several processors with up to 100

cores are already on the market. To keep continuous

improvements in system performance, the core count

is expected to grow up to 1000 cores and beyond.

To design novel many-core processors with hundreds

to thousands of cores, simulation environments play

a decisive role. Unfortunately, conventional software

simulators scale poorly. Their simulation speed typi-

cally varies from several to hundreds of Kilo Instruc-

tions Per Second depending on the level of detail of

the simulation models, and therefore the simulation of

one second of one core may take several days to sev-

eral months to complete. Simulating n cores is fun-

damentally over n times slower than simulating one

core due to the communication overheads. Thus, pro-

viding a practical simulation time for designing large-

scale many-core processors is a challenging problem.

Although some approaches such as using only a sub-

set of benchmarks and parallelizing the software sim-

ulators leveraging modern substrates (e.g., multi-core

PCs, clusters) have been proposed to tackle the low

simulation performance, none of them can significantly

improve simulation speed without sacrificing simula-

tion accuracy.

In this study, we use FPGAs, which have been

adopted in accelerating many computational tasks such

as data processing in data centers, for fast and accu-

rately emulating many-core processors with hundreds

to thousands of cores. We describe several techniques

to overcome the capacity constraints of FPGAs while

leveraging their high degree of parallelism to improve

the simulation speed.

2 FPGA-Accelerated Simulation

The many-core processor simulation problem can be

tackled by exploiting the fine-grained parallelism of

FPGAs. In our FPL 2015 paper [1], we propose some

novel techniques for emulating large-scale Network-on-

Chip (NoC) designs on a single FPGA. However, de-

signing a novel many-core processor requires fast and

accurate simulation of not only the on-chip network

but also the cores and memory.

When the FPGA-based approach is adopted, there

are two problems that must be resolved. The first prob-

lem is that it is hard to scale the simulation model to

support large designs due to the FPGA capacity con-

straints. For example, even a very large FPGA has

only around 10MB of on-chip memory which is far

from enough for implementing the inside states of all

cores and caches of a many-core processor. The sec-

ond problem is the difference between the final ASIC

and FPGA. The simulated processor cores may contain

some modules that are inefficient to implement directly

on FPGA. For example, a Content-Addressable Mem-

ory (CAM) or a memory with more than two ports are

widely known to be FPGA-inefficient structures. They

would consume a large amount of resources and oper-

ate at low frequencies if being implemented directly on

FPGA.

3 Proposed Approach

3.1 Time-Multiplexing

We adopt the time-multiplexing technique to scale

our simulation model to support designs with hundreds

to thousands of cores. In this paper, we focus on tech-

niques on an FPGA. To efficiently leverage multiple

FPGAs to emulate larger designs, some extensions are

required, but left as future work.

The time-multiplexing technique has been adopted

by some existing FPGA-based processor emulators in-

cluding HAsim [2]. However, these emulators use

only one physical processor core and one physical NoC

router to sequentially emulate all cores and routers of

a processor, and therefore their simulation speed de-

creases dramatically as the number of simulated cores

is increased up to hundreds to thousands. Our insight

is that, many-core processors with direct interconnec-

tion networks such as k-ary n-cubes can be emulated

using multiple interconnected physical nodes, each is

composed of a processor core and a NoC router.

Figure 1(a) shows an example where a 4×4 tile pro-

cessor is emulated by using two physical nodes. We

call the group of interconnected physical nodes physi-

cal cluster. Figure 1(b) shows the high-level datapath

when the time-multiplexing technique is adopted. As

discussed in Section 2, even a very large FPGA has

only a limited amount of on-chip memory. Thus, we

use off-chip DRAM in addition to the on-chip memory

to be able to store the inside states of all logical clus-

Copyright 2016 Information Processing Society of Japan.
All Rights Reserved.1-25

2A-06

情報処理学会第78回全国大会

(a)

0 1 2 3

4 5 6 7

0 1
7

Logical
Clusters

Physical Cluster
Size = 1x2

On-Chip
Memory

0 1 2Logical
Clusters

N-1

Physical
Cluster

Off-Chip
DRAM
(HMC)

FPGA

FPGA Board

(b)

Figure 1: (a) A 4×4 tile processor is emulated by using two
physical nodes. (b) High-level datapath when the time-
multiplexing technique is adopted.

ters, the data passed between the logical clusters, and

caches. The bottleneck of off-chip memory access can

be overcome by using Hybrid Memory Cube (HMC),

an emerging high-performance DRAM interface sup-

ported in many modern FPGA boards.

3.2 Decoupling Processor Clock from FPGA

Clock

As discussed earlier, simulating a processor on FP-

GAs is not trivial because some modules of the proces-

sor may be FPGA-inefficient structures. Directly im-

plementing these structures on FPGAs would result in

a low operating frequency and a large amount of FPGA

resource consumption. If we decouple the processor

clock from the FPGA clock, we can use multiple FPGA

clocks to emulate a clock of the FPGA-inefficient struc-

tures. By this way, we can choose an implementation

that efficiently utilizes FPGA resources while achiev-

ing a high operating frequency. Although the FPGA-

cycles-to-processor-cycles ratio is greater than 1, the

emulator performance may not be affected because of

the improvement in operating frequency. For exam-

ple, a memory with three read ports and three write

ports can be efficiently implemented on FPGA using

embedded SRAMs (block RAMs in Xilinx FPGAs) if

we use three FPGA cycles to emulate a cycle of the

memory because an embedded SRAM typically has

only one read port and one write port. The direct im-

plementation is slow because it uses discrete registers

and large multiplexers. If the operating frequencies

of the direct implementation and the implementation

with three FPGA cycles per emulation cycle are 50MHz

and 200MHz, respectively, the indirect implementation

can achieve even better performance.

By decoupling the processor clock from the FPGA

clock, we can also easily implement large memories

such as caches using both on-chip and off-chip RAM.

For example, when a cache is implemented in this way,

if a processor core reads a cache line that is not stored

in the on-chip memory, we need several FPGA cycles

to fetch the cache line from the off-chip memory.

With the above approach, each module of a proces-

sor may take a different number of FPGA cycles to

complete its one cycle. Thus, we need to synchronize

the operations of all modules inside the processor. In

a naive synchronization method, before proceeding to

the next cycle, every module has to wait for the module

that takes the most FPGA cycles to finish its operation

of the current cycle.

However, since the time-multiplexing is used to se-

quentially emulate the entire processor using a physi-

cal cluster, we can divide the processing of each mod-

ule inside the physical cluster into multiple stages and

execute these stages in a pipeline fashion. In partic-

ular, at any FPGA cycle in a processor cycle, each

pipeline stage can be executed by a different logical

cluster. This can be performed because, in a processor

cycle, there is no data dependence among all logical

clusters.

4 Conclusion

In this paper, we described an approach for enabling

high-speed simulation of many-core processors with

hundreds to thousands of cores using FPGAs. We

show that, by efficiently using the time-multiplexing

technique and decoupling the processor clock from the

FPGA clock, the simulation model can be scaled to

support large designs. Our future work is to actu-

ally implement and evaluate the proposed approach on

FPGA boards.

References

[1] T.V. Chu, S. Sato, and K. Kise, ”Ultra-Fast NoC Em-
ulation on a Single FPGA”, in Proceedings of the 25th
International Conference on Field-Programmable Logic
and Applications (FPL 2015).

[2] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and

J. Emer, ”HAsim: FPGA-Based High-Detail Multicore

Simulation Using Time-division Multiplexing”, in Pro-

ceedings of the 17th International Symposium on High

Performance Computer Architecture (HPCA 2011).

Copyright 2016 Information Processing Society of Japan.
All Rights Reserved.1-26

情報処理学会第78回全国大会

