
Electronic Preprint for Journal of Information Processing Vol.24 No.4

Regular Paper

LogChamber: Inferring Source Code Locations
Corresponding to Mobile Applications Run-time Logs

Yuki Ono1,a) Kouhei Sakurai1,b) Satoshi Yamane1,c)

Received: October 5, 2015, Accepted: January 25, 2016

Abstract: We present a development support tool, called LogChamber, which infers source-code locations by ana-
lyzing run-time logs of mobile applications. During development, developers insert log functions into applications
calls in order to confirm that the applications correctly run as expected. After that, they need to have a process for
estimating a program’s runtime behavior in order to identify the locations of unintended behavior. Such processes rely
on the abilities of the developers and are not easy in many cases. Most runtime environments of mobile applications
provide only limited resources, and as a result, cannot save sufficiently many runtime logs. The situation is made even
worse by careless insertions of log-function calls. The method presented in this paper analyzes static source code and
runtime logs. After that, it supports developers by quickly inferring candidates of log function calls. For fast inference
of candidates, it extracts log strings from the source code and constructs an index of their locations in advance. We
implemented our method as a plugin tool on Android Studio, one of the major integrated development environments
for Android applications. We report our experiments with the implementation on real open-source applications.

Keywords: logs, static analysis, debug, mobile application, Android

1. Introduction

Mobile devices and applications for mobile operating systems
(“mobile apps” for short) have grown in recent years. The ma-
jor mobile OSs include Android OS by Google, iOS by Apple,
and Windows Phone by Microsoft. To create a mobile app, a de-
veloper first writes source code in a development environment.
After that, he or she checks the actual running of the application
in a runtime environment with real devices like smartphones and
tablets. To guarantee that the app runs correctly, the developer
needs to 1) write different versions of the source code for differ-
ent runtime environments and 2) check and debug them in these
environments.

In many cases, developers insert log-function calls into the
source code of the application, which generate runtime logs at
runtime, in oder to check whether the mobile app runs an ex-
pected. In many cases, the runtime logs are text lines generated
by log-function calls inserted into the source code that contain
constant values of strings and runtime values of variables which
will serve as hints for the developer. If the application contains an
unintended behavior, the runtime logs of the abnormal behavior
will reflect it.

To identify the locations of unintended behaviors, developers
need to precisely estimate the runtime behavior of the program
from the generated logs. Most developers of mobile apps rely on
only the runtime logs. Because the runtime environments for apps

1 Graduate School of Natural Science & Technology, Kanazawa Univer-
sity, Kanazawa, Ishikawa 920–1192, Japan

a) ono@csl.ec.t.kanazawa-u.ac.jp
b) sakurai@ec.t.kanazawa-u.ac.jp
c) syamane@is.t.kanazawa-u.ac.jp

tend to have limited resources, and it is difficult to apply debug-
gers recording execution histories [8]. Moreover, it is not easy
to reproduce unintended behaviors occurred on various runtime
environments and identify corresponding locations from runtime
logs, and thus such tasks increase debugging time. For example,
there was a case in which the Android OS had an issue that a cam-
era application behaved differently on a specific device, and the
developer needed to find the cause of the unintended behavior on
that device (The details of this case are illustrated in Section 2).

In this study, we propose a developer support tool called
LogChamber, which makes correspondences between runtime
logs and source-code analyses and infers candidate locations
where the runtime logs might have been generated. LogCham-
ber analyzes the program of the target application beforehand,
and it identifies the locations of the log-function calls generating
the runtime logs. Furthermore, it constructs an index by analyz-
ing the arguments of the function calls in detail so that it can
quickly make correspondences with the runtime logs. By using
LogChamber, the developer can estimate the locations of the run-
time logs that are inserted on an ad hoc basis and easily analyze
the behavior of the application. In addition, since the inference
and display of locations in LogChamber is fast, the developer can
see the corresponding location in the source code as soon as the
application on the running device generates a runtime log.

We implemented LogChamber as a plug-in of an integrated de-
velopment environment for Android OS (called Android Studio)
and carried out experiments using it on real Android mobile apps.
In this paper, we present the procedure of identifying actual un-
intended behavior in a mobile app by using LogChamber.

Section 2 describes the problems of debugging mobile apps

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

through an illustrative example. Section 3 describes LogCham-
ber in detail. In Section 4, we report our experiments applying
LogChamber to actual open-source applications. Section 5 dis-
cusses related work, and Section 6 concludes the paper.

2. Debugging of Mobile Applications

In this section, we explain the problem of checking and debug-
ging mobile apps with the help of an illustrative example.

A mobile app, which is different from a desktop application or
web application, runs on low resource environments and on many
types of devices, and it tends to produce unintended behaviors
corresponding to its behavior on a specific device with its own
hardware configuration. Below, we give an example illustrating
debugging using the runtime logs of mobile apps. In Section 2.2,
we explain the problems of debugging mobile apps with popular
breakpoint debuggers. In Section 2.3, we summarize the prob-
lems of using the runtime logs.

2.1 Example: Obtaining the Orientation in a Camera Ap-
plication

Figure 1 shows a portion of code that implements taking a pic-
ture by a camera in an Android application. It contains an unin-
tended behavior that appears when it is used on a specific device
and environment, and the unintended behavior is that it outputs a
picture rotated at an unnatural angle. To check for this unintended
behavior and fix it, the code contains lines of code for generating
runtime logs for debugging (lines 4, 7, 13, 15 and 18).

When a user takes a picture with the camera, the
onPictureTaken method is called as a callback, and the
JPEG data of the taken picture is given as the argument data
(line 2). The method saves the picture in a file (lines 4–9),
obtains the orientation of the device of the shot from the Exif
data (meta-data), and assigns it to r (line 10).

Regarding the unintended behavior, when the device takes a
picture and displays its JPEG data, the method needs to obtain
the orientation of this data and determines the correct orientation
of the picture. For example, if the user takes a picture while turn-
ing the device 90 degrees, the generated JPEG data by the device
should also be rotated 90 degrees. Thus, the display of the picture
at this angle is an unnatural one for the user. To resolve this issue,
one needs to obtain and check the meta-data of the JPEG data and
manually rotate the picture to the correct angle.

Lines 13 and 15 are log-function calls for debugging purposes,
and they generate a value r with a message.

For instance, the case of “JPEG rotation = 1” means dis-
playing the JPEG data as it is; in this case, the application does
not need to rotate the picture data. The variable r takes values
from 1 to 8 *1, and it needs to run a rotation process correspond-
ing to each value. Furthermore, there are devices that take r = 0
(UNDEFINED); in such cases, it needs to run a special rotation
process considering the aspect ratio of the picture *2.

2.2 Problem with the Usage of the Breakpoint Debugger
Breakpoint debuggers are popular tools for checking the be-

*1 http://www.sno.phy.queensu.ca/˜phil/exiftool/TagNames/EXIF.html
*2 http://hackmylife.net/archives/7400448.html

Fig. 1 Example of taking a picture with different results by the type of the
device.

Fig. 2 Example of runtime logs.

havior of and debugging applications. With the breakpoint debug-
ger, the developer first attaches breakpoints at arbitrary locations
in the target program and can temporarily stop the running of the
program while inspecting its states including the actual values of
variables. The debugger then executes the program step by step,
i.e., from one breakpoint to the next, and the developer checks
whether the program behaves as expected in each step. For ex-
ample, for code of Fig. 1, we can confirm that an actual value of
the variable r by execution with setting a breakpoint at the line
11.

However, the breakpoint debuggers have difficulty managing
many breakpoints and steps; these problems result in heavier
workloads for the developer.

In addition, for debugging, developers need to reproduce un-
intended behaviors. It is not practical for them to attempt to re-
produce an unintended behavior on the specific device, like in the
example shown in Section 2.1.

Instead, they should try to write log-functions in the application
and checks the generated runtime logs against the actual source
code in order to estimate the actual behavior of the program.

2.3 Problems of Uniqueness and Identification of Runtime
Logs

Runtime logs contain lines generated by the OS and applica-
tions other than the debugging target, so the developer needs to
identify the logs generated by the target application. Once the de-
veloper has identified the application, he or she needs to identify
the corresponding locations in the source code of the application.

Figure 2 shows actual runtime logs generated by the appli-
cation including the code shown in Fig. 1. Each log contains a
timestamp, a process ID, and a tag string as hints for the identifi-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Fig. 3 Screenshot of LogChamber running on the integrated development environment Android Studio.

cation. The tag string is used as a string constant value that is sup-
plied to the log-function calls, and in Fig. 1, it is TAG, the first ar-
gument of line 13. The developer can make use of the identifica-
tion of generated logs by assigning the string "screen2camera"
to TAG of line 13 in advance. In Fig. 2, line 1 does not contain
"screen2camera", so it comes from the API. On the other hand,
lines 2 and 3 contain this tag, so they were generated by line 13
in Fig. 1.

Log-function calls are not always systematically written in or-
der to be identifiable; thus, the uniqueness of the generated logs is
not guaranteed. For example, if there are usages of the API of the
camera shot, the developer might write a log-function call similar
to line 13 for each location in which it is used. Lines 4, 15 and 18
in Fig. 1, use the same TAG string.

Log-function calls are prone to be repeatedly inserted and
deleted in an ad hoc manner during debugging. As a result of
the frequent rewriting of calls, even a hint for identification like
TAG will have a certain amount of granularity; i.e., at the level of
a Java package or a class module. Such hints are often limited to
the level a module of the target applications (instead of the exact
lines of source code).

Furthermore, because the runtime logs are generated from the
expressions in the source code, more complex expressions make
identification of log locations more difficult. For example, al-
though + r at line 13 of Fig. 1 concatenates the string r, this
string is actually converted from an integer, and the identifica-
tion becomes harder if the developer does not know that. The ex-
pression in the example is simple, yet there are log-function calls
that contains multiple variables. As a result, the identification of
the source-code locations from the generated logs becomes time
consuming. We investigated the logs generated by several ap-
plications and found that they are generally comprehensible as
English words. Hence, our basic idea was to infer log-function
calls in the source code by dividing the log lines into words.

3. LogChamber: A Tool for Inferring Source-
code Locations from Runtime Logs

We developed a tool that infers the locations of source code
from the runtime logs of a mobile app. In particular, we fo-
cused on Android applications and developed a plugin called
LogChamber for the standard integrated development environ-

ment, Android Studio (IntelliJ IDEA). This section explains how
LogChamber is run on a target Android application.

3.1 Overview
LogChamber analyzes the runtime logs and source code of the

application and infers the locations in the source code responsible
for generating those logs.

Generally, as shown in Section 2.3, the runtime logs contain
mixed outputs from multiple applications and the OS. There is
also a limited amount of storage available for log outputs. It is
difficult to uniquely identify the exact location which generated
a runtime log from the log itself. Therefore, our method tries to
infer locations that might have generated the runtime logs.

Figure 3 shows a screenshot of an example of LogChamber
running on Android Studio. LogChamber reads the runtime logs
and displays them and the fragments of source code inferred from
them in the lower part of the window.

Figure 4 illustrates the entire LogChamber system and indi-
cates the individual steps using numbers. The locations generat-
ing logs are inferred as follows.
(1) Extract the pre-defined log-function calls from bytecodes

contained in the application packages.
(2) Statically analyze the arguments of each log-function call,

and divide constant values of the strings within the argu-
ments into words. The system also constructs a word list of
the log-function calls and associates them with information
on the occurrence locations in the source code.

(3) Analyze the runtime logs and divide each line into words
by using particular delimiters like white space. The system
calculates a coincidence degree for the word list of each log-
function call from the word list of each log line.

(4) Display the location of the source code that has highest co-
incidence as the candidate of the inferred log-function call
for the runtime log. The system displays the associated ar-
gument values of the log-function call and sub-strings.

The above identification procedure has the following advan-
tages.
• The developer does not need to manage tag strings, etc.,

thanks to the inferences made by the system, so he or she can
easily handle even code including changes in log-function
calls in an ad hoc manner.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Fig. 4 Structure of LogChamber.

Table 1 Examples of log functions of Android.

Log Debugging message class (Android standard)
Logger Debugging message class (Java standard)
PrintStream#print Output function (Java standard)
PrintWriter#print Output function (Java standard)
Console Console class (Java standard)

• Thanks to the feature of supplying saved runtime logs, the
system can artificially reproduce the behavior of the log out-
puts.

• The system can accept onsite runtime logs from a running
application as inputs and lets the developer cooperate with
the breakpoint debugger.

The following sub-sections explain the above steps.

3.2 Extracting Expressions of Log-function Calls
In order to extract the expressions of log-function calls that

could be candidate locations, LogChamber analyzes the bytecode
of the Dex file contained in the application package (APK) file
of the Android application. When the developer starts LogCham-
ber, the system automatically builds the project in Android Studio
and generates an APK file containing information for debugging.
Then, it runs the analysis by using Soot [11] *3, which is a Java
bytecode analysis framework.

Bytecodes generated by Java compilers save instructions corre-
sponding to the source code. Therefore, traversals for extracting
methods and the data-flow analysis explained in Section 3.3 can
produce the same results as analyzing the source code.

In the analysis, the system searches for the method calls listed
in Table 1 in the instructions of each method body. These meth-
ods are log functions used in Android. Developers can specify
other methods by using regular expression patterns.

The system regards expressions of the searched log-function
calls as targets of the analysis explained in Section 3.3, in order
to infer locations of runtime logs.

3.3 Analyzing Expressions of Log-function Calls
To identify the target log functions from the runtime logs, the

system analyzes the strings used in the arguments of the functions
as keywords and constructs a list of words with the associated lo-
cations in the program. The system uses the getLocAndWords

*3 https://github.com/Sable/soot: We use the version supporting Dex file
analysis (commit ID: 36f9765).

Fig. 5 Algorithm for obtaining locations of log-function calls and a word
list.

function shown in Fig. 5 to analyze the locations in the program
and the argument strings.

getLocAndWords takes the program expression in the syntax-
tree m(e1, . . . , ex)loc for log functions which take x arguments and
returns the source-code locations of the log functions loc and a
word list (wi) of the strings composing the logs. Let ⊕ be the op-
eration for concatenating two word lists and words be a function
for getting a word list from an expression.

words(ei) returns a result depending on the type of the ith ex-
pression ei in the program.
• For a string constant value Const, it splits the string into

a word list. Note that words here include special sym-
bols. This is because a string of a generated log is usu-
ally short and can be characterized by symbols. For ex-
ample, the string "JPEG rotation =" yields the word list
(JPEG, rotation, =). In addition, a static field like TAG in
Fig. 1 is handled as a string constant value.

• For a local variable reference Var, it recursively obtains a
word list from the expression of the right hand side .rhs of
a uniquely determined assignment expression def(Var). Al-
though multiple assignment expressions for a local variable
may exist as a result of a join of branches and so on, we
do not consider such cases for the sake of simplicity *4. Re-
cursive applications of words via such the local variable ref-
erence Var and its assignment expression def(Var) refer to
expressions in other statements of the same method, and this
means traversing the method. To handle such expansions of
local variables, the system analyzes the data flows within the
method.

• For a string concatenating expression el + er, it concatenates

*4 The system handles an individual log-function call for each combination
of statements of local variable assignment in the entire expression.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Fig. 6 A log-function call and the surrounding source code.

word lists obtained from the left and right expressions. The
analysis of the bytecode and string concatenating operations
in Java are implemented using StringBuilder, so such
an expression actually becomes an append method of the
StringBuilder class.

• Runtime logs are frequently generated from formatting func-
tion calls (String.format); thus, the system specifically
analyzes such calls. A format function takes arguments
("c f%p f", e f). These arguments consist of a sequence of
conversions and the f th of them corresponds to the string
c f concatenated while conversion, the conversion specifier
%p f , and the expression e f generates the value of the conver-
sion. For such a format function call, the system returns the
line that concatenates the special word % f which indicates a
word generated by the expression e f of the conversion.

• For other expressions, the system handles a special word %i
that is dynamically generated from an expression ei. Note
that these special words are used later for displaying candi-
dates, but are not used in the calculation of coincident de-
grees.

For example, from line 14 of the source code in Fig. 1, we ob-
tain the word list
(screen2camera, JPEG, rotation, =, %i).

3.4 Analysis of Runtime Logs and Calculation of Coinci-
dence

To associate the log-function calls with the lines of the logs,
LogChamber calculates their coincidence degrees. We define the
calcuation of the coincidence degree as the ratio of the number
of all lines including words in word lists obtained from each log-
function in the source-code. Regarding the definition of coinci-
dence, we consider that word lists are usually short and that those
of the runtime logs may contain words that are not included in the
word list of the source code but are generated from a variable.

For log line r consisting of word list (ni1 , . . . , ni|r|), the co-
incidence of each log function calls consisting of word list
(n j1 , . . . , n j|l|) is provided from the following expressions.

s(r, l) =
|r|∑

k=1

f1(l, ik) + f2(l, ik, ik+1)

f1(l, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|{l′:nx∈l′}| if nx ∈ l

0 otherwise

f2(l, x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|{l′:(nx ,ny)�l′}| if (nx, ny) � l

0 otherwise

where the operator � represents that (nx, ny) is sequentially in-
cluded in a word list l for each log-function call. This means that
a word list contains words like (. . . , nx, ny, · · ·).

f1 and f2 calculate the frequency of word occurrences. |{l′ :

nx ∈ l′}| represents the number of log-function calls that contain
a word nx. Similarly, |{l′ : (nx, ny) � l′}| represents the number
of log-function calls that contain a sequence of two words nx, ny
with the same order.

The system selects the l whose coincidence degree s(r, l) is the
highest of all log-function calls as the location of the source code
generating the log line.

As an example, let us consider the five log-function calls
(4, 7, 13, 15, 18 lines) in Fig. 1 and their correspondence to line
2 of the log. For simplicity, we suppose there are no other log
functions.

Suppose that Lx represents the location of line x of
each log-function call in Fig. 2 ; then for the word list
(screen2camera, Start, Save, JPEG) of the log line, a log-
function call including each word is calculated as follows:

({L4, L7, L13, L15, L18}, {L4}, {L4, L7}, {L4, L7, L13, L18})

From the words and occurrence frequencies, the totals of f1
and f2 and the values of s are calculated as follows:

Lx
∑

f1
∑

f2 s

L4 0.2 + 1 + 0.5 + 0.25 1 + 1 + 0.5 4.45
L7 0.2 + 0 + 0.5 + 0.25 0 + 0 + 0.5 1.45
L13 0.2 + 0 + 0 + 0.25 0 + 0 + 0 0.45
L15 0.2 + 0 + 0 + 0 0 + 0 + 0 0.25
L18 0.2 + 0 + 0 + 0.25 0 + 0 + 0 0.45

For L4, because all words occur, f1 and f2 add up to a value
larger than 0, and this sum has the largest s value of all locations.
As a result, L4 is the inference candidate with the highest s value,
and it is associated with the log line.

3.5 Displaying Inference Candidates of Log Functions
LogChamber displays a log-function call that has a word list of

the highest coincident degree for a runtime log. To help develop-
ers intuitively understand the list, the display includes the source
code around lines of the log-function call, as well as sub-strings
of the log-line probably generated from expressions in the source
code.

Figure 6 shows an example of the display. The first line is the
generated log line, and the second line represents the correspond-
ing location in the source file and its line number. The third line
is the method signature part of the corresponding location, and
fourth line shows the composition of the log-function call with
sub-strings of the generated log.

Let us consider a word list
(. . . , ni, ni+1, . . . , n j−1, n j . . .) of a runtime log and %x specifying a
word generated from an expression ex, and suppose that the word
list (. . . , ni, %x, n j, . . .) of the log-function call that has a highest
coincidence degree is obtained. A partial word list of the runtime
log (ni+1, . . . , n j−1) corresponds to %x, and it is a string generated

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Table 2 Performance of the analysis of applications

App Time(sec) Classes Methods LPs SR Words |LP|avr
Chapel Hill Transit 67.22 4,445 30,481 683 0.61 2,907 6.96

Tacere 84.45 4,433 35,562 454 0.80 2,727 8.79
WiGLE Wifi Wardriving 65.89 3,993 28,230 732 0.62 2,726 6.77

Aizōban 46.53 3,032 21,988 449 0.75 2,264 8.03
Anthology for Gives Me Hope 26.07 2,635 19,329 283 0.81 1,765 9.80

ownCloud News Reader 28.48 2,261 20,257 500 0.83 2,809 8.44
Password Store 55.84 4,363 35,707 358 0.82 2,156 9.59

HackWinds 18.78 1,900 14,187 309 0.81 1,626 8.57
weiciyuan 23.99 1,728 11,902 184 0.93 1,268 10.57

Lightning Browser 23.42 969 6,357 234 0.80 1,356 9.85
Mean 44.07 2,976 22,400 419 0.78 2,160 8.74

from ex. When displaying the lines of the source code, the system
inserts the word list (ni+1, . . . , n j−1) just after ex.
%x on a word corresponding to ex is obtained using words de-

scribed in Section 3.3. The words do traversal by using data-flow
of local variables, thus expressions in the method including the
log-function calls. The traversal is actually carried out on the
bytecode; thus, the locations for inserting sub-strings of the run-
time logs are determined by referring to the location information
of the source code of the debugging information corresponding
to ex.

4. Evaluation

To assess the effectiveness of LogChamber, we carried out ex-
periments on open-source Android applications.

The environment consisted of Mac OS X (10.10.5), Intel Core
i5 1.4 GHz CPU, 16 GB RAM Java 1.8.0 20, Android Studio
1.3.2 (-Xmx 8g), and Google Nexus 5 (the device running the
target applications).

Section 4.1 describes the performance of LogChamber’s pro-
gram analysis, and Section 4.2 examines its effectiveness at fixing
unintended behaviors of an actual application.

4.1 Performance of LogChamber
LogChamber requires computation time and memory ((1) and

(2) in Section 3.1) of the development environment in order to
analyze the target application. Hence, we opened a development
project in Android Studio and measured the performance of the
application process of the LogChamber analysis.

Section 4.1.3 analyzes the log-function calls in the source code
and compares LogChamber with existing text-search methods,
Section 4.1.4 examines the limitations of LogChamber, and Sec-
tion 4.1.5 tackles the question of whether the log functions affect
the success rates of inferring log-function calls.
4.1.1 Measurement Targets and Methods

As measurement targets, we selected apps registered in F-
Droid *5, which is a distribution site for open-source Android
apps. We automatically built the apps from the registered reposi-
tories on F-Droid, analyzed the generated APK files, and selected
nine apps that had larger numbers of classes and the Lightning
Browser app (described in Section 4.2).

As performance criteria of LogChamber, we can consider not
only the time for the analysis but also the accuracy of inferring
candidate log-function calls (the success rate). However, it is dif-

*5 https://f-droid.org

ficult to define and measure accuracy because it is affected by
the dynamic log generations of apps. Consequently, we regarded
word lists that are statically extracted from the log-function calls
by the algorithm explained in Section 3.3 as the generated logs
and determined whether those function calls become candidates
of the inferred log-function calls as they are.
4.1.2 Measurement Results

Table 2 summarizes the results. The columns of the table list
the following values:
App: The application name.
Time: The elapsed analysis time (in seconds).
Classes: The number of classes included in the APK file. Note

that the APK file contains classes of libraries (except for An-
droid SDK) that the application depends on.

Methods: The number of method definitions included in the APK
file.

LPs : The number of log-function calls.
SR : The success rate of inferring log-function calls. We regard

a statically generated word list from each log-function call
as a generated log and define a success as a case when the
original log function becomes a candidate inferred by analy-
sis. In actual cases, however, the output values are generated
from dynamic values of variables; thus, the actual success
rate may be lower than this value.

Words: The size of the set of all words included in the applica-
tion.

|LP|avr: The mean number of words of the log-function calls.
The results show that the analysis finished within 100 sec-

onds even if the application had over 4,000 classes. Although
LogChamber traversed the entire source code of the program, it
was a so-called intra-procedural analysis; i.e., it did not handle
inter-methods flows or global data flows. For that reason, it was
sufficiently fast to be practical.

The success rates (SR) of inferring the log-function were al-
most 60–80%. As mentioned above, in actuality, the generated
logs would contain output values generated from dynamic val-
ues; thus, the actual success rate would be lower. Meanwhile,
from the entire values, we expect that the success rate does not
closely correlate with the size of the application but is affected
by the style in which the log-function calls are written. In sum-
mary, it is expected that when a developer writes log-function
calls, LogChamber practically works if he or she is aware of a
variety of words used in the string constant values.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Fig. 7 A code fragment whose log-function call contains a reference to a
constant value.

4.1.3 Comparison with Text Searching Techniques
This section compares the performance of LogChamber with

that of text search tools using pattern matching (like grep) by
using examples from the target applications.

When string constant values are written in log-function calls,
we can use text search tools to infer the candidates of the source-
code locations. For example, the developer can use grep to
search the entire source code while at the same time replacing
arbitrary words in a log line with wildcards (.*).

However, if an expression of the corresponding log-function
calls constructs an output string through dynamic computations,
the pattern matching of a naive text search will fail.

For instance, the DaoMaster class in the ownCloud News
Readers app has a log-function call like that shown in Fig. 7. If
the searched for pattern contains the value 4 of SCHEMA VERSION
included in the generated logs, a naive text search cannot find the
site. Accordingly, there are cases of computations constructing
arguments of log-function calls.

The developer needs to estimate patterns for using text search-
ing, but there would likely be cases in which the boundaries be-
tween sub-strings generated from variables and constant string
values are unclear. In the example shown in Fig. 7, a tag string
like greenDao and the words tables, schema and version in
the string constant value are also used in other log-function calls;
thus, we cannot make an identification by using only those words
as a pattern.

Our inference based on the source-code analysis works bet-
ter than a naive text search when some of the words occurring
in the generated logs are in string constant values composed of
arguments of a log-function call. The structures of the source
code and the strings of the logs are such that locations of the def-
inition of a constant value and the log-function call may be far
away from each other or that many locations use the same con-
stant value; thus, with a naive text search, we need to manually
search log-function calls repeatedly.

In addition, our method automatically divides entire lines of
the generated logs into words. As a result, the developer does not
need to estimate a string pattern for searching.
4.1.4 Limitations of Our Algorithm

We analyze cases in which inaccurate candidates were inferred
on the measurement targets of Section 4.1.

The locations of many of the failed inferences are log-
function calls in classes contained in the sub-packages of
android.support and com.google.android, in the addi-
tional libraries included in the Android standard SDK *6. Devel-
opers rarely refer to those locations, and in LogChamber, we can
easily exclude them by using package names. For example, the
Chapel Hill Transit app has 683 locations of log-function calls;
267 cases (SR = 0.61) failed, but there were only 18 locations

*6 These are selectively used besides the basic classes in the standard SDK,
thus, they are included in the APK file.

Fig. 8 Example of identical log-function calls.

Fig. 9 A log-function call that does not use any string constant values as its
message body.

Fig. 10 A log-function definition that does not refer to any constant values.

(about 2%) other than those of the additional libraries of the stan-
dard SDK. The other applications showed similar tendencies.

The causes of these failures are that the algorithm shown in
Section 3.3 produces identical word lists for multiple candidates
(We did not observe cases in which the word lists were differ-
ent but their coincidence degrees were identical). For example
in Fig. 8, the Tacere app contains two different locations whose
log-function call generates identical content.

There were other cases in which the word lists are identical for
multiple candidates. They were locations that use no constant val-
ues and from which no words (or a word of the tag) could be ex-
tracted. Figure 9 shows the case of the AboutLicenseActivity
class in the Tacere app; the entire log-message is generated as a
dynamic value. In these cases too, multiple log-function calls
have identical word lists, and the inference fails.

There were also cases in which words failed to be extracted.
The application defined the original method calling the log func-
tion, like the logDebugmethod included in the IabHelper class
in the Tacere app (Fig. 10). For these cases, as explained in
Section 3.2, we can accurately infer candidates by including the
logDebug method as a log output function and making it a target
of extraction *7.

Like the above cases, when there are multiple log-function
calls that have identical word lists, it is difficult to identify a can-
didate from the log outputs without modifying the log-function
calls. We will attempt to remedy this situation in the future. If
the source code can be modified, we can append identifiable in-
formation (e.g., a line number embedded in the class file for each
log output) to each log-function call. We could also indicate that
there are multiple candidates on the user interface.
4.1.5 Mutual Influence of Log-function Calls

We illustrate, for a log-function call and logs generated from
the call, how the success rate of inferred candidates is affected by
descriptions of other log-function calls.

We investigated how the coincidence degree explained in Sec-
tion 3.4 changes when the number of log-function calls changes.
We selected the Lightning Browser app as the target, gradually
changed the number of expressions extracted as candidates of log-
function calls, and measured the success rate (SR). We varied the

*7 In the experiment described in Section 4.1, for comprehensive analysis,
we did not specify any additional log output functions for each applica-
tion.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Table 3 Success rates for different numbers of candidates

LPs SR Words
1 1.00 5

10 1.00 138
25 0.84 139
26 0.80 138
37 0.84 209
55 0.83 317

Fig. 11 Log-function calls sharing the same words.

number of candidate LPs (1, 26, 37, and 55; all candidates except
libraries in the app).

Table 3 shows the results. The “LPs” column lists the number
of candidates, the “Words” column lists the total number of words
in the candidates, and the “SR” column lists the success rates of
the candidates.

From the results, we can see that the success rates for multiple
candidates are about 80% and change within 3–5%. Therefore,
we can expect that the change in the number of candidates would
not largely affect to the results of the inference.

Figure 11 shows several lines of code in the
HtmlFetcher.java. The log-function call in line 379 was
successfully inferred in the cases of 1 candidate and 26 candi-
dates. However, it failed in the cases of 37 and 55 candidates.
The failures happened when line 225 was added as a candidate;
the reason for the failure is that the algorithm in Section 3.4
computes the same score for the word lists "url,resolved"
in those candidates. This is the same problem as the limitation
described in Section 4.1.4.

4.2 Fixing an Unintended Behavior
To confirm the effectiveness of LogChamber, we carried out a

debugging task on a real application. As the target of the study,
we chose a web browser application named Lightning Browser.
The application is a typical Android app *8 having a moderate size
and open source code *9.

We chose to deal with an unresolved issue (named Is-
sue#127 *10) that was reported by a user of the application as an
unintended behavior to the developer. This unintended behavior
was expressed as “cannot search words with a leading “about:””
and the developer of the application labeled it a “bug”. Accord-
ingly, we supposed that it was an unresolved and unintended be-
havior of the source code.

Lightning Browser, just like other general Web browsers, dis-
plays the address bar at the top of the screen, and when the user
inputs a URL string, it goes to the associated page. Also, when
the user inputs a search string into the address bar, it goes to the
results page provided by the search site.

The target unintended behavior was that when a user inputs a
string containing “about:”, the application fails to search and

*8 https://play.google.com/store/apps/details?
id=acr.browser.barebones&hl=ja

*9 https://github.com/anthonycr/Lightning-Browser
*10 https://github.com/anthonycr/Lightning-Browser/issues/127

Fig. 12 Screens of the application showing an error (left) and regular be-
havior (right).

goes to a blank page (the left side of Fig. 12). The expected reg-
ular behavior is on the right side of Fig. 12, which displays the
results page of the search when the user inputs “test about:”.
The task of the study was to correct the unintended behavior when
the user inputs “test about:” in the address bar.

The authors used a version *11 of the source code of the target
application consisting of about 9000 lines in Java. The number of
log-function calls except for libraries was 55.

We applied LogChamber and tried to identify the location of
the unintended behavior in the source code without any prelim-
inary knowledge about the target source code. After identifying
the location, we analyzed how LogChamber worked in the task.
We also reported the correcting code to the developer of the ap-
plication and confirmed whether the correction was accepted or
not.
4.2.1 Addition of Log-function Calls

First, the authors tried to identify the target unintended behav-
ior from 55 log-function calls originally inserted in the applica-
tion. The generated logs were 92 lines at the launching time of the
application and 26 lines at the time of inputting the string “test
about:”. But the logs included lines generated from the system,
and only two lines were generated by Lightning Browser (Fig. 13,
the lines beginning with I/Lightning. Note that the figure omits
timestamps and process ID information for readability.).

Second, the authors inputted “test about:” into the address
bar just before the line 5 of the log output of 13. Conse-
quently, the logs from line 5 in the figure were generated by
the input. LogChamber inferred that lines 4–5 onResume and
onPause were generated from BrowserActivity.java and
further browsing of the source code successfully identified the
log-function calls associated with the logs. The logs indicated
the lifecycle state of the application and were not descriptions
that could be used as hints of the unintended behavior; thus, the
authors concluded that it was difficult to identify locations of the
behavior from the logs.

The log-function calls did not include related variables or calls
for the unintended behavior of this study; thus, they lacked key

*11 commit ID: a2f2fbc

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Fig. 15 Source-code lines relating to the unintended behavior.

Fig. 13 Example runtime logs of Lightning Browser before inserting the
supplementary log-function calls.

Table 4 Code for supplementary log-function calls.

File name
(Target method)

Line number Inserted code
BrowserActivity.java

(searchTheWeb) Log.d(Constants.TAG,

Line 1558 "searchTheWeb query =" +query);

BrowserActivity.java

(searchTheWeb) Log.d(Constants.TAG,

Line 1579 "isSearch = "+ isSearch);

BrowserActivity.java

(searchTheWeb) Log.d(Constants.TAG,

Line 981 "findInPage query =" +query);

SearchAdapter.java

(doInBackground) Log.d(Constants.TAG,

Line 296 "query ="+ query);

SearchAdapter.java Log.d(Constants.TAG,

(doInBackground) "downloadSuggestionsForQuery

Line 358 query=" +query);

information for identifying the target unintended behavior.
Third, the authors inserted the five log-function calls shown in

Table 4 and tried to identify the unintended behavior by repeat-
edly inputting the same string and applying LogChamber. The
authors hierarchically browsed files in the source code and sup-
posed that the unintended behavior was related to URL query-
ing and searching. After quickly browsing the files, the lo-
cations related to URL searching and querying were found in
BrowserActivity.java and SearchAdapter.java. The au-
thors decided that the values of query and isSearch (listed in
Table 4) that were used in the files would be generated as supple-
mentary log outputs. Figure 14 shows a portion of the generated
logs.

Fig. 14 Example of generated logs of Lightning Browser after inserting sup-
plementary log-function calls.

Fig. 16 Display of the inference result for the variable isSearch.

4.2.2 Steps for Identifying Unintended Behavior
Line 5 in Fig. 14 was generated from a supplementary log-

function call; it is
isSearch = false.

This indicated the input string was handled as not a search
query but as a URL. The application tried to access the URL
http://test%20about. Consequently, the authors concluded
that the line was abnormal and should be isSearch = true.

LogChamber inferred the location generating the log line was
line 1579 in BrowserActivity.java and displayed the result as
in Fig. 16. Figure 15 shows the location in the source code and
the lines around it relating to the unintended behavior. Line 1579
supplied a string generated from isSearch to the arguments of
the Log.dmethod, which is one of the log functions. The variable
isSearch had an assignment statement at line 1573, and it was
determined from three variables, i.e., query, containsPeriod
and aboutScheme.

From the names of these variables, the authors estimated that
query was the input string, containsPeriod indicates whether
the input has a period (.), and aboutScheme indicates whether
the input starts with “about:”.

LogChamber inferred that the log of line 4 in Fig. 14,
searchTheWeb query = test about:

corresponded to the log-function call of the supplementary in-
serted line 1558 (Fig. 17). Form this result, it could be seen that
query was obviously the input string, and the value of query
itself was correct.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Fig. 17 Display of the inference result for the variable query.

The next candidate relating to the unintended behavior was es-
timated to be abountScheme from its name, and its value was
determined at line 1569.
4.2.3 Correction of the Unintended Behavior

The authors deleted the uses of aboutScheme from line 1573
and changed the line to
boolean isSearch = (query.contains(" ") ||

!containsPeriod);

After that, the authors ran the application again and it worked,
showing the expected normal behavior as on the right side of
Fig. 12. aboutScheme was identified as the abnormal value.

The value of aboutScheme was generated from line 1569 in
Fig. 15,
query.contains("about:")

, so the authors changed the expression to
query.startsWith("about:")

and created and submitted a patch to the developer of the appli-
cation. The patch was accepted by the developer as a bug fix *12.
4.2.4 Effectiveness of LogChamber

In this study, we presented a case in which LogChamber aided
the correction of an unintended behavior.

At the beginning of the study, the information obtained from
the generated logs was not sufficient. From the logs, LogCham-
ber identified the locations of the existing log-function calls; then
it helped the authors to understand that those locations were not
related to the unintended behavior (Section 4.2.1).

In addition, from the generated logs with the supplementary in-
serted log-function calls, LogChamber successfully inferred the
locations generating the logs. The authors checked the values of
the variables presented in the results display of the locations and
identified the unintended behavior (Section 4.2.2).

Without LogChamber, the entire task would have been the re-
sponsibility of the developers (in this case, the authors in the
study) and rather time consuming.

5. Related Work

SherLog proposed by Yuan et al. [14] is a tool that infers run-
time behaviors from generated runtime logs by using static pro-
gram analysis, and its idea is similar to that of LogChamber. Sher-
Log analyzes the runtime logs generated by a C program and in-
fers both the control flow of function calls (path inference) and
the data flow of variables (value inference) at runtime.

On the other hand, LogChamber does not employ such infer-
ences. This is because 1) Android apps are event-driven GUI ap-
plications, and there are many isolated executions by event han-
dler methods; thus, inferences on control or data flows are insuf-
ficient, and 2) the whole program analysis consumes too much
time, thus the quick displaying on GUI is infeasible. SherLog fo-
cuses not only on a log output and its corresponding log-function

*12 commit ID: 33eb739

calls, but also on more global inferences including flows of func-
tion calls. As a result, it cannot work with event handlers of call-
backs repeatedly executed within an event loop as in the case of
mobile apps. LogChamber makes inferences from each line of
generated logs and visually displays the result on the IDE screen
as soon as the log line is generated.

Similarly, the log-analysis techniques by Mariani et al. [9], and
by Wei et al. [12], [13], LogEnahcnement [15], AutoLog [16] and
lprof [17] do not focus on fast (immediate) log inferences for mo-
bile apps.

Symbolic execution [6] is a technique to avoid runtime work-
loads, and it can be used to identify unintended behaviors and
make verifications [2], [4]. There are studies that apply symbolic
execution to mobile application debugging [5], [10]. However,
mobile apps may have different behaviors depending on the de-
vice on which they run, and it would be hard to reproduce those
differences among devices through static execution; hence, these
approaches are not suitable for examining the unintended behav-
iors on specific devices that our work focuses on.

As for work on analyzing mobile apps, FlowDroid [1], Scan-
droid [3], and the technique of Klieber et al. [7] are static anal-
ysis methods for more accurate control flow, and they can be
used to find security vulnerabilities. FlowDroid is an extension
of Soot [11], an analysis framework for Java applications, that
is specialized for Android applications, and it can determine the
difference in effect that two methods have on a specified vari-
able. In order to implement LogChamber, we used the function
for loading APK files provided by FlowDroid; we think that this
framework can also be used for searching the call graph.

6. Conclusion

We proposed LogChamber, a tool for analyzing runtime logs
and identifying locations of outputs, in order to address the
problems of debugging mobile apps. Despite that ad-hoc and
poorly reproducible log-function calls are often found in mo-
bile apps, LogChamber can automatically infer the corresponding
log-function calls for the generated logs without requiring man-
ual management of the calls. We implemented LogChamber as a
plug-in on a real IDE, and it can connect to running applications
for inferring log outputs on site. The tool can arrange strings
in log lines corresponding to the arguments of the inferred log-
function calls on a display of the source code. Thanks to these
features, LogChamber can shorten the time needed to debug mo-
bile apps.

We applied LogChamber to real mobile apps and confirmed
that it is feasible for large-scale programs and is fast enough. We
also tried to identify and correct actual unresolved unintended
behaviors of the real application and illustrated a case in which
LogChamber worked effectively.

Although the techniques presented in this paper can practically
infer the locations of log-function calls in many cases, there are
other cases in which they infer incorrect locations. These cases
can be avoided by the developer who carefully selects words used
in the log-function calls, but in the future, we may develop fea-
tures for scoring the uniqueness of such log-function calls or sug-
gesting word candidates.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.4

Also, our current technique does not analyze control flows be-
tween multiple log lines and so on. As a future extension, we
would like to develop techniques to efficiently identify global data
flows and control flows and to reproduce program execution his-
tories.

Acknowledgments We gratefully acknowledge the work of
past and present members of our laboratory. This work was sup-
ported by a JSPS KAKENHI Grant, Number 26730034.

References

[1] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le
Traon, Y., Octeau, D. and McDaniel, P.: FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps, SIGPLAN Not., Vol.49, No.6, pp.259–269 (2014).

[2] Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel,
P. and Sheth, A.N.: TaintDroid: An Information-flow Tracking Sys-
tem for Realtime Privacy Monitoring on Smartphones, Proc. 9th
USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’10, pp.1–6, USENIX Association (2010).

[3] Fuchs, A.P., Chaudhuri, A. and Foster, J.S.: Scandroid: Automated
security certification of android applications, Technical Report, Uni-
versity of Maryland (2009).

[4] Jensen, C.S., Prasad, M.R. and Møller, A.: Automated Testing with
Targeted Event Sequence Generation, Proc. 2013 International Sym-
posium on Software Testing and Analysis, ISSTA 2013, pp.67–77,
ACM (2013).

[5] Jeon, J., Micinski, K.K. and Foster, J.S.: SymDroid: Symbolic execu-
tion for Dalvik bytecode, Technical report, Department of Computer
Science, University of Maryland, College Park (2012).

[6] King, J.C.: Symbolic Execution and Program Testing, Commun. ACM,
Vol.19, No.7, pp.385–394 (1976).

[7] Klieber, W., Flynn, L., Bhosale, A., Jia, L. and Bauer, L.: Android
Taint Flow Analysis for App Sets, Proc. 3rd ACM SIGPLAN Inter-
national Workshop on the State of the Art in Java Program Analysis,
SOAP ’14, pp.1–6, Edinburgh, United Kingdom (June 2014).

[8] Lewis, B.: Debugging Backwards in Time, Proc. 5th International
Workshop on Automated Debugging, AADEBUG’03 (2003).

[9] Mariani, L. and Pastore, F.: Automated identification of failure causes
in system logs, Software Reliability Engineering, 2008, 19th Interna-
tional Symposium on ISSRE 2008, pp.117–126, IEEE (2008).

[10] Mirzaei, N., Malek, S., Păsăreanu, C.S., Esfahani, N. and Mahmood,
R.: Testing Android Apps Through Symbolic Execution, SIGSOFT
Softw. Eng. Notes, Vol.37, No.6, pp.1–5 (2012).

[11] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P. and
Sundaresan, V.: Soot—a Java Bytecode Optimization Framework,
Proc. 1999 Conference of the Centre for Advanced Studies on Col-
laborative Research, CASCON ’99, p.13 (ref 1–13), IBM Press
(1999).

[12] Xu, W., Huang, L., Fox, A., Patterson, D. and Jordan, M.:
Experience Mining Google’s Production Console Logs, Proc.
2010 Workshop on Managing Systems via Log Analysis and Ma-
chine Learning Techniques, SLAML’10, p.5, USENIX Association
(2010).

[13] Xu, W., Huang, L., Fox, A., Patterson, D. and Jordan, M.I.:
Detecting Large-scale System Problems by Mining Con-
sole Logs, Proc. ACM SIGOPS 22Nd Symposium on Op-
erating Systems Principles, SOSP ’09, pp.117–132, ACM
(2009).

[14] Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y. and Pasupathy,
S.: SherLog: Error Diagnosis by Connecting Clues from Run-time
Logs, SIGARCH Comput. Archit. News, Vol.38, No.1, pp.143–154
(2010).

[15] Yuan, D., Zheng, J., Park, S., Zhou, Y. and Savage, S.:
Improving Software Diagnosability via Log Enhancement,
SIGARCH Comput. Archit. News, Vol.39, No.1, pp.3–14
(2011).

[16] Zhang, C., Guo, Z., Wu, M., Lu, L., Fan, Y., Zhao, J. and Zhang,
Z.: AutoLog: Facing Log Redundancy and Insufficiency, Proc. 2nd
Asia-Pacific Workshop on Systems, APSys ’11, pp.10:1–10:5, ACM
(2011).

[17] Zhao, X., Zhang, Y., Lion, D., Ullah, M.F., Luo, Y.,
Yuan, D. and Stumm, M.: Lprof: A Non-intrusive Re-
quest Flow Profiler for Distributed Systems, Proc. 11th
USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’14, pp.629–644, USENIX Association
(2014).

Yuki Ono has a master’s degree from the
Graduate School of Natural Science Tech-
nology, University of Kanazawa in 2013.
He expects to receive a doctoral degree
from the same institution in 2016.

Kohei Sakurai received his Ph.D. degree
from the University of Tokyo, Japan in
2009. From 2009 to 2011, he was a post-
doctoral researcher at the Shibaura Insti-
tute of Technology. Since 2011, he has
been an assistant professor in the faculty
of electrical and computer engineering at
the Institute of Science and Engineering

of Kanazawa University, Japan. His research interests include
programming, software testing, and debugging.

Satoshi Yamane received his B.S. (1982)
and M.S. (1984) degrees from Kyoto Uni-
versity, Japan. He is a professor in Kana-
zawa University. He is interested in for-
mal verification and distributed comput-
ing.

c© 2016 Information Processing Society of Japan

