2J-07

Group Protocol for Quorum-Based Replication *
Keijirou Arai, Katsuya Tanaka, and Makoto Takizawa f
Tokyo Denki University *

Email : {arai, katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

Objects in distributed systems are replicated to
make the systems fault-tolerant in order to improve
the reliability and availability of the system. The
replicas of the objects are distributed on computers
interconnected by networks. A server maintains ob-
jects in a computer. Transactions in a client ma-
nipulate replicas in servers by issuing requests to the
servers. In this paper, we consider a group of replicas
of a simple object like a file, which supports only basic
read and write operations.

A transaction which initiate in a client computer
sends a read request to only one replica and sends a
write request to all the replicas. In the group commu-
nications, message are causally delivered. That is, a
message m1 causally precedes another message mo if
the sending event of my happens before msy. In addi-
tion to the causally ordered delivery, some messages
are required to be totally ordered. That is, a mes-
sage m; totally precedes mqo if my causally precedes
mo. If my and my are not causally ordered, every
pair of common destination computers of m; and
deliver m; and my in the same order. The totally or-
dered delivery is required to be supported in a group
of replicas. The replicas have to be mutually consis-
tent. In the read-one-write-all scheme, larger compu-
tation and communication overheads are implied for
write dominating applications since write requests are
sent to all the replicas. In the quorum-based scheme,
a read request may be sent to more than one replica
and a write request may not be sent to all the repli-
cas. In this paper, we discuss insignificant messages
which are received but can be omitted and are not
required to be causally and totally ordered in the
quorum-based scheme. We discuss a quorum-based
group (QG) protocol which supports the ordered de-
livery of significant messages. In section 2, we define a
quorum-based precedency of messages. In section 3,
we discuss insignificant messages not to be ordered.
In sections 4, the QG protocol is discussed.

2 Quorum-based precedency

2.1 Quorums

Computers py, ..., p, are interconnected in an
asynchronous network. Messages may be lost and
the delay time is not bounded in the network, i.e.
the network is asynchronous. Objects are stored in
servers and transactions in clients manipulate the ob-
jects in the servers. Clients and servers can be realized
in a computer and replicas of an object are stored in
servers. BEach computer has at most one replica of
each object. Let of denote a replica of an object o,
in a computer p;. Let R(o,) be a cluster of o4, which

*d—=F AHRICEDIWEYN—TEETaal
THT3F BRKER, M Bth, MR
THATBHRY

is a set of the replicas o, ..., oa" of 0, (¢ < n). A
transaction Tj sends read requests to Ny, (< q) vepli-
cas in a read quorum Q. of an object o, and write
requests to Ny, (< q) replicas in a write quornm (..
of an object 0,. N, and N, are quorum numbers.
Qar © R(0g) and Quuw € R(0g). Here. Qur U Gy
= R(0,) and Ny + Ny > ¢. Bach replica of, has a
version number vi. T; obtains a version number v,
from a replica of which is the maxinnun in the write
quorum (Qg..-

2.2 Quorum-based precedency

Each transaction 7; initiated in a computer p,, is
given an identifier tid(1;) = (V(T3}), id(p.)) where
V(T3;) is a logical clock of p,, when 17 is initiated. And
id(p;) denote an identifier of p,. The logical clock of
Py is realized by a vector V' = (Vi, ..., V) where
each element V; is initially 0. For every pair of vector
clocks Vi = (Viq, ..., Vi) and Vo = (Vii. ..., Von).
Vio>VoifViy>Vofort=1,..,n V>V, or
Vi < Vi, Vi and Vo are comparable. Otherwise, Vi
and Vi are uncomparable (V1 || Va). On receipt of m
from the computer p,, p; manipulates the vector V7
as follows:

Vy = max (V,, m.V,) for v =1, ... n (v # 1)
That is, T} is initiated in p,, after p,, receives a message
from another transaction T} in p, iff V(1) > V{(1}).

For a pair of transaction identifiers tid(1}) (=
(V(T3), id(pu))) and tid(Ty) (= (V(L}), id(p:))),

o tid(1}) < tid(1}) iff:

1. V(T3) < V({I}), or
2. id(pa) < id(py) if V(T,) || V(T).

A transaction 1; precedes another transaction 75
(I; — Ty) iff tid(1;) < tid(7;). Here, it is straight-
forward either 1; — 1} or 1; — 1; for every pair of
transactions 7; and 1j.

BEach request message m has a sequeace numbey
m.sq. A computer p; increments the sequence nwmber
sq by one each time p; sends a message. Hence. . sq
< me.sq iff p; sends 1y before mo. Each request
message m has an identifier of source computer m.srec.
Each request message m has a vector clock, i.e. V{(17})
= (W1, ...,V,). Each request message m has a m.op
type of operation op, i.e. r or w.

[Quorum-based ordering (QBO) rule| A request,
my quorum-based precedes (Q-precedes) another re-
quest my (my < my) if
1. my.op and ma.op conflict if m.V < mgy. V.,
2. id(my.sre) < id(me.src) and mq.op and ma.op
conflict if m.V' || ma.V, or
3. my.sq < mo.sq if my.V = ma.V, ie. m; and maq
are sent by a same transaction. O
Messages received by a computer p; are stored in
the receipt queue RQ¢. 1f iy < ma, my precedes mo
in RQ:. If neither mq < mgy nor ma < mq, my and

my are Q-uncomparable (mq || ma). Even if a request
message m, causally precedes another request mo, m
< my does not hold if my.op and meq.op are compatible
according to the QBO rule 1.

[Theorem 1] A message m; precedes another mes-
sage mg in a receipt queue of every common destina-
tion of my and my if my < ma.

[Proof] If m;.V < me.V and m;.op conflicts with
my.op, a common destination computer p; of my and
mo delivers mq before ms. Next, suppose m.V
mo.V. py delivers mq before mgy because my precedes
me in the identifiers of the senders of my and mg. If
m1.V = my.V, my and ms are sent by a same trans-
action. p; delivers m; before mgy because m; precedes
meo in the sequence numbers of the messages.O

3 Significant messages

We define significant requests. A request m,
locally precedes another request mo in a computer
pt (M1 —¢ m2) iff mq Q — precedes mo (1 < my) or
my —¢ ms —¢ me for some request mg. That is, m;
—¢ my if my.0p and meo.op conflict and my precedes
meo in RQ;.
[Definition] A request message my globally precedes
another request ms (M1 — meo) iff my —¢ ma, My
—¢ ma3 and ms3 —, My, Or My — mg — Mo for some
computers p; and p, and for some request ms. O
[Definition] A write request w! is current for a read
request 75 in a receipt queue RQ iff wf =y vl and
there is no write request w such that w! — w — Ty
Here, r;- is also current. Unless w,,’{ and 7§ are current,
w! and 7} are referred to as obsolete. O
[Definition]

o A write request w! absorbs another write request

w}? if w! —y w;ﬁ, and there is no read r; such that

i i t . T ot 1, -
W =y Ty —¢ Wy, OF W absorbs w}, and wy, absorbs

w} for some wy.

o A read request ! absorbs another read request

r;» iff 7} —; % and there is no write wl such that

rt — wf — 7%, or rf absorbs some read r% which
absorbs 7%. [

; t t nor rt t s £ it

If neither r} — % nor r; — r; in py, v; and 7}

read the same data because there is no write request
between 7} and % in RQ;. Hence, data derived by rt
can be sent to not only the source computer ps of 17’
but also p, of r§ as the response of r§

[Definition] A request m is significant in a receipt
queue RQq iff m is neither obsolete nor absorbed. O

4 Group Protocol

4.1 Delivery of requests

In order to detect insignificant requests, each
replica has to find whether or not each of undestined
requests and uncertain ones is write. Each message
m carries vectors of write counters m.W = (m.Wq,
..., m.Wp). Each computer p, manipulates variables
W = (Wy, ..., W,), where each W, is initially zero.
Suppose p; sends a message m. If m is a write request,
W, = W, + 1 for every destination p, of m. Other-
wise, W is not changed. m.W := W. On receipt of
a write request m from p, p; manipulates the write
counter W as follows:

o W, := max(W,, m.W,) foru =1, ..., n;

In the receipt queue RQ;, messages received are
ordered in “<” according to the QBO rule.
[Theorem 2] Let m; and my be messages in the re-
ceipt queue RQ¢ where m, directly locally precedes
ms. There is such an undestined write request g
that m1 < m3 < mg in pg if the following coundition
holds:

o mi. W < mo. W if mi.V < mo. V.

o m1.W < mo.W and my.sq < ma.sq it my. V. =

ma.V.

5 Evaluation

The QG protocol is evaluated by measuring the
number of requests performed by each computer
through the simulation. Let p be 7/7 and o be 8/7.
Figure 1 shows how many significant requests are pei-
formed in each computer by the QG protocol where
N, = Ny =6and /7 = 1.6 for P, = 0.3, 0.5, and 0.7.
The vertical axis shows what percentage of requests
received are significant for p. Here, about 35 - 40%.,
55 - 60%, and 70 - 80% of the messages are removed
from the receipt queue for P, = 0.3, 0.5, and 0.7, re-
spectively. This shows that fewer number of requests
are performed, i.e. less protocol overhead in the QBO
protocol than the message-based protocol.

Percentage of significant requests for the number of requests destined

e %
- Sk - - % - *
+e
S - + R
A A el
J 0.2 04 06 0.8 1 1.2 14 1.6 18 2
P
N, =6 N,=6 6&/r=156

Figure 1: Ratio of significant requests.

6 Concluding Remarks

This paper has discussed a group protocol for a
group of replicas where the replicas are manipulated
in the quorum-based scheme. A traunsaction sends
read and write requests to the quorum number of
the replicas. We have defined insignificant messages
which need not be ordered for a replica. We have pre-
sented the QG (quorum-based group) protocol where
each replica decides whether or not requests received
are insignificant which supports the QBO delivery of
messages. The QG protocol delivers request messages
without writing for insignificant message.

References

[1] Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM,
Vol.21, No.7, 1978, pp.Hh8&-565.

[2] Arai, K., Tanaka, K., and Takizawa, M., “Group
Protocol for Quorum-Based Replication,” Proc. of
IEEE ICPADS 00, 2000, pp.57-64.

