3M-02 Quorum-based Locking Protocol for Replicated Objects *

Katsuya Tanaka and Makoto Takizawa T
Tokyo Denki University
e-mail {katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed applications are realized in object-based

frameworks like CORBA. In order to increase the re-
liability, availability, and performance, the objects are

replicated. In the two-phase locking (2PL) protocol
[1], one of the replicas for read and all the replicas
for write are locked. In the quorum-based protocol
[2], quorum numbers N, and N, of the replicas are
locked for read and write, respectively. The subset of
the replicas is a quorum. Here, a constraint “N, +
Ny, > a” for the number a of the replicas has to be
satisfled. A pair of methods ¢ and u of an object o
conflict if the result obtained by performing ¢ and u
depends on the computation order. Before performing
t, a quorum number N, of the replicas of an object o
are locked in a mode of . Suppose a pair of methods
t and u are issued to the replicas. ¢ may be performed
on one replica o; and u on the other o, if t and u are
compatible. Here, the state of o; is different from o,.
o; and o, can be the same if u and ¢ are performed on
o, and oy, respectively. The authors [3] discuss a ver-
sion vector to identify which methods are performed
on each replica. In this paper, we discuss a simpler
method to exchange methods among replicas.

In the object-based system, methods are invoked in
a nested manner. Suppose a method e on an object z
invokes a method b on another object y. z is replicated
in replicas z; and z, and y is replicated in y; and y,.
A method a is issued to z; and z;. Then, the method
a invokes b on y; and y2. Here, b is performed twice on
each replica. This is a redundant invocation. In addi-
tion, an instance of @ on z; issues b to its own quorum,
say @1, and a on 3 issues to Q2 where |Q1]| = |Q2]| =
N,. Since |@;1 U Q3] is larger than the quorum num-
ber N3, more number of replicas are locked than the
quorum number N;. This is a quorum ezplosion. We

discuss how to resolve the redundant invocations and
quorum explosions in nested invocations of methods

on replicas.

In section 2, we present a system model. In section
3, we extend the quorum concepts to the object-based
system. In section 4, we discuss how to invoke methods
on replicas in a nested manner.

2 System Model

A system is composed of replicas of objects. The
replicas are distributed in multiple computers. Each
object supports a collection of methods only by which
the object is manipulated. A transaction issues a
method request op to an object o. Then, op is per-
formed on the object o and the response of op is sent
back to the transaction. Let op(s) denote a state ob-
tained by performing a method op on a state s of an
object 0. A method op, is compatible with op, iff
op;0op, (s) = op, o op, (s) for every state s of o, i.e.

LT EHO HMRRIET ST v 7 FIEORE
DD B i A
PR B AT

the result obtained by performing op; and op, on o is
independent of the computation order of op; and op,.
Otherwise, op, conflicts with op,. The conflicting re-
lation is symmetric but not transitive. The method
op performed on o may furthermore issue a request to
another object. Thus, methods are invoked on objects
in a nested manner.

A cluster R, of an object o is a set of replicas {o,,
..., 04} (a > 1). Suppose there are two objects z and y
in the system. There are three replicas, z1, 3, and za
for the object z and two replicas y; and y; for y. The
object = supports a method ¢ which invokes a method
u on the object y. A transaction T issues a request
t to replicas of 2. In the famous two-phase locking
(2PL) protocol, a transaction T issues a write request
to all the replicas, z;, #2, and z3 but a read request
to one replica, say #;. In the quorum-based protocol,
T issues write and read requests to quorum numbers
N, and N, of replicas of z, respectively. Here, N,, +
N, > a where a is the total number of the replicas of
z, 1.e. a = 3. For example, a write request is issued
to a subset {z;, z2} denoted a write quorum Q,, and
a read request is issued to a subset {z;, 3} denoted
a read quorum Q,. N, (= |Qyu|) = N, (= |@.|) = 2.
The read and write methods are surely performed on
the replica z; in @, N @, while only write and read
are performed on z; and z3, respectively.

3 Object Quorums
3.1 Quorum constraint

Let N; (= |Q:|) be the qguorum number of op,. The
quorums have to satisfy the following constraint.
[OBQ constraint]

e N; + N, > aiff op; conflicts with op,. O

In the quorum-based protocol, N; + N, > a if a

pair of methods op, and op, are update ones.. On the

other hand, the OBQ constraint means that N; + N,
> a only if op, conflicts with op,,.

3.2 Exchanging procedure

Each replica o, has a log L; where a sequence of
update methods performed on o} are stored. Initially,
L}, is empty. Suppose that a method op is issued to o.
Here, let Lj, be a sequence of update methods (opp1,
.+ +s OPhm]. If op is compatible with every method opp;,
op is enqueued into Ly, i.e. Ly = {opp1, - - -, OPhm, 0P
and op is performed on oj,. Suppose that op conflicts
with a method opy; and op is compatible with every
method opny (f > t) in Ly. There might be some
replica o whose log L, includes some method ope;
which is compatible with a method in L but conflicts
with op, and is not performed on on. Such method
opr; is required to be performed on o before op is
performed. Here, another replica o, has a log L; =
(0P, - .., 0pxi] and op is issued to og. op conflicts with
opky and op is compatible with every method opgs (f
> u). According to the OBQ property, every pair of

Figure 1: Nested invocation
methods opy; in Ly and opg; in L are compatible.
Here, a method opg; in Ly is referred to as missing
method for a method op on oy, iff opy; is not performed
on op and opg; conflicts with op. Here, every missing
method opg; for op in Ly is required to be performed
on oy, before op is performed. Then, op is performed on
op. All the methods conflicting with op are marked in
Ly and op is enqueued into L. If an update method
op is marked in every log, op is performed on every
replica and some conflicting method is performed after
op. Hence, op is removed from every log.

A transaction T issues a request op to the replicas
in a quorum Q,p.

1. On receipt of op, a log Ly, of areplica oy, is searched.
If every method in Lj, is compatible with op, op is
enqueued into Ly and op is performed on oy.

2. If there is a some method in Lj which conflicts with
op, a replica oy, sends a log Ly to T

3. T collects the logs from the replicas, i.e. L = U{L;
| op € Qn}. T sends a log L,” = {op’ | op’ € L
— Ly and op’ conflicts with op} to the replica oy.
A method in Lj’ is performed on o,. Then, op is
performed on o0,. Every method conflicting with
op in Lj is marked.

4 Nested Invocation

Suppose that there are replicas zq, ..., o, of the
object # and replicas yi, ..., ys of the object y. A
transaction T issues a method ¢ to replicas in the quo-
rum @4, say N, = 2. Suppose t is issued to replicas z;
and z,. Furthermore, ¢ issues a request to replicas in
the quorum of y to invoke a method u. Here, suppose
N, = 2. Let t; and t; be instances of the method %
performed on replicas z; and z;, respectively. Each of
t, and t; issues a request of the method u to replicas
in a quorum of t. Here, let @,; and Q.3 be quorums
for ¢; and i3, respectively. Suppose Qu1 = Qu2 = {1,
y2}. t1 and ¢, issue u to y; and y,. Here, let u;; and
u;2 be instances of the method u performed on replicas
y1 and y2, which are issued by the instance ¢; (i = 1,
2), respectively. If u changes a state of y, a state of y;
is inconsistent because two instances u;1 and uy; of u
from t; and t; are performed on y; [Figure 1]. This is

a redundant invocation. . .
In order to resolve the redundant invocation, the

following strategies are adopted:

1. Each transaction T is identified by a unique trans-
action identifier t¢d. Each request issued in T car-
ries the ¢id of T

2. If a method op; is performed on a replica oy, op;
and the response with ¢id of the transaction issuing
op; is logged into the log.

3. If op; is issued to oy and op; of the same transaction
is found in the log of oy, the response of op; stored
in the log is sent back without performing op;.

Next suppose Qui # Qu2, say Qu1 = {¥1, ¥2} and

Figure 2: Resolution of quorum explosion.

Quz2 = {y2, y3}. The method u is performed on replicas
in Q@ = Qu1 U Quz = {y1, Y2, ya} where u is performed
twice on the replicas in Qu1 N Qu2 = {y2}. If another
transaction manipulates the object y by the method
u, u is issued to the replicas in the quorum @Q,, say
{¥3, Ya}- |Qui U Qu2| > |Qu|- This means that more
replicas are locked than the quorum number N, of
the method u if the method u is invoked by #; and
to. Then, the instances of u on the replicas in Q,; U
@2 issue further requests to other replicas and more
replicas are locked. This is quorum ezplosion.

Suppose that a method £ on an object = invokes
a method u on an object y. In order to resolve the
quorum explosion, Q. and Qur have to be the same
for every pair of replicas z; and z; where an instance
of t is performed. There is a following approach to
resolving the quorum explosion:

1. Each replica has a same function rand for generat-
ing a sequence of random numbers. That is, rand(s,
n, a) gives a same set of numbers from 1 to a for
a same initial value 7 and the total number n of
random numbers to be generated.

2. Each replica z5, gets I = rand(tid, Ny, a), where
tid is a transaction identifier of ¢, N}, is the quorum
number of a method u, and a is a total number of
replicas. I is a set of replica identifiers. Then, a
quorum @}, is constructed as Qp = {y; | ¢ € I}.

Every instance invoked by a same instance has the
same transaction identifier. Thus, every instance of
the method d issues a request of the method w to the
same quorum. Hence, the quorum explosion is pre-
vented [Figure 2].

5 Concluding Remarks

This paper discussed how multiple transactions invoke
methods on replicas of objects. The replicas are not re-
quired to perform every update method instance which
has been computed on the other replicas if the instance
is compatible with the instances performed. We dis-
cussed how to resolve redundant invocations and quo-
rum explosions to occur in systems where methods are
invoked on multiple replicas in a nested manner.

Reference

[1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery in
Database Systems,” Addison- Wesley, 1987.

[2] Garcia-Molina, H. and Barbara, D., “How to As-
sign Votes in a Distributed System,” JACM, Vol
32, No.4, 1985, pp. 841-860.

[3] Tanaka, K., Hasegawa, K., and Takizawa,
M., “Quorum-Based Replication in Object-Based
Systems,” Journal of Informaiion Science and
Engineering (JISE), Vol. 16, 2000, pp. 317-331.

