5Q-01 Recursion Removal and Introduction
using Destructive Associativity

Kazuhiko Kakehi*

Robert Glick™*

Yoshihiko Futamura**

* Graduate School of Science and Engineering, Waseda University
** School of Science and Engineering, Waseda University

1 Introduction

Recursive programs are often easy to write and reason
about, while iterative representation is usually more effi-
cient to execute. Transformation between recursive and
iterative variants of a function is hence quite impor-
tant in order to enjoy the benefits of both programming
styles. This topic has been energetically researched for
many years by several approaches, [1, 2, 3] for example,
but translation from iteration to recursion or recursion
removal from append-like functions seem rare.

To tackle with recursion removal toward functions
constructing structures, pointer operations are focused
in [4]. Following this, We found the way to give more
flexibility, and it is possible to translate not only from
recursion to iteration but for the other direction.

This presentation will first explain the basic idea ‘pre-
structures’ to enable these transformations in Section 2,
and transformations themselves using examples in Sec-
tion 3. We give a short note on an implementation idea
of prestructures in Section 4, finally Section 5 concludes.

2 Basic Idea

Recursive data-types are constructed like:

IntList Nil

| Cons[Int, IntList|.

In this construction, IntList grows only from right to
left, and decomposition from right is not allowed. Now
we take an example app. Since it is defined following the
data-type, an iterative solution for it is not observable.
app(x,y) €
case x of Nil —y
Cons|x1,xs| — Cons[x1, app(xs,y)]

Our basic approach to relax this is to allow half-way
construction of IntList using a destructive operation «<;,
an infix operator to put the right argument in the i-th
position of the left constructor, and a nullary, dummy

constructor _ (or Dummy explicitly) to fill the blank.

IntList Nil

| [Int,Dummy|cons <2 IntList

We call these unfinished prefix parts prestructures.
Since new constructions are done on the left of re-
cursive calls, the result is created from left to right as
the pattern variable is traversed. To follow this, these
constructions have to be accumulated on the right of
its accumulator in the tail-recursive definition. We use
«; also for the destructive operation to put the right
argument in the i-th position of the tail of the left pre-
structure. Our convention enables to express this:

app(x,y) = appi(x,y, Dummy)

appi(x,y,accl) def
case x of
Nil — accl «=5 y

Cons[x1,xs] — appi(xs,y,accl <5 [x1, Jcons)

In the literature associativity of append is often used
for recursion removal or adding constructions on the
right; it has sometimes disadvantages of worsening com-
putation. Though the operation ‘«—’ is destructive, this
effects doesn’t spread to other parts of programs un-
der the assumption of no side-effects. We can therefore
enjoy associativity of list construction without those dis-
advantages!

3 Transformation

In this section we explain the transformation using ex-
amples. Following Section 2, we assume functions with-
out side-effects. We use [x1] instead of [x1, cons as their
shorthands.

3.1 Recursion Removal—mnir
Given a list of integers of IntList, it returns a IntList:
mir(x,y) 4f case x of

Nil —y
Cons[x1,xs| — Comns[x1,mir(xs,Cons[x1,y])]

We make it a fully tail-recursive program.
First the definition is changed to use prestructures
instead:

mir(x,y) 4f case x of
Nil —y
Cons[x1,xs| — [x1] <2y mir(xs, [x1] <5 y).

We prepare a new accumulator accl to collect construc-
tions outside; when there is an outside construction on
the left of recursive calls, it is accumulated inside on the
right of the accumulator. We finally obtain the solution:

mir(x,y) = miri(x,y, Dummy)

- def
miri(x,y,accl) = case x of

Nil — accl <y
Cons{x1,xs] — miri(xs, [x1] <5 v,
accl <5 [x1])

3.2 Recursion Introduction—flat

Given a tree structure IntTree as an input, £lat returns
a IntList:

IntTree Leaf[Int]

| Node|IntTree, IntTree]

flat(x,y) &

case x of Leaf|[i] — Consli,y]
Node[x1l,xr| — flat(xl,flat(xr,y))

This is an, so to say, iterative solution using accumu-
lation. We want to derive its recursive variant of flat
without accumulation.

We need care for treating plural function calls appear-
ing its definition. Among them, one is regarded as the
main recursive call and the rest are dealt with as forked
recursive calls. The out-most one is the main call in the
iterative form.

First, the definition is changed in the manner of pre-
structures.

flat(x,y) ef

case x of Leaf[i] — [i] «2 ¥
Node[x1,xr| — flat(x1l,flat(xz,y))

Observing y is accumulating, y is put out with leav-
ing acc initialized as Dummy, and we obtain definition of
flati:

flat(x,y) = flati(x,Dummy) <5 y
flati(x,acc) 4 case x of
Leaf[i] — [i] =5 acc

Node[x1,xr| — flati(xl,flat(xr,acc))

We again apply this rule to the inner forked call.

flati(x,acc) 4 case x of

Leaf[i] — [i} +=5 acc
Node|x1,xr| — flati(xl,flatl(xr,Dummy) <>, acc)

Now that we see that the inner forked call is accumu-
lated on the left of acc, it can be put out on the right of
the main recursive call when eliminating acc from the
definition of flat1:

flatr(x) 4 case x of
Leaf|[i] — [i]
Node[x1l,xr| — flatr(xl) <>, flatl(xr, Dummy)

Finally the remaining calls f1at1(x, Dummy) are replaced
by flatr(x), and we obtain the final solution:

flat(x,y) = flatr(x) <y y
flatr(x) 4f case x of

Leaf([i] — [1]
Node[x1l,xr] — flatr(xl) <, flatr(xr)

4 Implementation

Here a problem remains: how is this implemented in pro-
gramming languages? As we have already mentioned,
a destructive operation «; puts the pointer of some
(pre-)structure on the i-th position of the tail of a pre-
structure. This implies that it is enough to keep pointers
top and tail elements of prestructures, or using circular
lists, where taking and putting elements on the left and
putting elements on the right are allowed and taking el-
ements from the right cannot be done. There is no need
to use double-linked lists to implement our idea.

5 Conclusion

We have presented simple ways to deal with removal
and introduction of recursion using the idea of prestruc-
tures. We have seen that relaxing construction makes
treatment of recursion quite easy.

Now that basic approaches are seen, formal transfor-
maiton rules including treatments for let-expressions
and the way for its implementation are left as future
works.

References

[1] R. Bird. Notes on recursion elimination. Comm. ACM,
20(6):434-439, June 1977.

[2] P. G. Harrison and H. Khoshnevisan. A new approach to
recursion removal. Theoret. Comput. Sci., 93(1):91-113,
Feb. 3, 1992.

[3] Y. A. Liu and S. D. Stoller. From recursion to itera-
tion: what are the optimizations? In J. Lawall, editor,
PEPM’00, pages 73-82, Jan. 2000.

[4] =#, K& WEER US40 L0BERBRFLZOE
BHHE. A>Ea1—-42Y 7T by 17T, 15(3):38-49, May
1998.

