
IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 1

On a SNMP DoS attack against Vulnerable Architecture of Network

Equipment

Motoyuki OHMORI
†1

Abstract: We had experienced that our core network switch sometimes stalled. If the worst came to the worst, the
switch got unable to forward any IP packets. The cause eventually appeared to be architectural vulnerability of the
switch that could cause high CPU load when the switch received SNMP packets. The switch was, however,
configured not to respond to SNMP packets that malicious attackers sent, i.e., this vulnerability was not related to
so-called SNMP reflection or amplification attack. We spent approximately three months before finally solving this
issue since the problematic phenomena spontaneously finished in a short period of time or the switch continued to
almost hang up under attack. We then present how to find out and solve the issue, and what a network switch
architecture should be like in this paper.

Keywords: SNMP, DoS, architecture design of network equipment

1. Introduction

A computer network in an organization is required to be more

invulnerable against attacks in order to achieve high availability

and a business continuity.

We, Tottori University, had experienced that our campus

network totally stalled and no communications were available.

The cause eventually appeared to be a high CPU load average

on receptions of malicious Simple Network Management

Protocol (SNMP)[1] packets. From early in the morning, 8:02

a.m., of 7th January 2015 to 12th February 2015, we suffered

from these malicious SNMP packets. We then present how to

find out and solve the issue, and what a network switch

architecture should be like in this paper.

1. Even popular enterprise core switch is vulnerable to a

simple DoS attack and stop forwarding any IP packets,

and this results from its architecture design. Such core

switch may be much vulnerable especially internal to

unintentional attackers whose terminals are infected by

malicious software or viruses.

2. Redundancy mechanisms of network equipment can be

useless or even be obstacles to shoot troubles caused by

DoS attacks.

3. CPU usage monitoring with SNMP is ineffective against

DoS attacks if polling interval is long such as 5 minutes.

Only second-order polling interval can detect the

attacks.

4. It is important to monitor normal traffic and daily

analyze them.

5. An Intrusion Prevention System (IPS) and its monitoring

service may be unable to detect and to avoid DoS at all.

6. An architecture of network equipment should carefully

consider which packets are punt to CPUs.

The rest of this paper is organized as follows. Section 2

presents a brief network configuration in our university where

we experienced the attacks. Section 3 presents symptoms that

 †1 Tottori University

we observed and how we struggled to find out and to fix the

causes. Section 4 discusses our operations against the attacks,

symptoms and important points when ones design network

equipment. Section 5 then refers to related works, and Section

6 concludes this paper.

2. Network Configuration

This section briefly present our network configuration and a

background of its structure. Figure 1 shows a brief network

configuration in Koyama campus of our university. As shown

in Figure 1 (a) and (b), our campus network connects to the

Internet via the exit router that has a BGP peering with a router

of the Science Information NETwork (SINET). The exit router

connects to the core switch, Cisco Catalyst 6509, which is a

popular L3 switch in an enterprise network environment and

was attacked and stalled in our campus network. The core

switch embeds firewall module called FWSM.

As shown in Figure 1 (b), the core switch logically connect the

firewall and the exit routers, and the core switch itself. Ones

may think that this network configuration is dangerous since the

core switch has an network segment outside of the firewall.

We, however, cannot help but have this network configuration

due to a limitation of the firewall, FWSM. We have three

virtual firewall contexts in the firewall in order to filter three

networks dedicated for education, research and administrative

Figure 1 Network configuration.

(a) Physical topology (b) Logical topology

Vol.2016-CSEC-73 No.4
Vol.2016-IOT-33 No.4

2016/5/26

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 2

office. The limitation of the firewall is that the firewall cannot

have multiple L3 interface on the same segment between

different virtual firewall context. This is the reason why we

have an network segment of the core switch outside of the

firewall. As described later, this network configuration was

one of causes of a network failure that we present in this paper.

3. Observed Symptom and Tried Fixes

3.1 The beginning of a nightmare

Our nightmare had begun with a small indication that modules

in our core switch did not respond to keep alive messages from

the core switch CPU for short period early in the morning, 8:02

a.m., of 7th January 2015 as ones can see the first spike in

Figure 2. As Figure 2 shows, not only the modules but also the

core switch itself did not respond to SNMP requests. As ones

may know, it is common that network equipment does not

respond to a keep alive message or SNMP request when the

equipment is busy to process other tasks. We then considered

this spikes in the graph as a rare case and it might not occur

again so often since users reported no major failures of networks

availability and the symptom finished in a short period without

any operation.

We, however, consulted with our network vendor in order to

locate the cause of no response for keep alive message and

SNMP requests for safety since this was the first time that we

experienced this phenomenon. Unfortunately, we could not get

no reasonable answers from the vendors, and were advised to

locate a process that caused the high CPU usage.

We then experienced the more phenomena that the core switch

did not respond for a SNMP request. It then seemed that the

symptom was going to get worse and worse since the core

switch could not sometimes be logged in even via command line

interface (CLI). We gradually considered that something

wrong happened in our core switch. Under this circumstances,

it was so difficult for us to locate the cause of the high CPU

usage since the core switch did not respond when we would like

to locate the causing processes in the core switch. In addition,

we could not see any foresight of the high CPU usage of the

core switch by the SNMP retrieving CPU usage of the core

switch as shown in Figure 2. This was because the polling

interval of the CPU usage of the core switch was 5 minutes and

the symptom usually finished in a short period of time.

3.2 Stall of IP packet forwarding

While we could not locate the cause of the high CPU usage,

the core switch became to sometimes stall and not to forward IP

packets for a short period of time. Even though the period was

short, our users began to notice that they could not sometimes

communicate with correspondent hosts in our campus network.

The core switch then gradually stalled for longer and longer

time while time goes by.

3.3 Attempt to recover stalls of IP packet forwarding

When the time that the core switch stopped to forward any IP

packets in our campus network, we attempted to locate the cause

of high CPU usage. One attempt was that isolated the core

switch from our campus network because we suspected any

loops or broadcast storms in our campus networks and we saw

the flapping of a spanning tree of Spanning Tree Protocol

(STP)[2]. The other attempt was switching over a running

routing engines to a other backup secondary routing engine

because we also suspected a routing engine failure. We

suspected the routing engine failure because some line cards or

modules had appeared to have memory failure. The other

attempt was to check to see if switching buses in the core switch

saturated or not since we utilized the core switch with

oversubscription modes. The buses, however, appeared not to

saturate. We then tried to reboot the core switch, and the core

switch sometimes recovered.

Even though we attempted to recover failures as described

above, we could not recover. At this moment, we still did not

locate the cause of the high CPU usage because CLI of the core

switch did not respond on the high CPU usage.

3.4 Attempt to locate the cause of high CPU usage

In order to locate the cause of high CPU usage, we

programmed a simple script to check to see if CPU usage was

about to get high. The script is written in Ruby[3], and always

to connect to the CLI of the core switch. The script then

polling recent CPU usages of 1 second average at intervals of 5

seconds, not 5 minute of general monitoring of CPU usage with

SNMP. When the script detects a recent CPU usage exceeds

the threshold that is configured in advance in the script, the

script tries to retrieve information of the core switch by

executing CLI commands. The script then mails the result to

an administrator. As described above, we eventually could

obtained necessary information to locate the cause of the high

CPU usage with the script.

3.5 Suspicious processes causing of high CPU usage

The script described in section 3.4 could present suspicious

processes that caused high CPU usage as follows:

1. iprouting: RIP send

"RIP send" is a process that announce the routing

information using Routing Information Protocol (RIP)

[4].

2. ARP

This is a process that resolves an Ethernet address

associated with an IP address of a correspondent host

using Address Resolution Protocol (ARP) [5]

3. tcp.proc

This is a process to process outgoing TCP connection

from the core switch.

4. IP SNMP

Figure 2 the CPU usage graph of the core switch.

Vol.2016-CSEC-73 No.4
Vol.2016-IOT-33 No.4

2016/5/26

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 3

This is a top-half process to handle SNMP packets.

Note that this process is a different from a process called,

"SNMP ENGINE," which is a bottom-half process to

handle the SNMP packets and which is a famous of

causing high CPU utilization.

Even though the script located suspicious processes, all of

them seemed not to be suspicious; RIP is a simple and very old

protocol, thus it was considered to be stable enough, and it

should not be the cause. ARP is very important protocol and

the core switch handles almost all APR packets in our campus

network, and its CPU usage was considered to be reasonable

even though the usage was a little bit higher in comparison with

other processes. "tcp.proc" then consumes if and only if the

core switch open outgoing TCP connection. "tcp.proc" was

then considered not to be the cause since there were few cases

that the core switch initiated TCP connection. We then

suspected the left process, "IP SNMP,". We, however, thought

that "IP SNMP" was not the case since there was no information

about "IP SNMP" that caused the high CPU utilization. Even

the vendor says that there was no suspicious process among

above processes, and they advised us to locate other processes.

3.6 Locating the CPU packet capture

We then began to capture packets that are "punt" to CPU of

the core switch even though we were not so confident if the

cause resulted from packet receptions or not. Since the failure

might finish in a short period of time and might not continue

sometimes, we kept capturing packets even though the core

switch properly worked. After we kept capturing packets, the

symptom eventually occurred. After we checked captured

packets, we could, however, see many suspicious packets, and

we could not then locate the causes.

We finally found that there were many SNMP packets during the

failure occurs. We then suspected the process, "IP SNMP,"

again. Figure 3 shows received suspicious SNMP packets.

As shown in Figure 3, packets included "GetBulk" request that

were common to be utilized for Distributed Reflection Denial of

Service (DrDos). Those requests also includes requests to try

to obtain an object ID, ..1.3.6.1.2.1.4.21.1.1 (ipRouteDest)

or .1.3, and the community was " public" that were usually used

for attacks. Interestingly, some of these packets did not have

UDP check summary (i.e., check summary field were zero). It

was common to receive those packets. After the failure

occurred several times after starting packet captures, we,

however, noticed that we always saw that those many SNMP

packets received, and the process, "IP SNMP," seemed to

consume CPU usage.

4. Discussions

4.1 Temporal recovery by reboot

As described in section 3.3, the core switch temporally

recovered when we reboot the core switch. These phenomena

confused us to locate the actual causes. These phenomena,

however, are very interesting because this means that some

attackers may stop after attacks fail due to routing errors or

something.

4.2 Packets punt to a CPU

As described in section 3.6, many packets are punt to a CPU

of the core switch. This is necessary for L3 switch or router to

generate ICMP message. These packets should be rate-limited

to be punt to CPU in order to preserve a CPU of a network

equipment.

4.3 Redundancy of network equipment

As described before, we switched over a routing engine of the

core switch. We, however, were confused by this switching

over because this feature had a bug to synchronize a

configuration.

4.4 Unbelievable architecture of firewall

What we were surprised is that our firewall cannot share the

same network segment between different virtual firewall context.

Because of this feature, our core network received malicious

SNMP packets.

5. Related Works

V. Paxson[6] has analyzed Distributed Denial-of-Service

(DDoS). He, however, has not found that there is the case

where the core switch is vulnerable against even normal SNMP.

6. Concluding Remarks

 We have presented that even an popular network equipment in

a enterprise network may be vulnerable against normal SNMP

packets. We have then reported our case and how to find and

how to recover from failures.

Reference
[1] D. Harrington, R. Presuhn and B. Wijnen, " An Architecture for

Describing Simple Network Management Protocol (SNMP)

Management Frameworks," RFC3411, December, 2002.

[2] IEEE SA, "802.1D-2004 - IEEE Standard for Local and

metropolitan area networks: Media Access Control (MAC)

Bridges," 2004.

[3] Ruby association, "A Programmer's best friend Ruby," Available

08:50:02.617911 IP (tos 0x0, ttl 238, id 54321, offset 0, flags [none], proto UDP (17), length 61)

 x.x.x.x.40866 > x.x.x.x.161: [udp sum ok] { SNMPv2c { GetBulk(18) R=47 N=0 M=127 .1.3 } }

 0x0000: 4500 003d d431 0000 ee11 355a xxxx xxxx E..=.1....5Z]...

 0x0010: xxxx xxxx 9fa2 00a1 0029 7569 301f 0201 ...F.....)ui0...

 0x0020: 0104 0670 7562 6c69 63a5 1202 012f 0201 ...public..../..

 0x0030: 0002 017f 3007 3005 0601 2b05 00 0.0...+..

Figure 3 Received Malicious SNMP packets.

Vol.2016-CSEC-73 No.4
Vol.2016-IOT-33 No.4

2016/5/26

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 4

on line: https://www.ruby-lang.org/, accessed on 19th April 2016.

[4] C. Hedrick, "Routing Information Protocol," RFC1058, June 1988.

[5] David C. Plummer, "An Ethernet Address Resolution Protocol,"

RFC826, November 1982.

[6] V. Paxson, " An analysis of using reflectors for distributed

denial-of-service attacks," ACM SIGCOMM Computer

Communication Review, Vol. 31, Issue 3, pp.38-47, July 2001.

Vol.2016-CSEC-73 No.4
Vol.2016-IOT-33 No.4

2016/5/26

