
Electronic Preprint for Journal of Information Processing Vol.24 No.3

Regular Paper

A Real-time Audio-to-audio Karaoke Generation System
for Monaural Recordings Based on Singing Voice

Suppression and Key Conversion Techniques

Hideyuki Tachibana1,†1,a) YuMizuno1,†2 Nobutaka Ono2,b) Shigeki Sagayama3,c)

Received: July 31, 2015, Accepted: February 8, 2016

Abstract: This paper describes an automatic karaoke generation system, which can suppress the singing voice in au-
dio music signals, and can also change the pitch of the song. Furthermore, this system accepts the streaming input, and
it works in real-time. To the best of our knowledge, there have been no real-time audio-to-audio karaoke system that
has the two functions above. This paper particularly describes the two technical components, as well as some com-
ments on the implementation. In this system, the authors employed two signal processing techniques: singing voice
suppression that is based on two-stage HPSS, a vocal enhancement technique that the authors proposed previously, and
a pitch shift technique that is based on the spectrogram stretch and phase vocoder. The attached video file shows that
the system works in real-time, and the sound quality may be practically acceptable.

Keywords: karaoke, music signal processing, singing voice, music application

1. Introduction

Karaoke is said to be invented in 1971 [56], and it is regarded
as one of the earliest examples of electric-technology-based mu-
sic applications for amateur music fans. It is currently one of
the major ways of enjoying music, and is considered as one of
major leisure activities. For example, karaoke was the 7th most
populous leisure in Japan in 2011, in terms of the number of par-
ticipants (38.4 million) [21]. (Note: the population of Japan was
about 128 million in 2010.) This digit is comparable to those of
other major leisure activities including watching movies, playing
video games, and listening to music.

On the other hand, the songs created by amateur musicians,
which are typically distributed through web sites, have become
considerably popular recently, especially in the last decade. Re-
cent growth of the web-based music community prompts many
amateur musicians to upload their songs, and many listeners en-
joy these songs as well as the songs created by professional mu-
sicians. (Relevant discussion on the web-based community of
amateur musicians is found in Refs. [14], [15], etc.) However, it
is not necessarily economic to create the karaoke data for all the
songs of these kinds, remembering that the current karaoke sys-
tems require pre-made MIDI data, which are created manually by
skilled craftspeople who have the ability of music dictation.

1 The University of Tokyo
2 National Institute of Informatics, Chiyoda, Tokyo 101–8430, Japan
3 School of Interdisciplinary Mathematical Sciences, Meiji University,

Nakano, Tokyo 164–8525, Japan
†1 Presently with PKSHA Technology Inc.
†2 Presently with Aichi Prefectural Government
a) tachi-hi@14.alumni.u-tokyo.ac.jp
b) onono@nii.ac.jp
c) sagayama@meiji.ac.jp

Thus the techniques that can generate karaoke signals automat-
ically from mixed music signals, such as MP3 data, has signifi-
cance. In order to create karaoke data from mixed music signals,
we can consider principally two approaches as follows,
(a) Audio→MIDI→MIDI→ Audio A possible approach

may be the sequential processing as follows.
(1) Audio to MIDI conversion, which may be based on gen-

eral music transcription techniques such as multiple F0

analysis (e.g., Ref. [22]).
(2) Estimate which parts of the MIDI data are melody, and

delete them from the MIDI data.
(3) MIDI → Audio synthesis, which is a traditional tech-

nology of computer music.
However, this approach is not easy for now, because there
are still many difficulties to solve the subproblems (1) and
(2).

(b) Audio→ Audio Another approach may be the direct audio-
to-audio conversion, using some signal processing tech-
niques. See also Section 1.1.1. This paper considers this
approach.

On the basis of the motivations above, the authors developed
an interactive music player named “Euterpe,” which generates
quasi-karaoke signals from ordinary music signals. The system
does not require separately-recorded tracks of a song, but it only
requires the already-mixed music audio signals (such as ordinary
CDs, MP3 data, etc.) The system enables users to reduce the
vocal part and change the key of accompanying sounds. Further-
more, the system works in real-time. Moreover, we specifically
assume that the input signal is monaural because of the reasons
described in Section 1.1.1. To the best of our knowledge, there
have been no real-time automatic karaoke systems that integrated
these two important features above: singing voice suppression

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

and key conversion.
In this paper, we describe the details of the processings and

the architecture of the system. Note that the system is basically
a combination of already-known techniques, and hence, we do
not claim the novelty of each technical component. However,
we would say that this paper has the following contributions:
(1) we showed that our previous study, viz. singing voice en-
hancer [52], [53], is also promising as a singing voice suppres-
sor, and (2) we developed the system that really works in real-
time, by choosing lightweight technical components. Note also
that this paper is a revision of some parts of the first author’s
Ph.D. Thesis [48], second author’s Master’s Thesis [30], as well
as our short domestic non-refereed conference papers written in
Japanese [29], [49], [51].

1.1 Related Work
1.1.1 Vocal Suppression

There is a widely-known simple method to generate a karaoke
signal from a mixed music signal; we may obtain a quasi-karaoke
signal just by subtracting the right channel right(t) from the left
channel left(t) of a stereo signal (left(t), right(t)),

karaoke(t) = left(t) − right(t). (1)

Many free software of automatic karaoke generators e.g.
CenterPanRemover and some plugins for Audacity [1], are based
on this method or its variant. This approach is based on the com-
mon practice of the presentday professional music creation pro-
cedure that all the instruments including singing voice are sepa-
rately recorded, and the vocal component is placed on the center,
when all the parts are mixed down by recording engineers. In
other words, both left(t), right(t) contain almost exactly equal vo-
cal components in many cases of professional recordings, and the
subtraction can cancel the vocal component as a consequence.

A drawback of this simplest method is that it can be applied
only to stereo music signals. In addition, the creation procedure
should be based on the professional convention. In other words,
we may not expect the technique to work effectively for e.g. live
recordings, and we cannot apply it to monaural signals evidently.
In order to cover a wider range of recordings above, a technique
that automatically removes singing voice based on its nature, not

on the recording convention, is needed.
To date, the number of academic literature that principally

focused on this task seems limited. However, some automatic
audio-to-audio karaoke generation techniques were proposed,
such as the techniques based on Bayesian model [37], an F0

estimation [44], Deep Leaning [46], and an RPCA (low-rank +
sparse) -based model [18].

In the music signal processing community, the opposite side of
the same task, namely vocal extraction (enhancement), has been
attracting more interest than karaoke generation, and there have
been more studies: Vembu & Baumann [54], Li & Wang [28],
Hsu & Jang’s unvoiced singing voice enhancement [16], the tech-
niques based on Nonnegative Matrix Factorization [41], [55],
[58], Generative model [42], robust PCA (RPCA) [17], Sprech-
mann’s method that works in real-time [47], the authors’ previous
work called two-stage HPSS [52], [53], and the work by FitzGer-

ald et al. [6], which is based on the similar idea to two-stage
HPSS.

Of these, “two-stage HPSS” [52], [53] has an advantage that
it performs well in terms of GNSDR (Generalized Normalized
Signal to Distortion Ratio; see Ref. [38]), it is efficient, and it
works in real-time with a little latency. This paper shows that the
technique is effective also as a vocal suppression technique, and
uses it as a technical component of our automatic audio-to-audio
karaoke system *1.
1.1.2 Another Common Function of Karaoke: Pitch Shift

(Transpose)
Although the term “karaoke” literally translates “vacant (kara)

orchestra (oke),” this literal meaning does no longer fully describe
the presentday karaoke systems. Indeed, current karaoke systems
have many functions other than vocal-off, such as the key conver-
sion, the tempo conversion, showing lyrics on the monitor, scor-
ing the quality of the singer’s performance, etc.

Of these, this paper specifically considers key conversion, i.e.,
conversion of a music signal from a key to another singable key

(e.g., C Major
decrease the pitch by 3 semitones−−−−−−−−−−−−−−−−−−−−−−−→ A Major). This is not a

trivial problem in case of audio-to-audio conversion, contrary to
the case of MIDI-based karaoke system, in which it is quite easily
done just by adding/subtracting an integer to/from the MIDI note
numbers.

The audio-to-audio pitch conversion techniques, viz. pitch-
shift (and time-stretch), includes Pitch Synchronous OverLap and

Add (PSOLA) [3], [5]. The technique effectively works for sin-
gle source audio signals, but there is a drawback that they are not
basically suitable for multi-source signals, which music signals
typically are. Another well-known technique which is capable
of pitch shift is phase vocoder [7], [24]. Other recent pitch shift
techniques for music signals include the works by Schörkhuber
et al. [45] and Nakamura & Kameoka [31].

Of these, the phase vocoder has been widely used in audio pro-
cessing, probably because it is efficient, intuitive, and is compat-
ible with the processing on spectrogram, discussed in Section 2.
In this paper, we shall use a variant of phase vocoder as a pitch
converter, though we additionally consider the issues of timbre;
the “color” of the sound.

In an ordinary phase vocoder, as suggested by Röbel and
Rodet [43], the timbre, i.e., spectral envelope, changes in the
conversion procedure. As a consequence, the timbre is prone
to sound differently from that of the original sounds, especially
when the conversion interval is large. In other words, the resul-
tant “transposed accompaniment” may not necessarily sound like
the same instrument. Röbel and Rodet addressed the problem,
and developed a new method to estimate the spectral envelope
before pitch shifting to keep the spectral envelope. In their paper,
it is also shown that their technique can more precisely estimate
the spectral envelope than other typical techniques such as LPC
and the cepstrum,

In this paper, however, we consider the simpler approach,

*1 Major English articles on two-stage HPSS [52], [53] principally focused
on singing voice enhancement, but the idea to exploit the technique to
singing voice suppression has already been mentioned in the first publi-
cation of the technique (conference short paper) [51].

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

namely LPC-based spectral envelope extraction, since we also
place emphasis on efficiency in this paper, as discussed in Sec-
tion 3.

Thus our technique is based on the following two techniques.
This configuration has also been considered in our previous con-
ference paper [29].
(1) Spectrogram Stretch Expand/shrink the given power spec-

trogram in the direction of frequency axis, keeping the spec-
tral envelope fixed.

(2) Waveform Synthesis from Amplitude Spectrogram:
Obtain the waveform from the modified amplitude spectro-
gram using RTISI-LA [59], a variant of phase vocoder.

1.1.3 Interactive Music Players
The concept of audio-to-audio conversion of a music signal

is relevant to some of the interactive music applications based
on music signal processing [23]. The proposal system may
also be related to the concept “Active Music Listening” [12],
which enables users to enjoy music interactively and actively,
instead of just listening to it. Many systems, related to the
concept, have been developed recently, including Drumix [57],
MusicKIOSK [10], etc.

1.2 Paper Organization
The rest of this paper is organized as follows. Section 2 de-

scribes the fundamentals of signal processing techniques on spec-
trogram. Busy readers may skip this section but Section 2.2.2
may be useful to understand Section 5. Section 3 describes the
requirements of the karaoke systems that we discuss in this pa-
per. In Section 4 and Section 5, we describe the signal processing
techniques which we utilized in the system. In Section 6, we
discuss some issues on implementation. Finally Section 7 con-
cludes the paper.

2. Signal Processing on Spectrogram

Before discussing the specific techniques of singing voice sup-
pression and pitch shift, let us briefly recall the fundamentals of
music signal processing.

2.1 Short-time Fourier Transform and Spectrogram
2.1.1 Complex Spectrogram

In music signal processing, it is common to formulate tech-
niques on the time-frequency plane, which is called ‘spectro-

gram.’ (See e.g., Ref. [23].) Given a discrete signal x(t) ∈
R

fsampTtotal , by applying the Short-time Fourier Transform (STFT)
to it, a complex spectrogram. X̃ = (X̃n,k)1≤n≤N,1≤k≤K ∈ CN×K ,
is obtained, where STFT : R fsampTtotal → C

N×K is defined by
X̃n,k = STFTL [x(t)] = FFTL [x(nS − L/2 + t)w(t)], where FFT :
R

L → CK is the Fast Fourier Transform, which maps a signal
u(t) to a spectrum û(k). The definitions of the other symbols are
shown in Table 1.
2.1.2 Amplitude Spectrogram

The absolute value of a complex spectrogram, X = (Xn,k)n,k =

(|X̃n,k |) ∈ R≥0
N×K , is called an amplitude spectrogram. Figure 1

shows an example of the amplitude spectrogram of a music sig-
nal.

Many audio signal processing techniques are indeed a conver-

Table 1 List of the symbols used in the definition of STFT.

Symbol Meaning
L ∈ 2N (even number) frame length
S ∈ N frame hop size (frame shift)
fsamp [Hz] sampling rate
Ttotal [s] length of the song
N := � fsampTtotal/S � number of time frames
K := L/2 + 1 number of frequency bins
n ∈ Z, 1 ≤ n ≤ N time index
k ∈ Z, 1 ≤ k ≤ K frequency index
w(t) window function

Fig. 1 An example of the amplitude spectrogram. The music signal is ex-
cerpted from RWC database [11]. Blue bins are silent, while green,
yellow, and red are louder. Higher frequencies are enhanced for vis-
ibility. (This figure is extracted from the author’s previous publica-
tion [50].)

sion from an amplitude spectrogram X ∈ R≥0
N×K into another

Y ∈ R≥0
N×K . That is, Y ← f (X) where f is some processing on

the spectrogram. A famous “ f ” is time-frequency masking, which
is not used in this paper, but is sometimes regarded as common
sense in audio signal processing literature.

2.2 Inverse STFT (Wave Synthesis from a Spectrogram)
2.2.1 Complex Spectrogram→Waveform

After the processing on the spectrogram, we need to transform
the spectrogram back to the waveform.

A transform from a complex spectrogram to a waveform is
rather trivial; we can synthesize the waveform x(t) ∈ R fsampT by
applying an inverse STFT technique to the complex spectrogram
X̃ ∈ CN×K .

A simple inverse STFT technique is based on a tandem connec-
tion of the inverse FFT and a simple wave concatenation which is
called overlap-add. For the details of the inverse STFT algorithm,
see e.g., Ref. [23].
2.2.2 Amplitude Spectrogram→Waveform

Contrary to the case of complex spectrogram, the transforma-
tion from an amplitude spectrogram to a waveform is an ill-posed
problem. Since we do not have any information on the phase
ψn,k ∈ [0, 2π) where Ỹn,k = Yn,ke

√−1ψn,k , we need to estimate the
phase spectrogram (ψn,k) to apply the inverse STFT mentioned.

There are typically two methods to obtain a phase spectrogram
as follows.
(a) Diversion of the Original Store the phase spectrogram

(φn,k) of the input complex spectrogram X̃ , where
X̃n,k = |X̃n,k |e

√−1φn,k . Then, we use it in inverse STFT
assuming that ψn,k ≈ φn,k. That is, let ψn,k = φn,k, and apply
the inverse STFT, y(t) = STFT−1

L [Yn,ke
√−1ψn,k].

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Table 2 Four candidates of how a karaoke generator should be implemented; {Server-side, Client-side} ×
{Download, Streaming}, and whether each approach requires real-time processing or not.

Server-side Vocal Suppression
Technically easier, but requires a server and
engineers who maintain the system.

Client-side Vocal Suppression
Not dependent on any specific service providers

Download→ Play
Technically easier

Download a pre-made karaoke data
and play it.
(Real-time processing not necessarily required)

Download whole the music file
and process it on users’ machines.
(Real-time processing not necessarily required)

Streaming Play
Rather user-friendly

Play fragments of a pre-made
karaoke data one after another.
(Real-time processing not necessarily required)

Process the streaming input
on users’ machines and play it.
Real-time (On-line) processing required

(b) Phase Recovery Technique Apply a phase recovery tech-
nique (phase vocoder) to the amplitude spectrogram Y to
estimate a phase spectrogram (ψn,k). See Section 5 as well
as Ref. [13].

We exploit both methods in this paper. The first approach in Sec-
tion 4, and the second technique in Section 5, since we cannot
expect ψn,k ≈ φn,k in Section 5.

3. Requirements for the Karaoke System

3.1 Vocal Off and Key Conversion
As discussed in the introduction, karaoke is not merely a

“vocal-off,” but it has many other functions including key/tempo
conversion, showing lyrics, rating the singing ability, etc. Of
these, we focus on the key conversion, and vocal suppression of
course, in this paper *2. That is, the system requires the following
properties.

I Vocal suppression from mixed audio (Section 4).
II Key conversion (Section 5).

3.2 Client-side Real-time Processing
We additionally require the system to satisfy the following

property.
III Accept Streaming Input and Work in Real-time.

Let us consider the following four possible cases: {Download,
Streaming} × {Server-side, Client-side}. Table 2 shows the details
of each candidate. Although the 4 candidates in the table have
their own advantages and disadvantages, the candidate “Stream-

ing+Client” has following two remarkable advantages;
Streaming: Streaming is user friendly. A report by CNN [19]

says that downloading has become less common for young
listeners in USA but they prefer streaming, and that some
people think that streaming is more “liberating.”

Client-side: Client-side processing has an advantage for users
that it is basically independent of the specific services. Thus
users may use the method on any music streaming services
in principle. In addition, client-side signal processing does
not require any central server which should be maintained
by some organization over a long time.

As described in Table 2, the three cases namely “Down-

load+Server”, “Streaming+Server” and “Download+Client”, ac-

*2 We do not discuss the time stretch (tempo conversion) in this paper be-
cause it is not necessarily possible in streaming processing. However,
it may be easily achieved in the same framework when we consider the
file-input instead of streaming. Indeed, pitch shift has been discussed in
tandem with time stretch, because both are essentially the same.

tually do not require streaming-based vocal-suppression tech-
niques that work in real time. Nonetheless, when it comes to
the case “Streaming+Client”, real-time processing is essential.

4. Two-stage HPSS for Singing Voice Suppres-
sion

This section describes singing voice suppression techniques for
audio signals. The technique should be based on the nature of the
singing voice, not on the recording convention, in order to cover
a wider range of recordings including monaural signals.

In this paper, we exploited Two-stage HPSS [52], [53], which
has two advantages: it is an effective singing voice enhancement
algorithm, and it works in real-time (on-line).

4.1 Harmonic/Percussive Sound Separation (HPSS)
Before describing two-stage HPSS, let us first discuss

HPSS [34], [35], [36], [50] briefly. HPSS is a technique that sep-
arates a spectrogram Y into two components below,
• horizontally continuous (viz. harmonic) components H

• vertically continuous (viz. percussive) components P

HPSS is formulated as an optimization problem, based on the
three objectives below,
(1) temporal difference of H should be small
(2) frequency difference of P should be small
(3) H + P ≈ Y

We have considered several instantiation of these three concepts.
In Ref. [35], the loss function was defined as an MRF (Markov
Random Field) -like model, which consists of local penalties be-
tween adjacent bins, as follows,

J(H ,P ; Y) =
∑
n,k

(Hn,k
γ − Hn−1,k

γ)2

+w
∑
n,k

(Pn,k
γ − Pn,k−1

γ)2 + cKL(Y 2γ |H2γ + P 2γ) (2)

where KL(x|y) =
∑

n,k(xn,k log(xn,k/yn,k)− (xn,k − yn,k)) the gener-
alized Kullback Leibler divergence, γ a certain exponential factor,
and w, c are weight constants.

We can decrease this objective function by the coordinate de-
scent, which is a simple but practical approach to the problems
that have very large number of variables (Hn,k and Pn,k in our
case). Instead of the ordinary gradient descent approach, our up-
date rule is based on the MM (majorization-minimization) algo-
rithm. The iterative update is written in the following convolutive
form using certain light functions fH , fP, fθ,

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Fig. 2 Concept of the sliding block analysis. See also Ref. [35].

Hn,k ← fH(Hn±1,k, Pn,k±1, θn,k) (3)

Pn,k ← fP(Hn±1,k, Pn,k±1, θn,k) (4)

θn,k ← fθ(Hn,k, Pn,k) (5)

where θn,k are auxiliary parameters. For the specific forms, see
Appendix A.1. Applying these formulae for each coordinate or-
derly (known as CCD: Cyclic Coordinate Descent), we can find a
local optimum of the objective function.

If we finally obtain spectrograms H ,P , then we apply the in-
verse STFT to H and P , using the original phase spectrogram
(see Section 2.2.2 (a)), and obtain the wave forms h(t) and p(t).

4.2 Streaming HPSS
We actually do not need the spectrogram of the entire song to

execute HPSS, but we only need short period of it to obtain a
practical solution at a bin (n, k), because of the reasons below:
• The iterative updating formulae Eqs. (3), (4) and (5) are

quite localized. That is, we only require the adjacent bins
(n ± 1, k), (n, k ± 1) as well as itself (n, k) to update the com-
ponents at (n, k), namely Hn,k, Pn,k, and θn,k.

• Intuitively, little of the effects from far distant bins pass
through the ‘barriers’ of the ‘silent’ bins {(n′, k′)} s.t. Hn′ ,k′ ≈
Pn′ ,k′ ≈ 0, which are constrained to be silent because of the
three constraints: (1) Yn′ ,k′ ≈ 0 (there are many silent bins in
the input spectrogram; see Fig. 1), (2) Hn′ ,k′ + Pn′ ,k′ ≈ Yn′ ,k′

and (3) Hn′ ,k′ , Pn′ ,k′ ≥ 0.
Let us extract the short period from the entire song, and call

this window as a “sliding block,” [35], which is shown in Fig. 2.
In the procedure below which exploits a sliding block, the up-
dating formulae Eqs. (3), (4), and (5) are applied N × I times for
each component of the spectrogram. In this setting the latency
is evaluated as approximately NS/ fsamp [s], where S/ fsamp [s] is
the frame shift of STFT.
(1) Enqueue/dequeue: Enqueue/dequeue the short-time spec-

trum to/from the sliding block of length N.
(2) Update: Apply updating formula Eqs. (3), (4), and (5) to the

sliding block I times (I ∈ N).
The above procedure is basically similar to RTISI-LA, a technical
component of key conversion, which is described in Section 5.

For those who are interested in the convergence of streaming
HPSS, see Appendix.

4.3 Vocal Off Technique: Two-stage HPSS
Singing voice may be regarded as a stationary signal in a very

short period (such as 1 [ms]), while it may not be so in a very long
period (such as 1 [s]), owing to its fluctuation. It is a matter of the

relative time-scale whether singing voice appears as ‘rather har-
monic signal’ or ‘rather percussive (non-stationary) signal.’ Ex-
ploiting this nature of singing voice we can roughly extract it from
a music signal just by twice applying the local convolutive oper-
ation, namely HPSS [52].

In an ordinary condition, HPSS separates a music signal into
harmonic components and percussive components. That is,

(Input)
HPSS(L1)−−−−−−−→ (Harmonic including Vocal), (Percussive)

where L1 is a frame length of STFT. To the contrary, if we apply
it to a spectrogram of long frame length L2 L1, HPSS separates
the same signal quite differently in the following way,

(Input)
HPSS(L2)−−−−−−−→ (Harmonic), (Fluctuated + Percussive).

Since singing voice often has fluctuation, vocal components
tend to be separated into “percussive” component in this case *3.
Therefore, applying HPSS twice on differently-resolved spectro-
grams, a signal can be separated to the three components: the
harmonic (e.g., guitar), the fluctuated (e.g., vocal), and the per-

cussive.

(Input)
Two-stage HPSS−−−−−−−−−−−−→ (Harmonic), (Vocal), (Percussive).

The purpose of our previous work [52] was to extract the vo-

cal, but what we are interested in in this paper is the residuals, i.e.,
harmonic and percussive. In this paper, we generated the “vocal-
off” signal just by adding thus obtained harmonic and percussive

multiplying certain weights αh, αp ∈ R. (See Fig. 6). Figure 3
shows an example of the result of two-stage HPSS.

An advantage of this approach is that we do not need any ex-
plicit models, nor training data, of singing voice, which may be
complicated or may be infeasible for real-time processing. In
two-stage HPSS, we just need two operations: FFT and the con-
volutive operation (namely HPSS), which are sufficiently effi-
cient. Moreover, it works in real-time (on-line) since the stream-
ing HPSS is basically a one-pass technique.

4.4 Performance of Singing Voice Suppression
In Ref. [52], it was shown that the two-stage HPSS extracts

singing voice from a mixed music signal effectively; the perfor-
mance was about 4 dB GNSDR (weighted average of SDR im-
provement) in some conditions. In this section, let us similarly
evaluate the performance of two-stage HPSS as a singing voice
suppressor using SDR, and our ears.
4.4.1 Evaluation Criterion: SDR (Signal to Distortion Ra-

tio)
Given an estimated signal E(t) and the ground truth X(t), SDR

is defined as follows,

SDR(E(t); X(t)) := 10 log10
‖aX(t)‖2

‖E(t) − aX(t)‖2 (6)

= 10 log10
〈X(t), E(t)〉2

‖X(t)‖2‖E(t)‖2 − 〈X(t), E(t)〉2 (7)

*3 Of course, vocal � fluctuated signal. For example, (1) singing voice
does not always have sufficient fluctuation, and (2) there are many instru-
ments that has fluctuation such as violin. However, we roughly identified
them because this assumption practically works.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Fig. 4 (a) Histogram of SDR(Ã; A) of the 5000 music clips (1,000 clips × 5 input SNRs). Each dot
indicates a music clip. The averaged value for each input SNR is 7.4 dB (−10 dB input SNR),
5.5 dB (−5 dB), 2.5 dB (0 dB), −1.4 dB (5 dB) and −5.9 dB (10 dB), respectively. (b) Histogram
of SDR(Ã; V), similarly. Blue lines indicate the baseline (the levels of the input signals), and
the black boxes indicate the mean ± sd. The averaged value for each input SNR is −14.2 dB
(−10 dB),−10.4 dB (-5 dB), −6.6 dB (0 dB), −3.1 dB (5 dB) and −0.4 dB (10 dB), respectively. Ani,
Kenshin, . . . are the IDs of the singers.

Fig. 3 An example of the result of two-stage HPSS. Top figure shows the
spectrogram of a mixed music signal. Middle figure shows the spec-
trogram of extracted singing voice by two-stage HPSS. Bottom fig-
ure shows the spectrogram of the residual component, i.e., the sum
of the ‘harmonic’ and ‘percussive,’ which is roughly equal to the ac-
companiment.

where 〈·, ·〉 denotes the inner product, ‖x‖2 := 〈x, x〉, and a ∈ R
is a certain constant that satisfies 〈X(t), E(t) − aX(t)〉 = 0. Intu-
itively, SDR(E(t); X(t)) indicates the strength of the target signal
X(t) in the estimated E(t). Evidently, “SDR = r dB” means that

Table 3 Parameters of the two-stage HPSS.

Parameter Value
Sampling Rate fsamp 16,000 [Hz]

Short Frame

Frame length L1 256 (=16 [ms])
Frame hop size S 1 128 (=8 [ms])
Parameter w 1
Parameter c 0.2
Parameter γ 1
Sliding block size N 30

Long Frame

Frame length L2 4,096 (=256 [ms])
Frame hop size S 2 2,048 (=128 [ms])
Parameter w 1
Parameter c 0.2
Parameter γ 1
Sliding block size N 30

the target signal X(t) is 10r/10 times louder than the distortion
E(t) − aX(t).

Let V(t), A(t) be the ground truth vocal and accompaniment,
and Ṽ(t), Ã(t) are the estimated, respectively. What we want to
evaluate here is SDR(Ã(t); A(t)), i.e., the strength of the ground
truth in the obtained “accompaniment.” *4

4.4.2 Experiment & Result
Let us evaluate SDRs using real music signals. The parameters

we used in this experiment are shown in Table 3. We evaluated
the SDR of the accompaniment using the MIR-1K dataset, similar
to Ref. [52].

*4 Since singing voice enhancement and suppression are “two sides of the
same coin,” the result, i.e. SDR(Ã(t); A(t)) may be basically similar to
the value of SDR(Ṽ(t); V(t)) in Ref. [52]. Indeed, it is easily verified

SDR(Ã(t); A(t)) = SDR(Ṽ(t); V(t)) − input SNR

where input SNR is SDR(V + A; V), if we can assume 〈V(t), A(t)〉 =
〈V(t), ε(t)〉 = 〈A(t), ε(t)〉 = 0, and Ṽ(t) = V(t) + ε(t), Ã(t) = A(t) − ε(t)
where ε(t) is the distortion. Nevertheless, it is not necessarily the case.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Figure 4 (a) shows the distribution of SDR(Ã(t); A(t))), i.e.,
the strength of the accompaniment in the output signal. The his-
togram is plotted by the singers. The values of SDR were higher
than the levels of the input signals on average if input SNR is 0,
5, and 10 dB. This suggests that the accompaniment A(t) became
relatively louder in the output Ã(t), compared with the input sig-
nal Input(t) = A(t) + V(t), in these conditions. This figure shows
that the trend does not strongly depend on the individual singer.
On the other hand, if input SNR is −5 and −10 dB (i.e., the cases
that the accompaniment is louder than the vocal), the output qual-
ity was lower than the baseline on average. This is possibly be-
cause the deterioration of the accompaniment has more impact
on the digits than the vocal reduction does in the low input SNR
case.

Figure 4 (b) shows the distribution of SDR(Ã(t); V(t))), i.e., the
strength of the singing voice in the output signal. This shows that
the singing voice tends to reside quite little in the output signals
on average. It is seen also in this figure that the trend does not
strongly depend on the individual singer.
4.4.3 Comparison to Other Methods

The digits, however, are not as good as the state-of-the-art tech-
niques e.g., Ref. [18], according to the digits reported in the Fig-
ure in the literature [18]. Figure 5 in Ref. [18] shows that the
performance (GNSDR) of RPCA [17] is about 1.5 dB, and that
that of Ikemiya’s method (RPCA-F0) is about 6 dB. The corre-
sponding GNSDR value of our method is about 2.5 dB (averaged
SDR(Ã; A) when input SNR = 0 dB). These digits indicate that
the performance of our method is a little better than RPCA, while
much worse than RPCA-F0. Nevertheless, our method has the
advantage that it is suitable for real-time processing.

4.5 Audio Examples
In the attached video file, the examples of the output are shown.

Listen to the attached Audio 1a, 1b (RWC-MDB-P-2001 No.7),
2a, 2b (No.13), 3a, 3b (No.98). The songs 1a, 2a, 3a were ex-
cerpted from RWC database [11], and converted to mono 16 kHz.
The clips 1b, 2b, 3b are the result.

Listening to these examples, we can find that the output sig-
nals contain less vocal components than the input signals, as the
experiment above suggests. Although the output signals contain
some distortions, they may be largely acceptable as karaoke sig-
nals.

5. Key Conversion with Fixed Spectral Enve-
lope

As discussed in Section 1 and Section 2, karaoke is not merely
a vocal-off, but it has much more functions including key conver-
sion. This section describes a simple technique to convert the key

(e.g., “C Major,” “D Major,” etc) of a music signal.

5.1 Key Conversion Based on Resampling and Phase
Vocoder

Before considering the timbre, let us consider the simpler
method, shown in Fig. 5 (a).

Pitch shift is achieved by the resampling of the waveform and
the concatenation of the resampled waveform segments. This is

Fig. 5 Concept of pitch shift. (a) Straightforward “pitch shift” based on
resampling, in which the shape of spectral envelope changed. (b)
Fixed-envelope pitch modification. Harmonic series are expanded,
but spectral envelope is kept almost fixed. (Note: in order to make
the discussion intuitive, we displayed the signals on the frequency
domain, but the actual processing was done on the waveform domain
based on the LPC framework.)

intuitively similar to stretching the short-time spectrum in the di-
rection of the frequency. This section describes the key conver-
sion technique based on the resampling, as well as the wave con-
catenation technique.
5.1.1 Resampling of a Short Wave Segment

The resampling from the short wave segment s′(t) of length
L′ to the another one s(t) of length L is done by the following
procedure.

s′(t)
FFTL′ [·]−−−−−−→ ŝ′(ω)

projection−−−−−−−→ ŝ(ω)
FFT−1

L [·]−−−−−−→ s(t) (8)

The ratio of L′ and L gives the interval of the conversion,

L′/L ≈ 2n/12, (9)

where n [semitone] is the interval *5.
The size of the output, i.e. L, should be a simple integer, prefer-

ably a power of 2, since we shall execute FFT of size L many
times in the subsequent processing (i.e., RTISI-LA). In contrast,
FFT of size L′ is less frequently executed. Therefore, it is better
to set L a fixed simple integer such as 1024, 2048, and regulate
the interval n = 12 log2 L′/L via the value of L′.

Nevertheless, it is preferable that L′ is also an efficient num-
ber for FFT. For example, FFTW3 [9], a famous implementation
of FFT, prefers that the size of FFT is a product of small primes
smaller than 13, namely

L′ = 2e2 3e3 5e5 7e7 11e11 13e13 where ei ∈ Z≥0 (10)

In addition, it also requires e11 + e13 ≤ 1 for efficiency [8]. Thus
we need to find the suitable L′ that approximate 2n/12L in the in-
tegers above. For example, if L′ = 1440(= 25 × 32 × 5) and

*5 Note that we considered −12 ≤ n ≤ 12 in Table 4 but the range or prac-
tical n is narrower. In our experiments, −4 � n � 4 seemed practical.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

L = 1024, the ratio L′/L = 45/32 ≈ 25.902/12 approximates 26/12

finely. (Cf. �1024 × 26/12� = 1448 = 23 × 181, and 181 is prime.)
Table 4 shows such approximate values we have found.
5.1.2 Phase Vocoder (Concatenation of Inconsistent Wave

Segments)
On the basis of the above procedure, we convert the input wave

segment

s′n(t), cn − L′/2 ≤ t < cn + L′/2 (11)

to the output wave segment, whose key is (12 log2 L′/L) semi-
tones higher,

sn(t), cn − L/2 ≤ t < cn + L/2 (12)

where cn is the center of each frame, i.e., cn = nS where S is the
frame shift of STFT.

The wave segments obtained above, however, have a problem
that the neighboring wave segments sn(t) and sn+1(t) are inconsis-
tent. Then, in order to connect these wave segments, we need to
employ a technique to reconstruct the waveform from a modified
amplitude spectrogram, as discussed in Section 2.2.2.

We then used the phase vocoder here, which is efficient and
intuitive. A basic method is the one proposed by Griffin &
Lim [13], which is a simple iteration of the STFT and inverse
STFT. Some variant of the technique are known such as the work
by Le Roux et al. [25], [26], [27], Perruadin et al. [39], but in this
paper, we used a method proposed by Zhu et al. [59], which is
called Real-Time Iterative Spectrum Inversion with Look Ahead

(RTISI-LA). As the name suggests, the method works in real time.
RTISI-LA is based on the similar architecture to the streaming
HPSS discussed above, i.e., it is basically the iteration of the
STFT and inverse STFT on the “sliding block.”

5.2 Spectrogram Modification with Fixed Spectral Envelope
A drawback of the method discussed in the previous subsec-

tion is that the timbre, i.e. spectral envelope, of the spectrum also
changes, as claimed in Ref. [29], [43]. In order to avoid this prob-
lem, we first decomposes a spectrum into the envelope and the
pitch by LPC analysis [20], [40] to obtain the two data. Then the
system applies the pitch shifting technique based on the resam-
pling described above, while the spectral envelope is kept fixed,
as described in Fig. 5 (b).

Table 4 Approximate values of 2n/12 which makes L′ = 2n/12L a simple
integer written as a product of small primes when L is power of 2
e.g., 1024, 2048.

positive n negative n

2 1/12 ≈ 135/128 2 −1/12 ≈ 15/16
2 2/12 ≈ 9/8 2 −2/12 ≈ 225/256
2 3/12 ≈ 1215/1024 2 −3/12 ≈ 27/32
2 4/12 ≈ 5/4 2 −4/12 ≈ 405/512
2 5/12 ≈ 675/512 2 −5/12 ≈ 3/4
2 6/12 ≈ 45/32 2 −6/12 ≈ 45/64
2 7/12 ≈ 3/2 2 −7/12 ≈ 675/1024
2 8/12 ≈ 405/256 2 −8/12 ≈ 5/8
2 9/12 ≈ 27/16 2 −9/12 ≈ 75/128
210/12 ≈ 225/128 2−10/12 ≈ 9/16
211/12 ≈ 15/8 2−11/12 ≈ 135/256

6. Does the System Really Work in Real-time?
— Implementation of the System

6.1 Overview of the Implementation
In this section we describe the implementation of the sys-

tem. The source code of the system is available on the author’s
GitHub *6. Note we implemented the system to receive the input
from the audio input jack, instead of the streaming input via the
web, but they are essentially similar. Almost all of the system is
coded in C++ except the GUI which is written in Tcl/Tk.

The system consists of the cascade connection of five process-
ing blocks, shown in Fig. 6. The total architecture is based on the
pipeline model as shown in the figure.

Figure 7 shows the user interface of the system. The system
has two sliders, “key” and “volume.” By dragging the “key”
slider, the users can change the value of n in the pitch shift al-
gorithm, while the “volume” slider is linked to the values of
αh, αp, αv in Fig. 6.

Figure 8 shows a photo of the experiment system. We con-
nected the output jack of a CD player (SONY CD Walkman R©)
to the audio input jack of PC.

Table 5 shows the parameters of each technical component.
Note that the frame lengths L1, L2 of HPSS are different from
those used in Section 3. The parameters in Section 3 are ad-
vantageous in audio quality, but when we used them in real-time
processing, the system tended to be less stable. Quantitatively,
the parameter set shown in Table 5 (I = 1) gives poorer perfor-
mance: GNSDR (averaged SDR(Ã; A)) was about 1.1 dB when

Fig. 6 Five blocks in the system.

Fig. 7 User interface.

*6 https://github.com/tachi-hi/euterpe

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Fig. 8 Photograph of experiment system. There are a laptop PC, in which
the system works, and CD player which is connected to the line input
of the PC, from which an audio signal is input into the the system.

Table 5 Parameters of each technical component.

Parameter Value
Sampling Rate fsamp 16,000 [Hz]

Short HPSS

Frame length L1 512 (=32 [ms])
Frame hop size S 1 256 (=16 [ms])
Parameter w 1
Parameter c 0.2
Sliding block size N 7
Iteration I 1, 2, 5 or flexible

Long HPSS

Frame length L2 2,048 (=128 [ms])
Frame hop size S 2 1,024 (=64 [ms])
Parameter w 1
Parameter c 0.2
Sliding block size N 7
Iteration I 1, 2, 5 or flexible

Key Conversion

Frame length L 2,048 (=128 [ms])
Frame hop size S 256 (=16 [ms])
LPC coefficient 15
Sliding block size N 7
Iteration I 1, 2, 5 or flexible

input SNR = 0 dB, while it is about 2.5 dB if we used parame-
ters in Section 3, though the value is still comparable to that of
RPCA [17].

6.2 Subsidiary Comments on Implementation
6.2.1 On the Pipeline Model

In a very simple audio application, the whole processing can
be written in the callback function of audio I/O API such as
PortAudio [2]. In contrast, in our more complicated system, we
need to consider a little more sophisticated architecture, in order
to avoid the “audio glitch” and the “underflow” (frame rate drop),
etc.

In this paper, instead of applying HPSS and key conversion in
the callback function in audio I/O, we designed the callback func-
tion to just copy the already-processed data stored in the buffer to
the audio output. The core algorithms, namely HPSS and key
conversion, work in other threads independently of the I/O; see
e.g., Ref. [33] in Section 2.2.3.
6.2.2 Iteration Strategy: Flexible Iteration

In Section 4.2 and RTISI-LA, although iterating the updating
formula once (I = 1) results in decent audio quality, larger num-
ber of iteration basically results in better audio quality.

A simple strategy to increase the number of iteration is setting
I a constant which is bigger than 1, such as I = 5. However, we

Table 6 Machine Specification.

PC
DELL ASUS Apple
PRECISION M4500 Eee PC MacBook Air

Category Laptop Workstation Netbook Laptop

CPU
Intel Core i7 Intel Atom Intel Core i5
Q 740 1.73 GHz N455 1.66 GHz 1.6 GHz

RAM 2 GB 1 GB 4 GB

OS
Linux Mint 13 Maya Xubuntu OS X 10.10.5
(Ubuntu 12.04 Precise) (Ubuntu 14.04 Trusty) Yosemite

Compiler g++ 4.6.3 g++ 4.8.4 clang++ 7.0.0
Release 2010 2009 2015
Audio Built-in 3.5 mm iBUFFALO BSHSAU01BK
Interface audio jack USB/3.5 mm converter

Note
On VMware Player – –
(Host OS Windows 7)

can expect that there should be some more chances to update the
spectrogram more than I times, especially if we have a computer
of higher performance. In order to increase the number of itera-
tion I as large as possible, we considered to make I more flexible,
instead of setting I by a constant.

This is simply achieved by the following architecture: we
implement the two processes (namely “enqueue/dequeue” and
“update”) loosely-coupled, and make them work in individual
threads *7. In this architecture, “update” threads are working
pauselessly, while “enqueue/dequeue” threads work only when
it is required. Intuitively speaking, “update” thread concentrates
solely on the quality of their main occupation, and turns over its
output to the subsequent component only when it is required, es-
pecially when the amount of the stock in the buffer between them
is lower than the predetermined threshold.

6.3 Experiment
We implemented the system on the basis of the architecture

above, and verified that it works on the computers shown in Ta-
ble 6, though we sometimes observed some “underflow” and
some other errors of ALSA (Advanced Linux Sound Architec-
ture) on Linux.
6.3.1 Video Example

The attached video file (Video 1) shows the system that we im-
plemented. The song used in the video is extracted from RWC
database [11] (RWC-MDB-P-2001 No.7).

Watching the video, we can find that the system in the left PC
accepts the audio signal from the right PC, and it processes the
signal in real-time. Moving the “volume” slider, the volume of
singing voice is reduced first. Moving the “key” slider, the key
is converted. We can find there is a little latency, but it may be
almost negligible practically. The video also shows both vocal
suppression and key conversion work simultaneously.
6.3.2 Throughput

Table 7 shows the approximate throughput of the system; it
displays the approximate number of iterations of each technical
component per a second. “Minimal” U is the inverse of the frame
shift S . That is, S = 16 [ms] implied that we should iterate the

*7 To be specific, we implemented both HPSS and pitch shifter as a class
of C++, and both “enqueue/dequeue” and “update” as the member func-
tion of the classes. The functions “enqueue/dequeue” and “update” can
access the resource of the class, such as the spectrogram, mutually exclu-
sively (MUTEX). For example, when “update” is running, the resource
is locked, and “enqueue/dequeue” should wait until “update” terminates.
This strategy is a classic, and there may be more sophisticated strategies.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Table 7 Throughput of each technical component. (top): U [Times/s] be-
ing the number of updates per a second. The values are empirically
evaluated. (middle): Number of iterations I, being the value of
the designed value if the iteration strategy is “Fixed,” or the value
evaluated by I ≡ U/S −1 if the iteration strategy is “Flex.” (bottom):
“Flex.” and “Fixed” are the iteration strategy of the component.

Short HPSS Long HPSS
key conv.

Note
(RTISI-LA)

DELL
U ≈4000 U ≈1000 U ≈1000
I ≈64 I ≈64 I ≈16
Flex. Flex. Flex.

DELL
U ≈312 U ≈78 U ≈1400
I = 5 I = 5 I ≈22 Video example
Fixed Fixed Flex.

ASUS
N/A N/A N/A

Not stable enoughI = 1 I = 1 N/A
Fixed Fixed Flex.

ASUS
U ≈124 U ≈31 U ≈124
I = 2 I = 2 I = 2
Fixed Fixed Fixed

MacBook Air
U ≈ 32000 U ≈ 7700 U ≈ 3800
I ≈ 512 I ≈ 493 I ≈ 61
Flex. Flex. Flex.

Minimal Requirements

U[Times/s] U ≥ 62.5 U ≥ 15.6 U ≥ 62.5 rhs= S −1

I[Times] I ≥ 1 I ≥ 1 I ≥ 1
S [ms] 16 [ms] 64 [ms] 16 [ms]

updating formulae at least 62.5 times per second. This is the min-
imal number of iterations which is required to apply the updating
formulae to all the bins at least once, keeping up with the real-
time.

The table shows that powerful machines, namely the worksta-
tion (DELL 2010) and MacBook Air (2015), can execute the up-
dating formulae of HPSS and RTISI-LA luxuriously many times,
much more than practically required (see Appendix). The ta-
ble also shows that even an old netbook (ASUS 2009) can catch
up with the real-time, executing the updating formulae twice as
many times as the minimal requirement, though it is not stable
enough if we employ the flexible iteration strategy.

7. Concluding Remarks

7.1 Summary and Conclusion
We developed an automatic karaoke generating system

“Euterpe,” which aimed at generating a karaoke signal au-
tomatically from a wider range of music signals, especially
monaural music signals, to which we cannot apply the sim-
ple center-removal-based “karaoke generator,” contrary to the
professionally-created stereo signals.

This system has two functions: singing voice suppression and
key conversion.
• The singing voice suppression is based on two-stage HPSS,

which is effective as a vocal enhancer in our previous study.
Simple evaluation and sample audio files showed that the
technique also works effectively as a vocal suppressor.

• The key conversion is based on the pitch shift technique
based on phase vocoder, but has a little improvement from
G&L algorithm: it works in real-time because it is based on
RTISI-LA, and it keeps the timbre of the sound because of
the LPC analysis.

We also described the architecture of the implementation of the

whole systems, which is based on the pipeline model. Because of
the architecture, we achieved a real-time karaoke generating sys-
tem, which is especially important when we consider a client-side
streaming-based karaoke generating system. The attached video
file may be showing that the latency and the sound quality is ac-
ceptable for now.

7.2 Future Work
There is still room for improvement of the sound quality such

as the following.
• The obtained “accompaniment” has ambiguous articulation.

This problem basically comes from the long HPSS, which
is, however, the most important component of vocal suppres-
sion.

• The volume of the sound is uneven through the song. Es-
pecially the “harmonic” components are occasionally quite
loud.

• The sound quality is rather poor especially when the interval
of key conversion is large, such as n � −5, 5 � n.

These issues should be addressed in the future, but we should note
that too complicated techniques may impair the real-time nature.

Another possible future work will be the development of a sys-
tem which is more faithful to ordinary karaoke systems. Adding
some other functions such as showing lyrics is a challnege for the
future.

Another future work will be the development of more intelli-
gent karaoke systems, such as one that follows the user’s singing,
similar to some of the automatic accompaniment systems [4], [32]
that follow the MIDI piano. This may be a dreamy technical chal-
lenge in the future.

Acknowledgments Part of this work was supported by
Grant-In-Aid for JSPS Research Fellows (22-6961) and Kak-
enhi Grant-In-Aid for Scientific Research (A). In the process
of the development of the real-time system we were supported
by Mr. Takuho Nakano (program test) and Dr. Takuya Nishimoto
(advice on real-time audio I/O).

References

[1] Audacity Vocal Removal Plug-ins, available from
〈http://wiki.audacityteam.org/wiki/Vocal Removal Plug-ins〉 (ac-
cessed 2016-02).

[2] Bencina, R. and Burk, P.: PortAudio – An Open Source Cross Plat-
form Audio API, Proc. 2001 International Computer Music Confer-
ence (ICMC), pp.263–266 (2001).

[3] Charpentier, F.J. and Stella, M.G.: Diphones Synthesis using an
Overlap-add Technique for Speech Waveforms Concatenation, Proc.
ICASSP, pp.2015–2018 (1986).

[4] Dannenberg, R.: An On-line Algorithm for Real-time Accompani-
ment, Proc. ICMC, pp.193–198 (1984).

[5] Moulines, E. and Charpentier, F.: Pitch-synchronous Waveform Pro-
cessing Techniques for Text-to-speech Synthesis using Diphones,
Speech Communication, Vol.9, No.5-6, pp.453–467 (1990).

[6] FitzGerald, D. and Gainza, M.: Single Channel Vocal Separation us-
ing Median Filtering and Factorisation Techniques, ISAST Trans. Elec-
tronic and Signal Processing, Vol.4, No.1, pp.62–73 (2010).

[7] Flanagan, J.L. and Golden, R.M.: Phase Vocoder, Bell System Techni-
cal Journal, Vol.45, pp.1493–1509 (1966).

[8] Frigo, M. and Johanson, S.G.: FFTW users manual, available from
〈http://www.fftw.org/doc/〉, 〈http://www.fftw.org/fftw3.pdf〉.

[9] Frigo, M. and Johanson, S.G.: The design and implementation of
FFTW3, Proc. IEEE, Vol.93, No.2, pp.216–231 (2005).

[10] Goto, M.: SmartMusicKIOSK: Music Listening Station with Chorus-
Search Function, Proc. 16th Annual ACM Symposium on User Inter-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

face Software and Technology, Vol.5, pp.31–40 (2003).
[11] Goto, M.: Development of the RWC Music Database, Proc. 18th In-

ternational Congress on Acoustics (ICA 2004), pp.I–553–556 (2004).
[12] Goto, M.: Active Music Listening Interfaces Based on Signal Process-

ing, Proc. 2007 IEEE International Conferences on Acoustics, Speech,
and Signal Processing, pp.1441–1444 (2007).

[13] Griffin, D.W. and Lim, J.S.: Signal Estimation From Modified Short-
Time Fourier Transform, IEEE Trans. Audio, Speech, and Signal Pro-
cessing, Vol.32, No.2, pp.236–243 (1984).

[14] Hamasaki, M., Takeda, H., Hope, T. and Nishimura, T.: Network
Analysis of an Emergent massively Collaborative Creation Commu-
nity – How Can People Create Videos Collaboratively without Collab-
oration?, Proc. 3rd International ICWSM Conference, AAAI, pp.222–
225 (2009).

[15] Hamasaki, M., Takeda, H. and Nishimura, T.: Network Analysis
of Massively Collaborative Creation of Multimedia Contents – Case
Study of Hatsune Miku Videos on Nico Nico Douga, Proc. 1st Inter-
national Conference on Designing Interactive User Experiences for
TV and Video (UXTV), pp.165–168, ACM (2008).

[16] Hsu, C.-L. and Jang, J.-S.R.: on The Improvement of Singing Voice
Separation for Monaural Recordings using The MIR-1K Dataset,
IEEE Trans. Audio, Speech, and Language Processing (2010).

[17] Huang, P.-S., Chen, S.D., Smaragdis, P. and H.-Johnson, M.: Singing-
voice separation from monaural recordings using robust principal
component analysis, Proc. 2012 IEEE International Conference on
Audio, Speech, and Signal Processing (ICASSP 2012), pp.57–60
(2012).

[18] Ikemiya, Y., Yoshii, K. and Itoyama, K.: Singing Voice Analysis and
Editing based on Mutually Dependent F0 Estimation and Source Sep-
aration, Proc. ICASSP (2015).

[19] Imam, J.: Young Listeners Opting to Stream, Not Own Music (2012),
available from 〈http://edition.cnn.com/2012/06/15/tech/web/
music-streaming/index.html〉.

[20] Itakura, F. and Saito, S.: Digital Filtering Techniques for Speech
Analysis and Synthesis, Proc. International Conference on Indepen-
dent Component Analysis and Blind Signal Separation, Vol.25-C-1,
pp.261–264 (1971).

[21] Japan Productivity Center: White Paper of Leisure 2011 (2011) (in
Japanese).

[22] Klapuri, A.: Multiple Fundamental Frequency Estimation based on
Harmonicity and Spectral Smoothness, IEEE Trans. Speech Audio
Process., Vol.11, No.6, pp.804–816 (2003).

[23] Klapuri, K. and Davy, M.: Signal Processing Methods for Music Tran-
scription, Springer (2006).

[24] Laroche, J. and Dolson, M.: Improved Phase Vocoder Time-Scale
Modification of Audio, IEEE Trans. Speech and Audio Processing,
Vol.7, No.3, pp.323–332 (1999).

[25] Le Roux, J.: Exploiting Regularities in Natural Acoustical Scenes for
Monaural Audio Signal Estimation, Decomposition, Restoration and
Modification, Ph.D. Thesis, The University of Tokyo (2009).

[26] Le Roux, J., Ono, N. and Sagayama, S.: Explicit Consistency Con-
straints for STFT Spectrograms and Their Application to Phase Re-
construction, Proc. Workshops on Statistical and Perceptual Audition
(SAPA) (2008).

[27] Le Roux, J. and Vincent, E.: Consistent Wiener Filtering for Au-
dio Source Separation, IEEE Signal Processing Letter, pp.217–220
(2013).

[28] Li, Y. and Wang, D.L.: Separation of Singing Voice From Music Ac-
companiment for Monaural Recordings, IEEE Trans. Audio, Speech,
and Language Processing, Vol.15, No.4, pp.1475–1487 (2007).

[29] Mizuno, Y., Le Roux, J., Ono, N. and Sagayama, S.: Real-time Time-
scale/Pitch Modification of Music Signal by Stretching Power Spec-
trogram and Consistent Phase Reconstruction, Proc. ASJ Spring Meet-
ing (2009) (in Japanese).

[30] Mizuno, Y.: Master Thesis, The University of Tokyo (2012) (in
Japanese).

[31] Nakamura, T. and Kameoka, H.: Fast Signal Reconstruction from
Magnitude Spectrogram of Continuous Wavelet Transform based on
Spectrogram Consistency, Proc. DAFx (2014).

[32] Nakamura, T., Nakamura, E. and Sagayama, S.: Automatic Score Fol-
lowing to Musical Performance with Errors and Arbitrary Repeats and
Skips for Automatic Accompaniment, Proc. SMC, pp.299–304 (2013).

[33] Nichols, B., Buttlar, D. and Farrell, J.P.: Pthreads Programming: A
POSIX Standard for Better Multiprocessing, O’Reilly Nutshell (1996).

[34] Ono, N., Miyamoto, K., Kameoka, H., Le Roux, J., Uchiyama, Y.,
Tsunoo, E., Nishimoto, T. and Sagayama, S.: Harmonic and Per-
cussive Sound Separation and its Application to MIR-related Tasks,
Advances in Music Information Retrieval, Ras, Z.W. and Wiec-
zorkowska, A. (eds.), Studies in Computational Intelligence, Springer
274, pp.213–236 (2010).

[35] Ono, N., Miyamoto, K., Kameoka, H. and Sagayama, S.: A Real-

time Equalizer of Harmonic and Percussive Components in Music Sig-
nals, Proc. International Symposium on Music Information Retrieval
(ISMIR2008), pp.139–144 (2008).

[36] Ono, N., Miyamoto, K., Le Roux, J., Kameoka, H. and Sagayama,
S.: Separation of a Monaural Audio Signal into Harmonic/Percussive
Components by Complementary Diffusion on Spectrogram, Proc. Eu-
ropean Signal Processing Conference (EUSIPCO2008) (2008).

[37] Ozerov, A., Philippe, P., Bimbot, F. and Gribonval, R.: Adaptation of
Bayesian Models for Single-Channel Source Separation and Its Appli-
cation to Voice/Music Separation in Popular Songs, IEEE Trans. Au-
dio, Speech, and Language Processing, Vol.15, No.5, pp.1564–1578
(2007).

[38] Ozerov, A., Philippe, P., Gribonval, R. and Bimbot, F.: One Micro-
phone Singing Voice Separation using Source-Adapted Models, Proc.
2005 IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA) pp.90–93 (2005).

[39] Perraudin, N., Balazs, P. and Søndergaard, P.L.: A fast Griffin-Lim
algorithm, Proc. WASPAA (2013).

[40] Rabiner, L. and Juang, B.-H.: Fundamentals of Speech Recognition,
Prentice Hall (1993).

[41] Rafii, Z. and Pardo, B.: A Simple Music/Voice Separation Method
Based on The Extraction of The Repeating Musical Structure, Proc.
2011 IEEE International Conference on Audio, Speech, and Signal
Processing (ICASSP 2011), pp.221–224 (2011).

[42] Raj, B., Smaragdis, P., Shashanka, M. and Singh, R.: Separating a
Foreground Singer from Background Music, Proc. International Sym-
posium Frontiers of Research Speech and Music (FRSM) (2007).

[43] Röbel, A. and Rodet, X.: Efficient Spectral Envelope Estimation and
its Application to Pitch Shifting and Envelope Preservation, Proc.
DAFx 2005 (2005).

[44] Ryynänen, M., Virtanen, T., Paulus, J. and Klapuri, A.: Accompani-
ment separation and karaoke application based on automatic melody
transcription, Proc. 2008 IEEE International Conference on Multime-
dia and Expo (ICME 2008) pp.1417–1420 (2008).

[45] Schörkhuber, G., Klapuri, A. and Sontacchi, A.: Audio Pitch Shifting
using Constant-Q Transform, Journal of Audio Engineering Society,
Vol.61, No.7/8, pp.562–572 (2013).

[46] Simpson, A.J.R., Roma, G. and Plumbley, M.D.: Deep Karaoke: Ex-
tracting Vocals from Musical Mixtures using a Convolutional Deep
Neural Network (2015). arXiv:1504.04658.

[47] Sprechmann, P., Bronstein, A. and Sapiro, G.: Real-time Online
Singing Voice Separation from Monaural Recordings using Robust
Low-rank Modeling, Proc. ISMIR (2012).

[48] Tachibana, H.: Music Signal Processing Exploiting Spectral Fluctu-
ation of Singing Voice using Harmonic/Percussive Sound Separation,
PhD Thesis, The University of Tokyo (2014).

[49] Tachibana, H., Mizuno, Y., Ono, N. and Sagayama, S.: Euterpe: A
Real-time Automatic Karaoke Generation System based on Singing
Voice Suppression and Pitch Conversion, Proc. ASJ autumn meeting
(2012) (in Japanese).

[50] Tachibana, H., Ono, N., Kameoka, H. and Sagayama, S.: Har-
monic/Percussive Sound Separation Methods Based on Anisotropic
Smoothness of Spectrograms, IEEE Trans. ASLP, Vol.22, No.12,
pp.2059–2073 (2014).

[51] Tachibana, H., Ono, N. and Sagayama, S.: Vocal Sound Suppres-
sion in Monaural Audio Signals by Multi-stage Harmonic-Percussive
Sound Separation (HPSS), Proc. ASJ Spring Meeting (2009) (in
Japanese).

[52] Tachibana, H., Ono, N. and Sagayama, S.: Singing Voice En-
hancement in Monaural Music Signals Based on Two-stage Har-
monic/Percussive Sound Separation on Multiple Resolution Spectro-
grams, IEEE Trans. ASLP, Vol.22, No.1, pp.228–237 (2014).

[53] Tachibana, H., Ono, T., Ono, N. and Sagayama, S.: Melody Line Es-
timation in Homophonic Music Audio Signals Based on Temporal-
Variability of Melodic Source, Proc. International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp.425–428
(2010).

[54] Vembu, S. and Baumann, S.: Separation of Vocals from Poly-
phonic Audio Recordings, Proc. International Symposium on Music
Information Retrieval (ISMIR 2005), pp.337–344 (2005).

[55] Virtanen, T., Mesaros, A. and Ryynänen, M.: Combining Pitch-Based
Inference and Non-Negative Spectrogram Factorization in Separating
Vocals From Polyphonic Music, Proc. SAPA, pp.17–20 (2008).

[56] Xun, Z. and Tarocco, F.: Karaoke: The Global Phenomenon, Reaktion
Books (2007).

[57] Yoshii, K., Goto, M., Komatani, K., Ogata, T. and Okuno, H.G.: Dru-
mix: An Audio Player With Real-Time Drum-Part Rearrangement
Functions for Active Music Listening, IPSJ Journal, Vol.48, No.3,
pp.1229–1239 (2007).

[58] Zhu, B., Li, W., Li, R. and Xue, X.: Multi-stage Non-negative Ma-
trix Factorization for Monaural Singing Voice Separation, IEEE Trans.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

ASLP, Vol.21, No.10, pp.2096–2107 (2013).
[59] Zhu, X., Beauregard, G. and Wise, L.: Real-Time Iterative Spectrum

Inversion With Look Ahead, IEEE Trans. Audio, Speech, and Lan-
guage Processing, Vol.15, No.5, pp.1645–1653 (2007).

Appendix

A.1 HPSS Updating Formula

The functions Eqs. (3), (4), and (5) are specifically written as
follows,

Hn,k ←
Have

n,k +
√

(Have
n,k)2 + (2 + c)cθn,kY2

n,k

2 + c

Pn,k ←
Pave

n,k +
√

(Pave
n,k)2 + (2 + cw−1)cw−1(1 − θn,k)Y2

n,k

2 + cw−1

θn,k ←
H2

n,k

H2
n,k + P2

n,k

where

Have
n,k = (Hn+1,k + Hn−1,k)/2, Pave

n,k = (Pn,k+1 + Pn,k−1)/2

This update never increases the objective function.
The curve in Fig. A·1 shows the relation between the number of

iteration (τ) and the compensated objective function J(τ) − J(∞) *8

i.e., difference from the local optimum, in batch HPSS. It shows
that the objective function quite rapidly decreases, and several
dozens of the iterations gives a solution sufficiently close to the
local optimum (note that y-axis is logarithmic scale.)

A.2 Difference between Batch HPSS and
Streaming HPSS

The difference between the batch HPSS and streaming HPSS
is the matter of the order of the coordinates to apply the update
formulae in the coordinate descent.

The solutions are not exactly identical, but our empirical ex-
periment suggests that streaming HPSS also sufficiently rapidly
decreases the objective function, as shown in Fig. A·1. Each point
in Fig. A·1 shows the terminal values of the objective function af-
ter applying the streaming HPSS of parameter (N, I): N being the

Fig. A·1 Values of the objective function after the τ-th update, where τ is
the number of iteration of the batch HPSS (curve), or τ = N × I
of streaming HPSS of parameter (N, I) (each point). We used
Ani 1 01.wav in MIR-1K dataset as a sample input.

*8 As we cannot iterate the procedure infinite times, we used J(10,000) in-
stead of J(∞).

size of the sliding window, and I being the number of iteration
in the window. They will not converge to the identical local op-
timum even if I increases, but it shows that the terminal values
are still much smaller than the levels of those of the initial several
updates of the batch HPSS.

Hideyuki Tachibana received his B.E.
degree in mathematical engineering and
information physics, M.E. and Ph.D. de-
grees in information physics and com-
puting, from the University of Tokyo in
2008, 2010 and 2014 respectively. He
was with the Faculty of Interdisciplinary
Mathematical Sciences, Meiji University

in 2014. He has been working for a startup as an ML & NLP
research scientist since 2015. He has been interested in signal
processing, AI, and their applications including but not limited to
music. He is a member of IEEE, ACM, IPSJ, IEICE, and ASJ.

Yu Mizuno received his B.E. degree in mathematical engineer-
ing and information physics, M.E. degree in information physics
and computing, from the University of Tokyo in 2009 and 2012
respectively. He is currently working at Aichi Prefectural Gov-
ernment.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.3

Nobutaka Ono received his B.E., M.S.,
and Ph.D. degrees in Mathematical En-
gineering and Information Physics from
the University of Tokyo, Japan, in 1996,
1998, 2001, respectively. He joined the
Graduate School of Information Science
and Technology, the University of Tokyo,
Japan, in 2001 as a Research Associate

and became a Lecturer in 2005. He moved to the National In-
stitute of Informatics, Japan, as an Associate Professor in 2011.
His research interests include acoustic signal processing, specif-
ically, microphone array processing, source localization and sep-
aration, and optimization algorithms for them. He is the author
or co-author of more than 180 articles in international journal pa-
pers and peer-reviewed conference proceedings. He was a Tuto-
rial speaker at ISMIR 2010, a special session chair in EUSIPCO
2013 and 2015, a chair of SiSEC (Signal Separation Evaluation
Campaign) evaluation committee in 2013 and 2015. He was an
Associate Editor of the IEEE Transactions on Audio, Speech and
Language Processing during 2012 to 2015. He has been a mem-
ber of IEEE Audio and Acoustic Signal Processing (AASP) Tech-
nical Committee since 2014. He is a senior member of the IEEE
Signal Processing Society, and a member of the Acoustical So-
ciety of Japan (ASJ), the Institute of Electronics, Information
and Communications Engineers (IEICE), the Information Pro-
cessing Society of Japan (IPSJ), and the Society of Instrument
and Control Engineers (SICE) in Japan. He received the Sato Pa-
per Award and the Awaya Award from ASJ in 2000 and 2007, re-
spectively, the Igarashi Award at the Sensor Symposium on Sen-
sors, Micromachines, and Applied Systems from IEEJ in 2004,
the best paper award from IEEE ISIE in 2008, Measurement Di-
vision Best Paper Award from SICE in 2013, the best paper award
from IEEE IS3C in 2014, the excellent paper award from IIHMSP
in 2014 and the unsupervised learning ICA pioneer award from
SPIE.DSS in 2015.

Shigeki Sagayama received his B.E.,
M.E. and Ph.D. degrees from the Univer-
sity of Tokyo, Japan in 1972, 1974 and
1998, respectively, all in mathematical
engineering and information physics. He
joined Nippon Telegraph and Telephone
Public Corporation (currently, NTT) in
1974 and started his career in speech anal-

ysis, synthesis and recognition at NTT Labs in Musashino, Japan.
From 1990, he was Head of Speech Processing Department, ATR
Interpreting Telephony Laboratories, Kyoto, Japan to pursue
an automatic speech translation project. From 1993, he was
responsible for speech recognition, synthesis and dialog systems
at NTT Human Interface Laboratories, Yokosuka, Japan. In
1998, he became a professor of Graduate School of Information
Science, Japan Advanced Institute of Science and Technology
(JAIST), Ishikawa, Japan. In 2000, he was appointed Professor,
Graduate School of Information Science and Technology, the
University of Tokyo, Japan. He is an author or co-author of ap-
proximately 700 technical papers on processing and recognition
of speech, music, acoustic signals, hand-writing and images.
Prof. Sagayama received National Invention Award from the
Institute of Invention of Japan in 1991, Chief Officials Award
for Research Achievement from the Science and Technology
Agency of Japan in 1996 and other academic awards including
Paper Awards from the Institute of Electronics, Information and
Communications Engineers, Japan (IEICEJ), in 1996 and from
Information Processing Society of Japan (IPSJ) in 1995. He
is the Chair of IEEE Signal Processing Society Japan paper, a
fellow of IEICEJ and a member of ASJ (Acoustical Society of
Japan) and IPSJ.

c© 2016 Information Processing Society of Japan

