57ZC-08

Group Communication for Multimedia Objects *
Kenichi Shimamura, Katsuya Tanaka, and Makoto Takizawa
Tokyo Denki University ¥
Email : {ken, katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

In distributed applications like teleconferences, a
group of multiple processes are cooperating. Various
kinds of group communication protocols [1] are dis-
cussed so far. In the group communication, a group
is first established among multiple processes and then
messages sent by the processes are causally or totally
delivered in the destination processes in the group [1].
A message my causally precedes another message mo
if a sending event of m, happens before a sending
event of mgy [2]. In the totally ordered delivery, even
messages not to be causally preceded are delivered to
every common destination of the messages in a same
order. In the protocols, messages transmitted at the
network level, not at application level, are ordered in-
dependently of how the applications use the messages.

In distributed applications, not only data but
also various kinds of multimedia objects like image
and video are exchanged among the processes in
the group. Multimedia objects are larger and more
complexed and structured than the traditional data
units exchanged among the processes. In addition to
causally delivering objects, quality of service (QoS) of
a multimedia object like frame rate, bandwidth, and
message loss ratio has to be satisfied in the destina-
tion processes. Some objects may have to be delivered
to the applications in a predetermined time after the
messages are sent.

In this paper, we newly define a causally precedent
relation between objects which are exchanged among
the processes. We discuss a protocol which supports
the new types of causally precedent relations among
the objects. i

2 System Model

Distributed applications are realized by the coop-
eration of a group of application processes Ay, ..., A,
(n>1) which are interconected in a high-speed net-
work. Application processes exchange data including
multimedia with the other processes in the group by
using the network. A unit of data exchanged among
the processes is referred to as message object, simply
saying object. .

An application process Ay is supported by a system
process p; (t = 1, ...,n). A system process p, takes
an object from the application process A; and then
delivers the object to the system processes supporting
the destination application processes by using the ba-
sic communication service supported by the network.
From here, let a term process mean a system pro-
cess. A data unit exchanged by the processes in the
network is referred to as message. We assume that
the network supports the processes with asynchronous
communication. That is, messages may be lost due to

AINVFRAFATAT 27 MBI A7 V=T @iE
TER f—, B, ER R
PREERAE

the congestions and unexpected delay and the delay
time between a pair of processes is not bounded in the
network. An object is decomposed into a sequence of
messages and the messages are delivered to the des-
tination processes. The destination process p; assem-
bles the messages received into an object and then
delivers the object to the application process A;s. The
cooperation of the processes supporting the group of
the application processes is coordinated by a group
protocol which supports the reliable, efficient commu-

- nication service of multimedia objects by taking usage

of the network service.

3 Causality of Multimedia Objects

3.1 Traditional messages

The happen-be fore relation among events occur-
ring in a distributed system is defined by Lamport [2].
By using the happen-before relation, the causally
precedent relation among messages exchanged among
multiple processes is defined as follows [2]:

e A message my causally precedes another mes-

sage mg iff a sending event of m; happens before

a sending event of my.

The traditional group protocols [1] discuss how
to causally deliver network-level messages, indepen-
dently of what kinds of data the messages carry.
Therefore, a communication event is assumed to
atomically occur in a process since it does not take a
longer time to send and receive a message. That is, a
process does not send a message while the process is
receiving another message.

3.2 Multimedia objects

We discuss how a process sends and receives mul-
timedia objects in a group G of processes pi, ..., Pn
(n>1). Suppose that a process ps sends an object o
to another process p;. Since a multimedia object is
larger than a traditional message, it takes a longer
time to send and receive the multimedia object. That
is, a process may send and receive messages of an ob-
ject while the process is sending and receiving other
objects. Figure 1 shows three processes ps, p:, and
py exchanging objects 0, and o,. In Figure 1(3), p;
starts to send messages of an object oy after receiving
all the messages of another object 0;. According to
the traditional causality theory, o1 causally precedes
0. In Figure 1(1), p; starts to send a message of
the object oy before receiving all the messages of 0.
Here, 0; does not causally precede os. In Figure 1(2),
p¢ sends o2 while receiving 0;. On the other hand, p;
sends og after receiving all the messages of o;. Here,
01 does not causally precede og, either.

We discuss how a pair of the objects 0; and 02 can
be causally preceded. We formally define the causali-
ties among multimedia objects. Let ss:(0) and es;(o)
denote events that p; starts to send an object 0 and
finishes the transmission of o, respectively. Let sr:(0)
and er;(o) denote events that p; starts and ends to

Py Ps 14

(1)Top-preced:

(2)Tail-pr (3)Full preced

Figure 1: Multimedia messages.
receive the object o, respectively. For a traditional
object o, a pair of starting events ss;(0) and events
es¢(0) for sending o simultaneously occur and a pair of
receipt events sr¢(0) and ery(0) also occur in a process
at the same time. However, these events cannot be as-
sumed to simultaneously occur in the communication
of the multimedia objects.
[Definition] Following types of precedent relations
are defined for a pair of objects 0; and oy sent .by
processes ps and py, respectively:
e 0; top-precedes oy (01—o02) iff sri(01) happens
before ss¢(02) and ss¢(02) happens before er (o).

e o1 tail-precedes os (01—-02) iff eri(o1) hap-
pens before esg(02) and sss(o1) happens before
ess(02)-

e 01 fully precedes o2 (01=>03) iff ers(01) happens

before ss¢(02).0

e 01 partially precedes o2 (01—02) iff 01—o02,

01—02, and 07 is interleaved with o3.

In Figure 1, 03—02 in (1), 01—02 in (2), and 0;=>02
in (3). Here, the process p, is required to deliver the
messages of objects 0; and o2 so that the causalities
defined here are preserved. In Figure 1 (4), an ob-
ject o1 is interleaved with another object o2 since
ss¢(02) happens before eri(o1) and ssi(01) happens
before ss¢(o02) in a source process p; of og.

4 Protocol

We present a protocol for supporting the causally
ordered delivery of multimedia objects. A group G is
composed of multiple processes py, ..., pp (n >1).

A process p; manipulates two variables V = (V;,
.oy Vo) and A = (A4, ..., Ay) in order to transitively
precede objects. V' shows the vector clock. A is used
to precede objects. Each element A; takes integer
value, not bit. Let 0.5 A show a value of A; when o is
started to be transmitted and 0.EA show a value of
A when the object o is ended to be transmitted.

A process p; manipulates the variables V and A
each time p; sends an object o:

o Vi =V + 1

o A= A + 1,

The process p; manipulates the variable A when p,
finishes to send the object o:

] At = At +].7

On receiving a top message of an object o from a
process ps, the process p; manipulates the variables
V and A as follows:

o V,:=max (V;,0.5V;) (s =1, ..,n, s #t);

e A, :=max (A;, 0.S45) (s =1, ..., n, s #t);
[Ordering rule] Suppose that a process p,; sends an
object 0; and another process p; sends an object 02
to the other processes.

e 01 = 0y iff 0;.EA, < 02.5A4,(v=1, ..., n, v #£s).

® 07 — 09 if 01.8V, < 02.8V,(v=1, ..., n, v #s).

e 01 — 03 if 01.FA, < 02.EA,(v=1, ..., n, v #s).

(4)Partial precedence.

® 01 — 02 iff Ol.EAv > Oz.SAv, OLEAL. < 09.FA,
, and 01.5V,, < 02.5V,,(v=1, ..., n, v #s).0

5 Evaluation

We evaluate the multimedia group protocol dis-
cussed here in terms of number of network-level mes-
sages to be causally ordered by comparing with the
traditional network-level causality. Suppose that p;
receives messages Mo, ..., Mo after sending m; and
before sending mo. Let Ng be the average number of

d¢(m) | and No¢ be the average number of | o(m)

for every message m. Ng and Nog are calculated

through the simulation.
‘We make the following assumptions on the simula-
tion:

1. There are n processes pi, ..., Pn in a group G.

2. BEach process p; sends one object at a time and
sends totally m objects. Here, m = 1000.

3. Each object is sent to all the processes in the
group G.

4. Each object is decomposed into h messages. 7 is
a random variable between mint and mazt. T is
(mint + maxt)/2.

5. Each process sends a message every 7 time units.

6. It takes 0 time units for a message to arrive at
the destination.

Figure 2 shows the ratio of Nog to N¢ for number
h of messages of an object. h shows the size of each
object where §/7 = 0.25 and n = 10. Nog/No shows
how much the multimedia group protocol can reduce
the computation and communication overhead. The
larger an object is, the less ratio of messages are
causally preceded in the multimedia group protocol
than the traditional one.

1 T T T T T T T T T

08 I

04 |

Ratio of Nog to No

02

10 20 30 40 50 60 70 80 90 100
h(message/object)

Figure 2: Evaluation.

6 Concluding Remarks

This paper has discussed a group protocol for ex-
changing multimedia objects. We have defined novel
causally precedent relations among multimedia ob-
jects, i.e. top, tail, partially and fully precedent re-
lations. We have shown how the multimedia group
protocol can reduce the number of messages to be
causally preceded.

References
[1] Birman, K., “Lightweight Causal and Atomic
Group Multicast,” ACM Trans. on Computer
Systems, 1991, pp.272-290.
[2] Lamport, L., “T'ime, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM,
Vol.21, No.7, 1978, pp.558-565.

