SR

Group Protocol for Replicated Objects
in Quorum-Based Scheme *

Keijirou Arai, Hiroaki Higaki, and Makoto Takizawa, T
Tokyo Denki University *
Email : {arai, hig, taki}@takilab.k.dendai.ac.jp

1 Introduction

Objects in distributed systems are replicated to
make the systems fault-tolerant in order to improve
the reliability and availability of the system. The
replicas of the objects are distributed on computers
interconnected by networks. A server maintains ob-
jects in a computer. Transactions in a client ma-
nipulate replicas in servers by issuing requests to the
servers. In this paper, we consider a group of repli-
cas of a simple object like a file, which supports
only basic read and write operations. A transaction
which initiate in a client computer sends a read re-
quest to only one replica and sends a write request to
all the replicas. In the group communications, mes-
sage are causally delivered. That is, a message m;
causally precedes another message mo if the sending
event of m; happens before my. In addition to the
causally ordered delivery, some messages are required
to be totally ordered. That is, a message mq totally
precedes mq if m; causally precedes my. If my and
mg are not causally ordered, every pair of common
destination computers of m; and mg deliver m; and
mg in the same order. The totally ordered delivery is
required to be supported in a group of replicas. The
replicas have to be mutually consistent. In the read-
one-write-all scheme, larger computation and commu-
nication overheads are implied for write dominating
applications since write requests are sent to all the
replicas. In the quorum-based scheme, a read request
may be sent to more than one replica and a write re-
quest may not be sent to all the replicas. In this paper,
we discuss insignificant messages which are received
but can be omitted and are not required to be causally
and totally ordered in the quorum-based scheme. We
discuss a quorum-based group (QG) protocol which
supports the ordered delivery of significant messages.
In section 2, we define a quorum-based precedency of
messages. In section 3, we discuss insignificant mes-
sages not to be ordered. In sections 4, the QG proto-
col is discussed.

2 Quorum-based precedency

2.1 Quorums

Computers pi1, ..., p, are interconnected in an
asynchronous network. Messages may be lost and the
delay time is not bounded in the network, i.e. the net-
work is asynchronous. Objects are stored in servers
and transactions in clients manipulate the objects in
the servers. Clients and servers can be realized in
a computer and replicas of an object are stored in
servers. Each computer has at most one replica of
each object. Let of denote a replica of an object o,
in a computer p;. Let R(o,) be a cluster of o,, which

*3—F AFRICEDWE IV -TEET T an
PHiH BEORRR, KA S, EIR W
THEERAE

is a set of the replicas o7, ..., 05" of 0, (g < n). A
transaction T; sends read requests to Ny, (< ¢) repli-
cas in a read quorum Q,, of an object o, and write
requests to Nyy (< ¢) replicas in a write quorum Qg
of an object 0,. N, and Ny, are quorum numbers.
Qar C R(Oa) and Qgu C R(Oa)~ Here, Qur U Qaw
= R(o,) and Ng, + Ngy > ¢. If a quorum is con-
structed each time a request is issued, Ngy + Now
> ¢. Each replica o}, has a version number vi. T;
obtains a version number v’ from a replica o}, which
is the maximum in the write quorum Qg,- 'UZ is in-
cremented by one. Then, the version numbers of the
replicas in Qg are replaced with vf.

2.2 - Quorum-based precedency

Each transaction T initiated in a computer p, is
given an identifier ¢id(T;) = (V(T3), id(p,)) where
V(T;) is a logical clock of p,, when T is initiated. And
id(p:) denote an identifier of p;. The logical clock of
Py, is realized by a vector V. = (V4, ..., V,,) where
each element V; is initially 0. For every pair of vector
clocks Vi = (V11, ..., Vi) and Vo = (Vaq, ..., Vap),
Vi>WifVy>Vyfort=1,...,n If V) > Vs or
Vi < Va, Vi and V, are comparable. Otherwise, V
and V3 are uncomparable (V; || V2). On receipt of m
from the computer p,, p; manipulates the vector V'
as follows:

Vy :=max (V,,, m.V,) forv =1, ..., n (v # t);
That is, T; is initiated in p, after p, receives a message
from another transaction T in p; iff V(T3) > V(T3).

For a pair of transaction identifiers tid(T;) (=
(V(T2), 1d(pu))) and tid(Ty) (= (V(T3), id(p:))),
o tid(T}) < tid(T}) iff:
1. V(Ty) < V(T}), or
2. id(py) < id(pe) if V(T3) || V(T;)-

A transaction T; precedes another transaction Tj
(T; — Tj) iff tid(T;) < tid(1;). Here, it is straight-
forward either T; — T} or T; — T; for every pair of
transactions T; and Tj.

Each request message m has a sequence number
m.sq. A computer p; increments the sequence number
sq by one each time p; sends a message. Hence, m;.sq
< mg.sq iff p; sends m; before ms. Request mes-
sages are preceded as follows. Each request message
m has a identifier of source computer m.src. Each
request message m has a vector clock, ie. V(T;) =
V1, .., Vo).

Each request message m has a m.op type of operation
op, i.e. T or w.

[Quorum-based ordering (QBO) rule] A request
my quorum-based precedes (Q-precedes) another re-
quest mg (my < ma) if

1. my.op and ma.op conflict if m;.V < ma.V,

2. id(my.src) < id(mg.src) and my.op and ma.op
conflict if m.V || ma2.V, or

3. m1.8q < ma.sq if m1.V = my.V, ie. my and mo
are sent by a same transaction. O

Messages received by a computer p; are stored in
the receipt queue RQy. If my < ma, my precedes mo
in RQ;. If neither m; < mg nor my < mq, my and
me are Q-uncomparable (my || m2). Even if a request
message my causally precedes another request mgy, m;
< mg does not hold if m;.0p and mo.op are compatible
according to the QBO rule 1.

3 Insignificant messages

We define insignificant requests. A request mg
locally precedes another request msy in a computer
pt (M1 —¢ my) iff m; Q — precedes mg (M < mg) or
my —¢ m3 —¢ Mo for some request mgz. That is, m;
— mg if my.0p and mo.op conflict and m4 precedes
mg in RQ;.

[Definition] A request message m; globally precedes
another request ma (m; — mg) iff my —¢ ma, My
—¢ mg and m3 —, Mg, or my — mg — my for some
computers p; and p, and for some request mg. O

[Definition] A write request w! is current for a read
request % in a receipt queue RQ; iff w} =; r} and
there is no write request w such that w! — w — 3.

Here, 7% is also current. O Unless w} and r% are cur-

rent, w; and r} are referred to as obsolete.

|Definition] A write request w¥ absorbs wj‘- if wt di-
rectly precedes 'w;-, wj directly precedes w}, or wy
absorbs w} and wy absorbs w} for some wy. A read
request r; absorbs another one r% iff v} —; rf and

there is no write wf such that rf — wf — r ; o

[Definition] A request m is insigni ficant in a receipt
queue RQ; iff (1) m is obsolete or absorbed, or (2) m
is a read request and m is current for an insignificant
write. O

4 Group Protocol

4.1 Delivery of requests

In order to detect insignificant requests, each
replica has to find whether or not each of undestined
requests and uncertain ones is write. Each message
m carries vectors of write counters m.W = (m.Wy,
..., m.Wp). Each computer p; manipulates variables
W = (W1, ..., W,), where each W, is initially zero.
Suppose p; sends a message m. If m is a write request,
Wy = W, + 1 for every destination p, of m. Other-
wise, W is not changed. m.W := W. On receipt of
a write request m from ps, p; manipulates the write
counter W as follows: On receipt of a write request
m from ps, p manipulates the write counter W as
follows:

o W, :=max(W,, mW,)foru=1,...,n

In the receipt queue RQ;, messages received are
ordered in “<” according to the QBO rule.

[Theorem 1] Let m; and mg be messages in the re-
ceipt queue RQ; where my directly locally precedes
mg. There is such an undestined write request mg
that m; < m3 < mo in p; if the following condition
holds:

o mi.W < ma. W if m.V < my.V.

e m1. W < me.W and my.sq < ma.sq if m.V =
mo.V.

[Proof] First, let us consider a case m;.V < mg.V.
Suppose m1.W < mo.W and there is no write request
mg. Since m1.V < mo.V, m; causally precedes ms.
Since m1.W < mo.W, there must be a write request
after my before mo. It contradicts the assumption.

Next, consider a case m1.V = m2.V. It is clear
since my and ms are sent by a same computer. O

Here, if ms is read, ms is insignificant because p;
does not receive a write request which my is to read. If
my is write, my is insignificant. Thus, each computer
can decide if each ready request is insignificant.

5 Concluding Remarks

This paper has discussed a group protocol for a
group of replicas where the replicas are manipulated
in the quorum-based scheme. A transaction sends
read and write requests to the quorum number of
the replicas. We have defined insignificant messages
which need not be ordered for a replica. We have pre-
sented the QG (quorum-based group) protocol where
each replica decides whether or not requests received
are insignificant which supports the QBO delivery of
messages. The QG protocol delivers request messages
without writing for insignificant message.

References

[1] Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM,
Vol.21, No.7, 1978, pp.558-565.

[2] Enokido, T., Tachikawa, T., and Takizawa, M.,
“Transaction-Based Causally Ordered Protocol
for Distributed Replicated Objects,” Proc. of
IEEE ICPADS’97, 1997, pp.210-215.

