1V-01 A Language for Mobile Objects with Dynamic Grouping

Yasushi Kambayashi
University of Toledo

1 Introduction

‘The design of a language that supports mobile ob-
jects with dynamic grouping is presented. Tt is be-
coming more common to see mobile objects in dis-
tributed computing environments. The mobile ob-
ject is a convenient means to utilize resources resid-
ing in remote sites. Unlike traditional remote proce-
dure calls that require transmission every time they
are executed, self-containing mobile objects can per-
form great deal of work once they are transmitted to
remote sites. Since mobile objects can interact with
site environments, they can even customize their be-
haviors according to those environments.

Mobile objects are especially useful in environ-
ments where networks are frequently disconnected,
{e.g. notebook computers), or to avoid high trans-
mission cost, (e.g. via international telephone-lines).

Computational models that support such lan-
guage coustructs exist, such as Mobile Ambients[2]
of Luca Cardelli and Distributed Join-Calculus[3]
of INRIA. Our objective is to design a language
based on the same philosophy as Distributed Join-
Calculus and support dynamic grouping. Such a lan-
guage should also prove useful for software compo-
nent reuse.

2 Design Principles

Our language is based on the well-known object ori-
ented functional language ’Caml[6], which is de-
rived from the efficient functional language Caml[5].
O’Caml has a class-based object ereation mechanism
with strong typing facilities. Since O’Caml provides
the basic coustruct for creating objects as well as
functions, our design concentrates on mobility of the
objects and dynamic grouping, so that we can pre-
serve the semantics of O’Caml as much as possible.
The first goal, mobility, is satisfied by our previous
language, DOCaml[4].

3 Mobile Objects

Our language employs the distributed lexical scope
proposed by Cardelli and implemented in Oblig[1].
All bindings of free variables are solved at compile
time. For example, after an object, objl, moved
from site 1 to site 2, it calls a method in obhj0 as
shown in figure 1. Since there are two objects that
share the name obj0 — one in site 1, and the other
in site 2 — we have to solve which object is targeted.
In the distributed lexical scope policy, the ‘method
in obj0 in site 1 is executed through proxy. In this

Masaki Takahashi
Keio University

Ken’ichi Harada
Keio University

Munehiro Takimoto
Science University
of Tokyo

respect, the semantics of tlie objects are preserved
over the distributed environment.

site 1

site 2

object 0

Figure 1.

The migration of objects is accomplished through
cloning and re-binding by the remote application of
the cloning function:

class point x_init =
val mutable x = x_init

method get =X
method add a = x <- x + d
end;;

let o = new point 10;;
let o clone o at site2;;

This point class has one mutable instance variable
x, and two methods, get and add, as members. The
initial value for the instance variable is given through
the class parameter x_init.

In the first let-expression, applying the function
new with argument 10 to the class point creates
an object o. In the second let-expression, the cre-
ated object migrates to site 2. Migration is achieved
not through serialization, but cloning. The function
clone is a special form and takes the object type as
the argument, and makes duplication and returns it.

This function application, clone o, is executed
actually in site 2 so that the duplicated object resides
in site 2. The return value is transmitted to the
original location, site 1, and is bound to o. Now o is
the proxy of the object in site 2.

By putting the moving method in the class de-
scription, an object can move itself. Such a method
must have the remote application of the function de-
scribed above. Since each object has site informa-
tior, this method must update that information, as
follows:

Class x() as self

method go place = self @= clone self at place

end;;



4 Dynamic grouping

One of the innovative features of this language is the
dynamic grouping. The dynamic grouping allows ob-
jects created in different sites to communicate with
each other, and can combine themselves into yet an-
other larger object. Through this mechanism, we
can define objects as components in the software en-
gineering sense, and then send them in various com-
binations to remote sites, and make them combine
into specific objects to accommodate the specific site
requirement. For example, we can provide different
interface objects in different sites. Then we can send
the same core functional object to each site and make
them combine into one object that interacts to the
site environment, providing the identical service. Or
we can send a new feature as an object to the larger
object already residing in the remote site so that we
can update the service object dynamically.

In order to combine, objects are constructed as a
hierarchical structure. In other words, objects are
combined by placing one object into another object.
For this purpose, this language allows us to specify
an object in which the function application is com-
pleted. Therefore, a site is considered as a special ob-
ject in this respect. In the following let-expression,
obj0 moves into obj1; then the combined object,
obj1, further moves into the other object, obj2.

let obj0 = new classA ();;
let objl = new classB ();;

let obj0 = clone objO at obji;;
let objl = clone objl at obj2;;

The special form clone duplicates not only the ob-
ject given as argument but also objects those which
that object includes as shown in the figure 2.

object 2

Figure 2.

5 Interaction

Interactions to objects from the outer-world are per-
formed by the method invocation protocol defined in
O’Caml as follows:

o#get;;
o#add 2;;
o#get;;

The expression o#get invokes the method get in the
object 0. The syntax doesn’t distinguish whether
the object exists in the local site or remote site. If
the object resides in the remote site, the run-time
system converts it into a remote function applica-
tion. The usual function application is executed oth-
erwise. The first expression and the third expression
return 10 and 12 respectively. The second expression
doesn’t return anything (return "unspecified”).

Similar to the inheritance convention, the mo-
bile objects can invoke methods in the object that
includes those mobile objects. This is achieved
through self-reference. Dynamic grouping is not
inheritance, but it causes a hierarchy of objects.
Therefore, once an object moves into another ob-
ject, the object acquires the scope of the including
object.

Since we cannot guarantee that moving objects al-
ways find the appropriate methods in the destination
objects, the moving objects that have method invo-
cations, those methods are expected to be defined
in the destination, must carry exception handling
functions.

6 Conclusion

A design of a functional object oriented language
with dynamic grouping is presented. Through the
dynamic grouping, we can accomplish software com-
pouent reuse in distributed and dynamic environ-
ments. Each mobile object should be a small soft-
ware compouent with a single function. They are
supposed to be built in different locations aud in dif-
ferent time periods. In order to accomplish a certain
task, we can send a set of mobile objects from various
sites to the site in which the work should be accom-
plished. Those sent objects combine themselves into
a larger object and execute the task. Since each site
has a different environment, and requires different
user-interface, such dynamic software composition
should be useful in real world software engineering
practice.

References

[1] Luca Cardelli A Language with Dis-
tributed Scope. 22nd ACM Symposium on
Principles of Programming Languages | pp.286-
297, 1995.

[2] Luca Cardelli and Andrew D. Gordon, Mobile
Ambients. Proc. European Joint Conference
on Theory and Practice of Software, pp.140-
155. 1998.

[3] Cedric Fournet, Georges Gonthier, Jean-
Jacques Le¥y, Luc Maranget and Didier
Reriy, A calculus of mobile agents.
CONCUR’96:Concurrency Theory, pp.406-421,
1996.

[4] Yasushi Kambayashi, Munehiro Takimoto, Ya-
sushi Kodama, Kenichi Harada, A Higher-
Order Distributed Objective Language.
Proc. International Symposium on Future Soft-
ware Technologies, pp.241-246. 1997.

[5] Xavier Leroy, Manuel de Reference du Lan-
gage Caml. InterEditions, 1993.

[6] Xavier Leroy, The Objective Caml Sys-
tem Release 1.07. Documentation and User’s
Manual, Institut National de Recherche en In-
formatique et Automatique, 1997.



