4F-07 Bowtie-decomposition algorithm and trefoil-decomposition algorithm of complete tripartite multi-graphs

Kazuhiko Ushio

1. Introduction

Let K_{n_1,n_2,n_3} denote the complete tripartite graph with partite sets V_1, V_2, V_3 of n_1, n_2, n_3 vertices each. The complete tripartite multi-graph $\lambda K_{n_1,n_2,n_3}$ is the complete tripartite graph K_{n_1,n_2,n_3} in which every arc is taken λ times. Two edge-disjoint triangles with a common vertex is called the bowtie and the common vertex of the bowtie is called the center of the bowtie. When $\lambda K_{n_1,n_2,n_3}$ is decomposed into edge-disjoint sum of bowties, it is called that $\lambda K_{n_1,n_2,n_3}$ has a bowtie-decomposition.

Three edge-disjoint triangles with a common vertex is called the trefoil and the common vertex of the trefoil is called the center of the trefoil. When $\lambda K_{n_1,n_2,n_3}$ is decomposed into edge-disjoint sum of trefoils, it is called that $\lambda K_{n_1,n_2,n_3}$ has a trefoil-decomposition.

2. Bowtie-decomposition algorithm of $\lambda K_{n_1,n_2,n_3}$

Notation. For a bowtie passing $v_1 - v_2 - v_3 - v_1 - v_4 - v_5 - v_1$, we denote $(v_1; v_2, v_3; v_4, v_5)$.

Theorem 1. $\lambda K_{n_1,n_2,n_3}$ has a bowtie-decomposition if and only if $n_1 = n_2 = n_3 \equiv 0 \pmod{2}$ for odd λ and $n_1 = n_2 = n_3 \geq 2$ for even λ .

Proof.(Necessity) Suppose that $\lambda K_{n_1,n_2,n_3}$ has a bowtie-decomposition. Let b be the number of bowties. Then $b = \lambda(n_1n_2 + n_1n_3 + n_2n_3)/6$. Among b bowties, let b_i be the number of bowties whose center-vertices are in V_i . Then $b = b_1 + b_2 + b_3$. Counting the number of edges between V_1 and V_2 , we have $2b_1 + 2b_2 + 2b_3 = \lambda n_1n_2$. Counting the number of edges between V_1 and V_3 , we have $2b_1 + 2b_2 + 2b_3 = \lambda n_2n_3$. Then $\lambda n_1n_2 = \lambda n_1n_3 = \lambda n_2n_3$. Therefore, $\lambda n_1n_2 = \lambda n_1n_3 = \lambda n_2n_3$. Therefore, $\lambda n_1n_2 = \lambda n_1n_3 = \lambda n_2n_3$. Therefore, $\lambda n_1n_2 = \lambda n_1n_3 = \lambda n_2n_3$. Therefore, we must have $\lambda n_1 = n_1n_2 = n_2$. Put $\lambda n_1 = n_1n_2 = n_1$. Then $\lambda n_1n_2 = \lambda n_1n_3 = \lambda n_2n_3$. Therefore, we must have $\lambda n_1 = n_1n_2 = n_2$. Since a bowtie is a subgraph of $\lambda K_{n_1n_2n_2n_3}$, we must have $\lambda n_1 = n_1n_2$. Therefore, $\lambda n_1 = n_2$ for even λ .

(Sufficiency) Put $n_1 = n_2 = n_3 = n$. Let $V_1 = \{1, 2, ..., n\}$, $V_2 = \{1', 2', ..., n'\}$, $V_3 = \{1'', 2'', ..., n''\}$. Case 1. $n \equiv 0 \pmod{2}$ and λ is odd. Construct $n^2/2$ bowties BT_{ij} (i = 1, 2, ..., n ; j = 1, 2, ..., n/2) as following:

$$BT_{ij} = (i; (2j-1)', (i+2j-2)''; (2j)', (i+2j-1)''),$$

where the additions are taken modulo n with residues 1, 2, ..., n.

Then they comprise a bowtie-decomposition of $K_{n,n,n}$. Construct this bowtie-decomposition repeatly λ times. Then we have a bowtie-decomposition of $\lambda K_{n,n,n}$.

Case 2. $n \ge 2$ and λ is even. Construct n^2 bowties BT_{ij} (i = 1, 2, ..., n ; j = 1, 2, ..., n) as following: $BT_{ij} = (i ; j', (i + j - 1)''; (j + 1)', (i + j)''),$

where the additions are taken modulo n with residues 1, 2, ..., n.

Then they comprise a bowtie-decomposition of $2K_{n,n,n}$. Construct this bowtie-decomposition repeatly $\lambda/2$ times. Then we have a bowtie-decomposition of $\lambda K_{n,n,n}$.

3. Trefoil-decomposition algorithm of $\lambda K_{n_1,n_2,n_3}$

Notation. For a trefoil passing $v_1 - v_2 - v_3 - v_1 - v_4 - v_5 - v_1 - v_6 - v_7 - v_1$, we denote $(v_1; v_2, v_3; v_4, v_5; v_6, v_7)$.

Department of Industrial Engineering, Faculty of Science and Technology, Kinki University, Osaka 577-8502, JAPAN. E-mail:ushio@is.kindai.ac.jp 完全3組多重グラフの bowtie 分解アルゴリズムと trefoil 分解アルゴリズム 近畿大学理工学部経営工学科 潮 和彦

Theorem 2. $\lambda K_{n_1,n_2,n_3}$ has a trefoil-decomposition if and only if $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$ for $\lambda \equiv 1, 2 \pmod{3}$ and $n_1 = n_2 = n_3 \geq 3$ for $\lambda \equiv 0 \pmod{3}$.

Proof.(Necessity) Suppose that $\lambda K_{n_1,n_2,n_3}$ has a trefoil-decomposition. Let b be the number of trefoils. Then $b=\lambda(n_1n_2+n_1n_3+n_2n_3)/9$. Among b trefoils, let b_i be the number of trefoils whose center-vertices are in V_i . Then $b=b_1+b_2+b_3$. Counting the number of edges between V_1 and V_2 , we have $3b_1+3b_2+3b_3=\lambda n_1n_2$. Counting the number of edges between V_1 and V_3 , we have $3b_1+3b_2+3b_3=\lambda n_1n_3$. Counting the number of edges between V_2 and V_3 , we have $3b_1+3b_2+3b_3=\lambda n_2n_3$. Then $\lambda n_1n_2=\lambda n_1n_3=\lambda n_2n_3$. Therefore, $n_1=n_2=n_3$. Put $n_1=n_2=n_3=n$. Then $b=\lambda n^2/3$. Therefore, we must have $\lambda n\equiv 0 \pmod 3$. Since a trefoil is a subgraph of $\lambda K_{n,n,n}$, we must have $n\geq 3$. Therefore, $n\equiv 0 \pmod 3$ for $\lambda\equiv 1,2 \pmod 3$ and $n\geq 3$ for $\lambda\equiv 0 \pmod 3$.

(Sufficiency) Put $n_1 = n_2 = n_3 = n$. Let $V_1 = \{1, 2, ..., n\}$, $V_2 = \{1', 2', ..., n'\}$, $V_3 = \{1'', 2'', ..., n''\}$. Case 1. $n \equiv 0 \pmod{3}$ and $\lambda \equiv 1, 2 \pmod{3}$. Construct $n^2/3$ trefoils TF_{ij} (i = 1, 2, ..., n);

j=1,2,...,n/3) as following :

$$TF_{ij} = (i; (3j-2)', (i+3j-3)''; (3j-1)', (i+3j-2)''; (3j)', (i+3j-1)''),$$

where the additions are taken modulo n with residues 1, 2, ..., n.

Then they comprise a trefoil-decomposition of $K_{n,n,n}$. Construct this trefoil-decomposition repeatly λ times. Then we have a trefoil-decomposition of $\lambda K_{n,n,n}$.

Case 2. $n \geq 3$ and $\lambda \equiv 0 \pmod{3}$. Construct n^2 trefoils TF_{ij} (i = 1, 2, ..., n ; j = 1, 2, ..., n) as following:

$$TF_{ij} = (i; j', (i+j-1)''; (j+1)', (i+j)''; (j+2)', (i+j+1)''),$$

where the additions are taken modulo n with residues 1, 2, ..., n.

Then they comprise a trefoil-decomposition of $3K_{n,n,n}$. Construct this trefoil-decomposition repeatly $\lambda/3$ times. Then we have a trefoil-decomposition of $\lambda K_{n,n,n}$.

References

- [1] C. Lindner, The bow tie algorithm. Presented at the 24th Australasian Conference on Combinatorial Mathematics and Combinatorial Computing (Northern Territory University, Darwin, Australia, July 5th to 9th, 1999).
- [2] W. D. Wallis, Combinatorial Designs. Marcel Dekker, New York and Basel (1988).