
Emulation Evaluations of Tor Schedulers with Active Circuit Switching

Timothy Girry Kale Satoshi Ohzahata Celimuge Wu Toshihiko Kato

Graduate School of Information Systems, The University of Electro-Communications

1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

E-mail: tgk@net.is.uec.ac.jp, {ohzahata, clmg, kato}@is.uec.ac.jp

Abstract: The Tor network is an open network that helps its users defending against adversaries who performed
traffic analysis and threatens the personal privacy and confidential security. Tor protects its users by preventing the
sites they visit from revealing their physical location. This trust of services raises the number of Tor users daily,
which makes Tor become one of the widely used privacy networks today. However, as the number of Tor user
increases, the performance of Tor degrades badly due to Tor’s scheduler does not fairly distribute the traffics in
Tor. In this paper, we highlight the problems in Tor performance due to scheduling design of Tor, which degrades
the web and bulk traffic performances that multiplexes on a single TCP connection. To solve these problems, this
paper emphasis on applying the simple method of active circuit switching on Tor application level, in order to
distribute the bulk and web traffics through different TCP connections when congestion is detected in Tor. We
evaluate our modified switching with the other default schedulers in Tor, such as vanilla and priority EWMA
scheduler through a wide deployment network in shadow emulator. The experimental results show that our
switching technique considerably offers stable improvement of traffic performance for all the web and bulk
traffics.

Keywords: Tor, Vanilla, EWMA, Circuit Switching, Anonymity, Onion Router (OR), Onion Proxy (OP).

1. Introduction

The Tor network [1] is the most widely used anonymous
network today, which comprises of over ten thousands onion
routers (ORs) around the world [2]. Tor serves millions of users
privacy on the Internet by encrypting traffics through multi-hop
ORs, which are communicating using pairwise TCP connections
[3]. However, despite the increase adaptation of Tor, it is well
known that Tor does not fairly distribute the bulk and web traffics
through widespread ORs [4, 5, 6]. This problem contributed to
degrading the overall network performances for the majority of
Tor web users who heavily depend on Tor anonymity services, and
further degrading the security of Tor. There are wide ranges of
studies [4-12] that recognized these as problems and confirmed
that the limitation of Tor’s bandwidth resources, relay selection
and Tor scheduling [11] are the primary sources for the unfairness
of traffic distribution in Tor [12].

To solve the previous problems, Tang and Goldberg [5]
implemented their method of priority exponentially weighted
moving average (EWMA) schedule in Tor, which calculating the
EWMA of cells, and measures the recent activity of a circuit. They
applied this scheduler to give higher priority to circuits that have
lower EWMA value, which classified as web interactive traffics, to
have their cells transferred first over the bulk traffic. Their [5]
algorithm keeps track of a number of cells schedules for each
circuit, and after a configurable time-period of “halflife” reached,
the cell counts are exponentially decayed. This approach looks
promising however, Jansen and Hopper [6] tests the EWMA
priority scheduler in a similar setup, which runs in a shadow
emulator environment, and they concluded that the priority
EWMA scheduler does not applicable under all network
conditions, since it is not clear that performance will always
improve. Therefore, more experimentation and improvement is

needed to confirm the effectiveness of EWMA priority scheduler
though it is now used as default scheduler in Tor [5, 6].

In the first implementation of Tor, the OR was designed to use
the round-robin TCP read/write vanilla scheduler [6], which has
been realized in [12, 13] that this scheduler also contributed to the
unfairness of traffic distribution for web and bulk clients. The bulk
traffics tend to have higher priority over the web traffics, which
discourage the wide adaptation of the Tor network. This gives us
the reason to focus on implementing an alternative approach to
improve the current scheduler of Tor architecture.

Our primary goal is to improve the traffic performance of the
entire web and bulk Tor users, by implementing a simple method
of active circuit switching schedule on Tor application level [14].
In our previous work [14], we did not address the dynamic
distribution of traffic on Tor and we did not compare the modified
switching algorithm with other schedulers in Tor.

In this paper, we improve the active switching algorithm to
dynamically switch the bulk circuit traffic that causes the
congestion in the network to different TCP connection. We used
the buffer occupancy information that is local to the guard entry
ORs to detect congestion, and dynamically switching the circuit
with higher EWMA values to a new path that has higher capacity,
in order to reduce the bottleneck in the previous TCP connection
that is highly congested. The contributions of this paper are stated
below.
• We evaluated the active circuit switching schedule algorithm

and compared with the un-prioritized vanilla Tor and
prioritize EWMA scheduler in the shadow emulator
(simulation environment of Tor wide deployment that depicts
the real live Tor network) [6].

• The designed of modified circuit switching [14] adopts the
current design of Tor EWMA algorithm, however, we
performed a small modification of EWMA algorithm to

1ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-GN-99 No.14
Vol.2016-SPT-18 No.14

2016/5/13

monitor per-connection for a number of cells occupies the
output buffer occupancy in the Tor application level.

• The proposed active switching method considerably more
effective, since the configured control metrics of maximum
and minimum thresholds, helps to quickly detect the
congestion in Tor and actively distribute the traffics compared
to priority EWMA and non-priority vanilla schedulers

Figure 1. The Tor network architecture.

2. Background of the Tor Network

The Tor network is a second generation of the onion routing
overlay network [1]. The Tor users first built it in the US Naval
laboratories with a goal of preventing hackers from discovering a
physical location and content access.

Figure 1 shows the architecture of the Tor network. The Tor
client locally runs software, which called an onion proxy (OP).
The OP presents a SOCKS proxy interface to local applications,
such as the web browsers. When an application makes a TCP
connection to the OP, the OP splits the TCP segment into 512
bytes of fixed-size cells, and forwards them over the Tor network.

To construct a circuit, the client (OP) picks a first entry OR1 and
makes a TCP connection as well as the transport layer security
(TLS) encryption on that connection. The client OP then instructs
the entry OR to connect to a middle OR2. After that, the OP
instructs the middle OR2 to contact the exit OR3 and the TCP
connection is made between the middle OR2 and the exit OR3. The
last exit OR3 performs decryption of circuits from the middle OR
and opens the unencrypted TCP connection to the web server. After
the connection to the web server is made successfully, the exit OR3
reports a one-byte status message back to the client application
proxy [1]. Note that by default, Tor uses three hops circuit on the
Tor network. For the communication protocol over Tor, all the ORs
are communicating using pairwise TCP connections. Tor was
designed to multiplex multiple circuits over a single TCP
connection to enhance its anonymity services. The multiplexing of
circuits to single TCP connection can carry traffic for multiple
services or streams that a user may be accessing1. When the data
arrives at the OR, it is immediately processed as it arrives in
connection input buffers [1] and each cell is either encrypted or
decrypted depending on its direction through the circuit. The cell is
then switched onto the circuit corresponding to the next hop and
placed into the circuit’s first-in-first-out (FIFO) queue [4]. Cells
wait in the circuit queues until the circuit scheduler selects them for
writing. Note that the reading and writing of data operations are
based on round-robin manner across input and output sockets,
with a scheduler that controls the execution in Tor.

3. The Circuit Schedulers in Tor

3.1 Vanilla Tor (Non-Priority) Scheduler
The vanilla Tor scheduler represents the primary settings in the

Tor application and it is the unmodified algorithm that uses the

1 To easily identify different circuits, the OR can assign different circuit ID
to each circuit.

round-robin circuit scheduler [15, 16]. Vanilla scheduling is
responsible for controlling the execution of reading and writing
operations of cells in a round-robin manner across input and output
sockets when there is space available [15]. Note that the writing to
sockets is scheduled alongside reading from sockets, and so is
performed in a round-robin manner when data is available. The Tor
buffers operate with first-in-first-out (FIFO) order and queue on
the circuit until the circuit scheduler selects them for writing.
Furthermore, taking a data from the output buffer and dispatch to
the network is happening in a single thread scheduling for reading,
processing and dispatching (writing) to a socket. This means all
work is done serially for vanilla Tor scheduler [16].

3.2 EWMA (Priority) Scheduler
The exponentially weighted moving average (EWMA)

scheduler was recently introduced into Tor [5] and is currently
used by default as an update version of Tor algorithm. The EWMA
scheduler records the number of cells it schedules for each circuit
and, exponentially decaying cell counts over time (configured
“halflife” parameter). The EWMA priority scheduler writes one
cell at a time chosen from the circuit with the lowest cells count.
The cell counter of the connection to which that circuit belongs
cannot affect other per-connection EWMA [5], i.e., per-connection
EWMA is enabled and configured independently of its circuit
counterpart. Every time when cells are ready to transfer to
connection’s output buffer, the EWMA algorithm calculates the
decayed cell count value for each circuit based on the EWMA
equation in [5]. After the calculation and OR pick the circuit with
the smallest cell count value, the cell count value is updated
correspondingly. The detail of priority EWMA equation and
algorithm are further explained in [5].

3.3 Modified Circuit Switching Scheduler
We implemented the active circuit switching algorithm in [14],

which focuses on detecting the congestion in the network at the
guard entry OR, and switching of an active bulk circuit with higher
EWMA value to different TCP connection. In this paper, we
improved the circuit-switching algorithm to dynamically switch the
bulk traffic to different TCP connection, in order to reduce the
network congestion for all clients. Unlike the existing techniques
of vanilla and priority EWMA schedulers that previously
explained, our simple active switching techniques use the buffer
occupancy information that is local to the guard entry OR.

In addition, this dynamic switching technique is essential and
effective to solve the problems of Tor’s performance with respect
to increasing queuing delays in Tor and TCP kernel buffers,
increasing memory usage and node’s inability to receive more data
(socket un-writable) [17]. These problems are contributed to
increasing the latency on the Tor network.

The next subsection further explains the control metrics applied
to our modified switching algorithm to reduce the queuing cells in
Tor and TCP kernel buffers.

3.3.1 Modified Circuit Switching Control Metrics
Since we focused on the buffer occupancy information that is local
to guard entry OR, we applied a statistical algorithm for
scheduling traffic on circuit connecting to Tor output buffer using
the EWMA algorithm.

Equation 1 shows our modification on the EWMA algorithm to
count the number of cells entering the output buffer in Tor. The

2ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-GN-99 No.14
Vol.2016-SPT-18 No.14

2016/5/13

Figure 2. The designed of modified circuit scheduling in the guard entry
OR.

periodic sample of instantaneous output buffer occupancy is
represented as B for each incoming circuit in Tor.

 𝐵! = 𝛾 ∗ 𝐵!!! + (1−𝛾) ∗ 𝐵!"#$%& (0 < 𝛾 <1) (1)

The 𝐵!"#$%& is the currently collected number of sample cells
sent from the circuit queues and occupied the output buffer in Tor.
The EWMA parameter 𝛾 is the fractional weight of the previous
buffer estimated in the EWMA estimator. We used it to estimate
the current buffer occupancy and determine the depth of kernel
memory usage in the allocated output buffers in Tor. The larger 𝛾
has a greater influence on the number of cells occupying the output
buffer by the incoming circuits. Whenever the circuit’s cell
counter is incremented, the cell counter of the outgoing
connection to which that circuit belongs is also incremented. Our
control scheme is based on this incremented value to identify
which circuit contributed to overflowing the output buffer.

3.3.2 How Modified Circuit Switching Scheduler Works
Figure 2 shows the modified circuit scheduling that runs in the

guard entry OR, which estimated the EWMA periodic samples of
instantaneous output buffer occupancy for each circuit. If
congestion occurs, i.e., if the output buffer queues rise above the
limit, then the incoming bulk traffic with higher EWMA value
dynamically switch to a different output buffer in Tor and TCP
socket as illustrated by the dashed arrow line. The dashed arrow
line indicates the newly switched circuit to route the bulk traffic.
The solid arrow line indicates the initial circuit route. The red
dash-square shows the focused area of control metrics for the
output buffer occupancies in Tor and TCP socket. This method is a
backward compatible with the existing Tor network, which the
TCP header is secured to avoid the disclosure of per-connection
data transfer through the old and newly switched circuit of each
TCP connection. After the active bulk traffic switched to a new
circuit that was preemptively built by the Tor client, the traffic is
routed to a higher bandwidth ORs with an aim of improving the
traffics flows. Note that any packet drops on the newly TCP
connection will not affect the flow of traffic in the previous old
TCP connection. This approach lowers the queuing packets in the
congested output buffer in Tor and TCP connection.

The detail procedures involving the active circuit switching of
bulk traffic, and the assignment of transferred cells to the newly
circuit are explained in our previous work [14].

3.3.3 Buffer Thresholds
We defined the two threshold values to control the output buffer

occupancy in Tor to ensure both bulk and the web traffics have a

fair share of network resources. The two thresholds are α and β,
which indicates the minimum and maximum buffer thresholds
respectively. Data occupying the output buffer below α is
considered as the buffer is under full and above β is considered as
buffer overfull. If the current buffer occupancy is within the
acceptable range between the minimum and maximum threshold,
no switching of bulk traffic occurs. However, if the Tor output
buffer rises above the maximum threshold β, switching of bulk
traffics with higher EWMA value occurs. This approach allows the
circuit traffics with lower EWMA value (the web traffics) to have
better performance through the previous congested TCP
connection. We configured the 𝛼 = 0.1 and 𝛽 = 0.5. These
threshold values have smaller circuit switching time of less than 1
second. Note that these threshold parameters are fractional of the
total allocated memory for each output buffer size in Tor, which is
32 KB.

4. Experiment Setup

4.1 Wide Network Deployment in the Shadow Emulator
We setup the modified circuit switching scheduling with the

priority EWMA and the vanilla schedulers in the shadow emulator
[6]. The shadow emulator is more efficient and scalable discrete
event simulator, that can run a multiple threads and processes
during execution of parallelizing simulation workloads with high
accuracy [5, 6]. We configured a scalable and efficient design
topology in the shadow emulator to easily run the priority EWMA
scheduler, non-priority vanilla scheduler and modified switching
algorithm.

4.2 Shadow Limitation
The shadow emulator can simulate the similar scenario of the

entire Tor network deployment, however, there are limitations to
this emulator in terms of providing accurate results of specific
kernel features or kernel parameter settings. And since our
proposed active circuit switching method focuses on dynamic
routing changes in the Internet, the shadow emulator is limited
and does not precisely model these behaviors. These problems
also hinders our full evaluation in the shadow emulator, while
priority EWMA and vanilla schedulers had already been
implemented and tested in the shadow emulator [5, 6, 15].

To overcome the limitation we faced, we configured the traffic
generator that currently exists in the shadow simulator repository
[18], by building traffic generator (TGen) as an external tool and
skip building both the full simulator and the plug-in as part of
TGen. This configuration enables our modified circuit switching
algorithm to runs well with shadow emulator environment and
specifies the structure of the network topology, and network
properties such as processing packets, circuit queues, transfer
bytes and downloading times. Furthermore, this newly
configuration of shadow TGen approach enable our proposed
method to directly configured in the guard entry ORs, which are
located in the shadow emulator and connecting to the middle and
exit ORs outside of shadow emulator, i.e., over the Internet and the
results are collected (mirrored) in the shadow simulation log files.

4.3 Shadow Configuration
Since shadow can run the entire Tor network on a single Linux

machine, we setup the network topology in the Ubuntu 14.04 LTS,
64-bit, 16GB RAM, Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

3ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-GN-99 No.14
Vol.2016-SPT-18 No.14

2016/5/13

Figure 3. Topology setup in the shadow emulator.

to analyzed the processing packets, circuit queues, transfer bytes
and downloading times. We used the scallion plugin [6, 19] that
contains XML scripts to assist us in generating the topologies and
running Tor experiments in shadow to collect results.

Figure 3 shows the configured topologies setup in the shadow
emulator. We configured 5 HTTP servers, 150 ORs (50 entry ORs,
50 middle ORs and 50 exit ORs) and 20 clients (10 web clients and
10 bulk clients) for our experiments. To analyze the effects of
various network loads on each scheduler running in the shadow
emulator, we configured each bulk client to repeatedly download a
5 MB file from a randomly selected HTTP server without pausing,
while each web client download a 320 KB file from a randomly
HTTP servers but pauses after each download completed, before
downloading the next file. In this way, the bulk users are actively
using the network and the responsiveness of bulk traffics are faster
because of continuous traffics. In the experiments, Tor relays are
configured with bandwidth parameters according to the Tor
network consensus bandwidth. All the ORs, clients, and web
servers have 10 MB connections. We configured the EWMA
scheduler with the “halflife” parameter of 66.

In addition, for modified switching scheduler, we directly insert
our modified algorithm in the shadow guard entry OR as
previously mentioned. Since the modified circuit algorithm can
dynamically switch the bulk traffic outside of shadow emulator,
we setup other ORs in our testbed so that the bulk traffic can pass
through other middle and exit ORs after switching to a new circuit.
This approach makes it possible to reconnect to the shadow HTTP
server that the old circuit was previously used.

4.4 Measurements
In the experiment measurements and analysis, we focus on the

time to first byte that received by the web and bulk clients, and the
time when the last byte arrived for downloading of 320 KB (web
client traffic) and 5 MB files (bulk client traffic). Note that the time
to first byte indicates the network responsiveness of the web and
bulk traffics that routed in the Tor network.

When testing the modified circuit switching schedule that
running on the entry ORs, we measured the time to first byte
received and download time of traffics at the beginning when all
the circuits are multiplexed to single TCP connection (before
switching) and, after the bulk circuit switched to different TCP
connection. All the measurements results, including cells
processing inside the Tor application level and events of all circuit
traffics for each scheduler, are obtained by shadow and outputted
into the log files when the experiments are done.

5. Experimental Results

The experimental results show how each scheduler running on
the shadow emulator maximizes the web and bulk traffics under
variances of network loads.

Figure 4 (a) and (b) shows the client performances for our
modified switching scheduling compared to non-priority vanilla
and priority EWMA schedulers, for time to first byte received.
Figure 4 (a) show the modified switching algorithm reduces the
web time to first byte for all web clients by 90% improvement,
over vanilla Tor and priority EWMA scheduler with “halflife”
parameter 66. In Figure 4 (b), the bulk time to first byte
measurements shows our modified switching algorithm has better
performance over EWMA and vanilla Tor scheduler. The
switching of bulk traffic to the new alternative higher capacity of
TCP connection improves the performance for our proposed
switching method.

In Figure 4 (c), the EWMA scheduler seems to be effective as
modified switching algorithm for less than 40% testing of web
download traffic over vanilla Tor. However, 60% of experiment
testing shows that modified switching algorithm still improves the
overall web download traffics. Interestingly, in Figure 4 (d), the
EWMA 66 and vanilla Tor schedulers seem to degrade very
deficiently and has unstable performance compared to modified
switching algorithm for bulk traffics. The un-priority round-robin
vanilla Tor scheduler seems to be most affected in all cases for the
web and bulk download times.

The experiment results in Figure 4 (b) and (d) show that our
method of actively switching the bulk traffic to different TCP
connection gain significant improvement when there is congestion
detected in the guard entry OR. Both web and bulk traffic are
distributed through different TCP connections to improve all
traffics performance, unlike the default round-robin vanilla
scheduler that continues to passes all the circuits through single
TCP connection despite any congestion occurs in the network. This
leads to poor performance for vanilla Tor scheduler in all cases
from Figure 4 (a) to (d).

Figure 4 (e) and (f) shows a CDF of mean cells processed and
mean cells in circuit queues respectively. These results are
important to analyze how each scheduler attempting to maximize
network utilization under different network load, in an attempt to
improve traffic performance for all the web and bulk clients. In
Figure 4 (e), the results show significant increases in the traffics
processed by the modified switching algorithm in 100 minutes run
time experiments, at which the point of measurements begins from
when the web and bulk clients start downloading files up to times
when the downloads are completed. The results show 50% of mean
cells processed for modified switching algorithm are less than
119,000 cells for web traffics and, less than 120,000 cells for bulk
traffics. Both results of proposed modified switching algorithm are
higher than 50% cells processed for priority EWMA 66 and vanilla
Tor schedulers. In Figure 4 (f), when compared the results of
modified switching algorithm to priority EWMA 66 and vanilla
Tor schedulers, the results for mean cells in circuit queues
experienced small variances for all three schedulers. The results
show that the circuit queues increase in the entry, middle and exit
relays for all the web and bulk traffics. Under the heavy load, the
EWMA 66 scheduler appears to perform the best for the web
traffics with 50% of mean cells in the circuit queues, which are less

4ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-GN-99 No.14
Vol.2016-SPT-18 No.14

2016/5/13

 (a) (c) (e)

 (b) (d) (f)
Figure 4. The comparison results of three schedulers running in the setup shadow emulator. (a) The web time to first byte (when the web clients click the web
browser and time it took the first byte to arrive at the client side). (b) The bulk time to first byte (when the bulk clients click the web browser and time it took
the first byte to arrived at the client side). (c) The web clients download time of 320 KB file and, (d) the bulk clients download time of 5 MB file. (e) CDF of
mean cells processed for web clients and bulk clients during downloads and, (f) CDF of mean cells in the circuit queues.

than 62 cells and less than 52 cells are for the bulk traffics. For

vanilla Tor scheduler, the results show that 50% of mean cells in

the circuit queues are less than 54 cells for the web traffics and,

less than 57 cells are for the bulk traffics. And for the modified

switching algorithm, 50% of mean cells in the circuit queues are

less than 50 cells for the web traffics and, less than 54 cells are for

the bulk traffics.

The experiment measurements shows that, when the network

loads are light or too heavy, all the results are nearly equal

regardless of the selected circuit scheduler. Therefore, in overall

observation of the simulation results, we concluded that the

modified switching scheduling of bulk traffic with higher EWMA

value to different TCP connection appears to be effective

regardless of the wide network deployment in shadow or outside of

shadow emulator.

The configured algorithm thresholds α and β effectively controls

the buffer occupancy in Tor application level and maximizes the

web and bulk time to first byte received, and downloading times

among all different loads in the network.

6. Discussion

We evaluated the improvements of active circuit switching
algorithm with the default vanilla Tor and priority EWMA
scheduler. We examined the beneficial of modifying the current
EWMA scheduler in Tor algorithm by combining the circuit
protocol stack (Tor application level) and, TCP protocol in order
to improve the overall Tor performance. This performance
improvement is essential to achieve better security on the Tor
network. This is because by allowing the users to select their
preferred guard entry ORs that can detect congestion quickly in
the Tor network and dynamically distributing the traffics
increases the performance and usability of Tor, and therefore the
potential user base and security of the Tor network is greatly
enhance. Note that more users joining the Tor network increases
the mixing of traffics on the network. Therefore, more mixture of
traffics can obscure any adversaries who perform the traffic
analysis in trying to identify the sources and destinations of the
captured packets.

Furthermore, the performance improvements of modified
switching algorithm increases the mean cells processed of transfer
times for all the web and bulk traffics on the network. The
network utilization is maximized for different network loads,

5ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-GN-99 No.14
Vol.2016-SPT-18 No.14

2016/5/13

because any packet drops on one TCP connection does not affect
the flow of traffic in another TCP connection. Hence, scheduling
the traffics via different TCP connection proved to be effective and
dramatically reduces the random variances of queuing cells and
traffic flows of all the web and bulk clients as observed in our
experiments.

7. Conclusion

In this paper, we presented the modified switching scheduling

algorithm to improve the flow of traffics in Tor and compared the

results with other schedulers, such as priority EWMA and

non-priority round-robin vanilla Tor schedulers in a large-scale

discrete event simulator, called the shadow. The plug-in we used to

run Tor in the shadow emulator is called scallion. We introduced

the threshold technique that controls the output buffer occupancy

in the guard entry OR. The results show that our modeling of

active circuit switching algorithm proved to be suitable for

obtaining favorable results for the entire Tor clients in our

experiments.

We observed that for the network responsiveness of each web

and bulk client, the EWMA scheduler appears to perform best for

the web traffics but not for the heavy bulk traffics, i.e., the EWMA

scheduler performance is unstable under all network condition. For

vanilla Tor scheduler, the performance is possibly improved,

however, it is still not suitable when there are many bulks and

webs traffics multiplexes through a single TCP connection. Hence,

the performance for vanilla Tor scheduler is degrading for all our

experiments.

To conclude, all the scheduler’s results illustrate that

performance benefits heavily depend on the network traffic

patterns and network congestion state. The overwhelming load of

Tor clients on the network can increase congestion and creates

additional bottlenecks, which can possibly affect any advance

scheduler performance in Tor.

Therefore, more experimentation is needed to perform in the

live Tor network to confirm the effectiveness of our proposed

modified circuit switching algorithm performance.

7.1 Future work
Having shown the performance benefits of active circuit

switching algorithm, a deeper research needs to carry out to
understand our method adaptation and its effects on client
performance in the live Tor network.

In addition, we need to analyze the security of circuit switching
schedule against adversarial attacks on anonymity. We need to
study the direct impact of actively switching of bulk traffic to the
different path and, what any adversary can learn from the guard
entry ORs that performs the switching of active bulk traffics.

Finally, we need to research how the information leaked at the
entry ORs can affect the anonymity services of the Tor network.

Reference
[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The

second-generation onion router,” In Proceedings of the 13th USENIX
Security Symposium, USENIX Association, 2004.

[2] Tor metrics portal, available from <https://metrics.torproject.org>
(accessed 2016-03).

[3] Who uses Tor? available from <https://www.torproject.org/about/
torusers.html.en> (accessed 2016-03).

[4] J. Reardon and I. Goldberg. Improving Tor using a TCP-over-DTLS
Tunnel. In Proceedings of the 18th USENIX Security Symposium, pp.
119–133, 2009.

[5] C. Tang and I. Goldberg. An improved algorithm for Tor circuit
scheduling. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, pp. 329–339, 2010.

[6] R. Jansen and N. Hopper. Shadow: Running Tor in a Box for
Accurate and Efficient Experimentation. In Proceedings of the 19th
Network and Distributed System Security Symposium, 2012.

[7] T. W. J. Ngan, R. Dingledine and D. S. Wallach. Building Incentives
into Tor. In the Proceedings of Financial Cryptography, 2010.

[8] W. B. Moore, C. Wacek and M. Sherr. Exploring the Potential
Benefits of Expanded Rate Limiting in Tor: Slow and Steady Wins
the Race With Tortoise. In Proceedings of 2011 Annual Computer
Security Applications Conference, 2011.

[9] R. Snader and N. Borisov. A Tune-up for Tor: Improving Security
and Performance in the Tor Network. In Proceedings of the 16th
Network and Distributed Security Symposium, 2008.

[10] T. Wang, K. Bauer, C. Forero and I. Goldberg. Congestion-aware
Path Selection for Tor. In Proceedings of Financial Cryptography,
2012.

[11] R. Jansen, N. Hopper and Y. Kim. Recruiting New Tor Relays with
BRAIDS. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, pp. 319–328, 2010.

[12] F. Tschorsch, and B. Scheuermann. Tor is Unfair–and What to Do
About It, 2011.

[13] E. Hahne. Round-robin Scheduling for Max-min Fairness in Data
Networks. IEEE Journal on Selected Areas in Communications 9, pp.
1024–1039, 1991.

[14] T. G. Kale, S. Ohzahata, C. Wu and T. Kato, Reducing Congestion in
the Tor Network with Circuit Switching, Journal of Information
Processing, vol.23, no.5, pp. 589-602, September 2015.

[15] R. Jansen, P. Syverson, and N. Hopper, Throttling Tor Bandwidth
Parasites. University of Minnesota TR 11-019, 2011.

[16] J. Reardon. Improving Tor using a TCP-over-DTLS Tunnel. Master’s
thesis, University of Waterloo,Waterloo, ON, September 2008.

[17] T. G. Kale, S. Ohzahata, C. Wu and T. Kato. Analyzing the
Drawbacks of Node-Based Delays in Tor, In Proceedings of IEEE
CQR 2014, USA, pp. 1-6, May 2014.

[18] Shadow configuration, available from <https://github.com/shadow/
shadow/wiki/3-Simulation-Customization> (accessed 2016-01).

[19] Shadow plugin, available from <https://github.com/shadow/shadow-
plugin-tor/wiki> (accessed 2016-01).

6ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-GN-99 No.14
Vol.2016-SPT-18 No.14

2016/5/13

