RemoteDT: Support for Multi-Site Table Collaboration

Alan Esenther, Kathy Ryall
Mitsubishi Electric Research Labs (MERL)
Cambridge MA, US4
{esenther, ryall}@merl.com

Figure 1. Example scenario for multi-site collaboration. (Left) Single user on her desktop
system. (Right) Three people working around an interactive tabletop. Both sites see the same
display. A detailed screenshot of the shared display is shown in Figure 4.

Abstract

Multi-user, interactive tabletops are an exciting
new form factor to support collaborative group
activities. To date, much of the research in this area
has focused on co-located collaboration -- groups of
people seated around the same physical table. A
natural step is to connect a co-located group
working around a table to other remote sites,
creating a shared collaborative environment. In this
paper we present RemoteDT, an initial prototype to
explore the space of multi-site table collaboration.
Our system was designed to exploit DiamondTouch
[2], a multi-user multi-technology, but could utilize
any table hardware that provides the same
capabilities. RemoteDT provides three modes of
interacting with the table (manipulation, annotation,
and telepointers), as well as support for connecting
o remote tables or single-user devices. We believe
our initial exploration of the space will serve as a
good starting point for future exploration by
ourselves and others.

1. Introduction

Recent advances in touch technologies (e.g.,
DiamondTouch [2], SmartSkin{11], DVIiT[3]) have
enabled research in new form factors for

collaborative multi-user environments. Interactive,
computationally augmented tabletops are one such
area. To date, most of the research in this area has
focused on co-located collaboration: —. groups of
people seated around: the same. physical table. We
ourselves have - developed - a number of concept
prototypes toillustrate the capabilities of and explore
the interactions on the tabletop form factor
[4,6,9,12].

A natural next step is to connect an interactive
table to remote locations to provide a collaborative
environment for groups of people working together
without being physically in the same physical space.
While much of the early CSCW research specifically
addressed this notion of remote or distributed
collaboration, in most cases it assumed only one
person at each remote location. Existing commercial
remote conferencing solutions, such as the classic
NetMeeting[9] application, require explicit turn-
taking. Newer offerings such as Webex [13] and
Bridgit [1] only let one person interact at a time at
each location. All of these conventional conference
solutions facilitate collaboration to a group of
distributed people. In contrast, our goal is to support
distributed groups of people. '

Using a table for one or more of the remote sites
allows a group of co-located people to work with
groups or individuals at remote locations in a way
that today’s systems do not support. It also raises

new challenges in designing interfaces and
interactions to exploit the capabilities of the multi-
user tables.

As part of our ongoing research in shared-
displays groupware we developed RemoteDT to
begin to explore the space of table-to-table
collaboration. Our system was designed to exploit
DiamondTouch [2], a multi-user multi-touch
technology that provides support for parallel
concurrent input from multiple users and
differentiates which touches comes from which
users. Our system could, however, utilize any table
technology that is able to provide the same
capabilities. We used Commercial Off-The-Shelf
(COTS) software, where available, for traditional
remote collaboration needs, and focused our work on
the table-specific aspects of the collaboration.

In the next section we describe a sample multi-
site collaboration usage scenario that we used as a
case study to design and implement RemoteDT. In
Section 3 we present its three interaction modes
(mouse mode, annotation, and custom pointers),
followed by the system implementation details. In
section 4 we summarize the lessons learned and
directions for future work.

2. Usage Scenario

Our usage scenario was based on a field
engineering task. In particular, we developed a
system to support remote field engineering, in which
a field engineer is dispatched to a particular site to
do maintenance or repair on some equipment. In
some cases the engineer may be able to complete his
job on his own. In other cases he requires additional
information and guidance from remote collaborators.
In our example, two groups of different people are
called upon to evaluate the information gathered by
the field engineer, identify the problem at hand, and
construct a plan of action to solve the problem. The
two groups are located at different sites, which are
distinct from the location of the field engineer.
Figure 2 depicts our usage scenario.

Each site plays a key role in the overall
collaboration. The first group, the manufacturers
(top left Figure 2), has detailed knowledge of the
machinery in need of repair, including wiring
diagrams and mechanical schematics. The second
group, the plant operators (top right Figure 2), has
details of their particular installation along with audit
trails and sensor readings of the equipment in
question. Finally, the field engineer is on-site with
the equipment itself, and can provide real-time
information about the equipment. He also bas use of
his cell-phone to send and receive images of any
relevant components or environmental issues.
Together the manufacturers and the plant operators
must coordinate the activities of the field engineer.

While our particular distributed collaboration
scenario involves two groups of people working
together, each with an interactive tabletop system at
their disposal, our system supports traditional single-
user devices (e.g., desktop or laptop) at sites as well.
Likewise, other mobile devices could be used in
place of our field engineer’s cell phone.

Support Service Center - g

Database ..
Freld Engineer

‘Engineering Room

%

Figure 2. Our sample usage scenario
connects two tables at remote sites with a
field engineer located in a third location.
The tables share the same virtual display
while the field engineer interacts over cell-
phone based email and voice.

We believe our sample scenario is typical of
many distributed collaborative activities in that
multiple parties are working together on a common
task, each party has particular information that may
not be accessible or apparent to the other parties, and
one of the parties involved may itself be a group of
co-located people working together. Other examples
of this type of activity include command and control
centers, emergency response situations, and urban
planning activities to name a few.

3. Interaction Modes and Implementation

In many distributed collaborative settings each
group is likely to be using its own (potentially
proprietary) tools. Thus one of our goals was to
allow each site to use its own software applications —
in essence arbitrary legacy applications.

While we hope that in the future multi-user
applications will be readily available, today’s
applications are primarily single-user in nature.
While it is possible to augment some existing
applications through a programmatic interface (e.g.,
Microsoft’s COM-based interfaces to control
Microsoft Office applications), it is impossible to do
so in all cases. In our efforts to support the use of
legacy applications in collaborative table scttings, we
noted the need for three distinct interaction modes to

support table-interactions when connected to a
remote site.

When using a direct-touch input device, every
touch counts — the underlying software must
interpret it in some way. But the question is...did
someone intend to interact with an application
running on the table? Or did they merely wish to
indicate or reference content on the table (i.e., a
deictic reference). And in the case of remote
collaboration, sometimes you need to visually
highlight some particular region of content to make
it clear — to draw someone else’s attention to
something.

Each of our three modes interprets a user’s touch
on the table in a different manner. Users manage
each mode through a control panel — a persistent
window that “floats” above all other applications
(see Figures 4-5). It was designed to emphasize the
three interaction modes, while letting users see at a
glance what tools and capabilities are available in
each mode. The control panel can be minimized
leaving a single push-button (which is always visible
and accessible) to reopen the control panel.

3.1. Mouse Mode

cenh Mads

(A Mowse © Jenctaie O Poiat Sarver Opti

Mouss | Arpctate | Pt |

Hava NEXT louch generste:

o BFingec Tonch
Q@ ook | o

Re.ﬂ}):»sg Heny

Anpelate
Cutrent
Srrean

i Shorteuts . N
it X 1o Teweh
b Yook (@

T £V 18

Touch U

Figure 3. The Mouse Mode control panel
provides an easy mechanism to map
touches to mouse functions.

Our first mode of interaction is mouse mode;
touches to the table are intended to manipulate an
application. It enables users to interact with arbitrary
applications via mouse emulation. RemoteDT was
one of our earliest explorations into mouse
emulation. In this system we provide access to
different mouse functionality through an easy-to-use
control panel (see Figure 3).

Shortcut buttons determine whether touching the
table just moves the mouse (i.e., providing mouse
over support) or generates a left button down (i.e.,
drag or draw events). Users can arm the next touch
with different button activations (click, double-click,
right-click). While touching with a single-finger
controls mouse position, two-finger touches are

mapped to other functionality such as resizing a
window or opening a context menu.

An interesting aspect to our mouse emulation is
that while the table itself is able to provide multi-
user support, in particular concurrent input from
multiple people, today’s mouse is inherently single-
user. In earlier versions of our system we relied on
social protocols to coordinate and serialize user
interactions in mouse mode. We quickly realized
that people did not always wait to “grab” the mouse
until someone else was finished. As a result we
decided to implement a first-come first-served mouse
policy. The first person to touch the table gains
control of the mouse. While that person is
interacting with the table any touches by other users
is ignored.

3.2. Annotation

notate

123

Wouse Srmotste | Pory i

§Annotation Windew
Shewr

Background lmage
H ; 3 {
Brewse ! Erase 3 Captore Caskicp | Rolate | Flip< | FligY

Figure 4. (Top) Annotation Control Panel
Detail: The Annotation control panel allows
users to customize their “ink” as well as
choose the image to annotate. (Bottom)
Sample screenshot of the RemoteDT
session from Figure 1: Users have
annotated this screenshot, each in a unique
color. The yellow border indicates a static
image rather than a live desktop.

Our second mode of interaction is annotation;
touches to the table are intended as ink. It enables
users to mark up arbitrary screen contents as if they

were writing with a pen. A control panel (Figure 4)
enables each user to select their annotation color and
adjust other typical drawing parameters (e.g., line
smoothing and width). Touching with a single
finger draws a line. Touching with two-fingers
creates a user-specific shape (e.g., circle, rectangle,
or rounded rectangle). Sample annotations are shown
in Figure 4(bottom).

Ideally our annotation mode would work directly
with underlying applications, embedding markup
directly into the documents themselves. In practice
this would require very large engineering efforts
and, in cases of proprietary software, is impractical.
To solve this problem RemoteDT provides a
_“Capture Desktop” button in annotate mode to grab a
copy of the current desktop image. The captured
desktop image will not include the Control Panel
itself. The mouse mode also has a shortcut button
called “Annotate Current Screen” (see Figure 3)
which captures the current desktop image (sans
Control Panel) and switches to annotation mode.

In annotation mode users may load any arbitrary
image file to use as the background image on which
to annotate. To support users working at arbitrary
positions around the table, the contents can be
rotated by 90 degrees or flipped along either its x or
y axes.

RemoteDT also provides special support which
allows the field engineer to email an image to the
RemoteDT application, which immediately switches
to annotation mode and displays the image, ready for
discussion and annotations. A copy of the image
currently being annotated can also be emailed,
complete with annotations, to any email address.
This allows participants to send reminder copies of
the discussion to themselves, and also enables parties
not currently using the RemoteDT system to have
access to some of the session information. In our
example scenario these features were used to
exchange information with the field engineer.

3.3. Custom Pointers

Our third mode of interaction is custom pointers;
touches to the table are intended to manipulate
floating pointers which create a tele-presence. It
enables users to position their “pointer” anywhere on
the display as a means of referencing particular
content. Each telepointer [7] is a color-coded text
label (i.e., user’s name or title, say) and can be
overlaid on any application. The Pointer control
panel (Figure 5) allows users to customize their
pointer, including deleting or hiding it as they desire.

Figure 5 shows the Pointer control panel and
includes five telepointers — four from people co-
located on a tabletop and one from a remote laptop
user. Each pointer also includes an arrow, which is
user-configurable to point to the left or right;

touchers “0 through 3" are pointing to the left, while
the “custom label” points to the right.

Trag Haedle
JEREHIE

Figure 5. (Top) Pointer Control Panel detail:
The Pointer control panel allows users to
customize their telepointers. (Bottom) A
“live” screenshot of RemoteDT in action:
Five telepointers are shown on the
background image. One telepointer with a
custom label points to the right.

To support users seated at arbitrary positions
around the table, each pointer also has a custom
handle position which can be adjusted on a per-user
basis through the control panel. The “drag handle
location” widgets (lower left of Figure 5(top)) are an
instance of iDwidgets [12]; each user's identity is
passed as a parameter to the widget so that the
widget “knows” whose settings to change when
touched. The “drag handle location” refers to the
point on an object which will track to a person's
touch on the table. For a mouse pointer this
corresponds to the “hot spot” of the cursor. When
using a direct-touch input, however, it is often
desirable to shift the position of the “handle” based
on a person's position (e.g., around a table) and
possibly which hand he or she is using to prevent the
person's hand from occluding the object (or content)
being manipulated.

3.4, Implementation

RemoteDT was developed on the DiamondTouch
platform [1,2]. DiamondTouch is a multi-user,
multi-touch technology that supports simultaneous
input from up to four users, and differentiates who is
touching where. It also provides multi-touch
interaction, enabling each user to interact with one
finger, two fingers, one hand, two hands and so on.
Each DiamondTouch table is front-projected to
create coincident input and output. RemoteDT was
implemented in NET and used the .NET Remoting
framework to distribute touch events and some state
information.

Our goal was to explore the table-specific
components needed to support multi-site
collaboration — the “tableness” of the collaboration
rather than the underlying enabling technologies.
RemoteDT relies on existing Commercial Off-The-
Shelf (COTS) software to provide screen-sharing
functionality. This allows us to leverage existing
work and quickly adapt new offerings without
getting bogged down in an area of development to
which others are already dedicating substantial
resources. Similarly, we assume that audio is shared
via simple speakerphones.

As was mentioned earlier, to support the larger
scenario described in Section 2, RemoteDT provides
on-screen notification of incoming email, as well as
methods for sending email to a remote participant.
To provide backwards compatibility for non-table
sites, RemoteDT supports regular mouse input, and
allows a physical mouse to be mapped to an arbitrary
user via the keyboard. Thus RemoteDT runs without
any DiamondTouch tables at all, although to support
multiple users in one location (i.e., on one CPU) a
multi-user technology such as DiamondTouch is
needed.

Figure 1 shows a two-site collaboration
conducted using RemoteDT. On the right a co-
located group is seated around an interactive table.
On the left we see a single-user with a traditional
desktop setup. The two sites share the same virtual
display — its screenshot is shown in Figure 4. Site A
uses a speakerphone connection while site B uses a
telephone.

In practice RemoteDT supports multiple remote
tables, as illustrated in Figure 2. Conceptually it can
support arbitrary numbers of tables and remote users,
but for our initial implementation we set a limit of up
to ten simultaneous users for the system. Larger
group collaboration, whether with co-located or
distributed groups, has its own set of challenges,
including issues of surface size and visual clutter.

4. Discussion and Future Work

While we developed RemoteDT with a concrete
usage scenario in mind, we have used the system to
begin to explore the space of multi-site table
collaboration. Through our design and
implementation we have learned a number of lessons
that we believe will be helpful to others working in
the areas of table-based collaboration.

The first set of issues surrounds the need and use
of mouse emulation. First and foremost, for any new
technology to be accepted, it must provide
backwards compatibility for legacy software and
applications. Concretely, while we hope that
tomorrow’s table-based applications break away
from today’s WIMP tradition, we realize that to be
useful today tables must provide mouse emulation.

The control-panel based interactions provided by
RemoteDT were our first exploration into mouse
emulation for direct-touch table input. More
complete gestural interfaces can also be used to
provide mouse emulation without the need to display
an on-screen control panel. In [5] we describe a
fluid mouse emulation approach; we also provide a
more thorough discussion of the challenges
associated with trying to provide the functionality of
a multi-button mouse with a direct-touch input
device. In addition, we have found mouse emulation
to be such a useful utility that we have broken it out
as a stand alone utility and have migrated it to the
system tray; it has become a standard, and perhaps
the most-often used, component in the
DiamondTouch SDK [4].

Also of note, today’s mouse and applications
(with the notable exception of MID [8]) are
inherently single-user in nature. While we enforce
serial mouse use, other schemes are possible for
coordinating and resolving contention for the mouse
(e.g., [9]), but are beyond the scope of this paper.
The notion of a multi-user mouse, or conversely how
to support multiple mice (and in turn multiple foci),
raises a number of interesting questions. Our future
work will explore this area and we encourage others
to do so as well.

Another important issue came to light with
respect to annotations. When using annotation
mode, people often became confused about the state
of RemoteDT and tried to manipulate widgets and
content in the static image as if they were interacting
with the live desktop. To disambiguate the static
image from the live desktop we added a border to the
image displayed as the background in annotation
mode (see Figure 4). In contrast, in Figure 5
(bottom) we see a “live” desktop; it has no border.

Future work includes investigation into
annotating on a live desktop image. This feature
would allow people to either annotate or interact
with visible content rather than having to explicitly

switch between modes as in the current RemoteDT
implementation. Likewise, switching between our
current three modes more seamlessly is also left for
future work.

Finally we should note two issues that we
explicitly chose not to explore in RemoteDT. First
RemoteDT makes only limited use of the “around-
the-table” nature of a remote table. An obvious next
step would be to integrate some of the features from
RemoteDT with a tabletop toolkit such as
DiamondSpin [13]. At the time of our work,
however, DiamondSpin was limited in its support of
legacy applications. ~Second, RemoteDT's use of
telepointers only scratches the surface on the issue of
telepresence. Tang et. al. [14] explore the use of
video capture in Mixed Presence Groupware.
Integrating RemoteDT into such a system would also
be another interesting avenue to explore.

5, Conclusion

We have presented RemoteDT, an initial
prototype to explore the space of multi-site table
collaboration. RemoteDT facilitates simultaneous
interaction between distributed groups of people (as
opposed to a group of distributed people) where each
person potentially has muitiple points of interaction.
It provides three modes of interaction via control-
panel access, letting users see at a glance what tools
and capabilities are available in each mode. All of
today’s commercial conferencing solutions tend to
require turn-taking, and fall short of allowing the full
breadth of multi-touch and multi-user interaction
afforded by RemoteDT.

RemoteDT was developed for a distributed
collaboration task centered on field engineering.
Such tasks are common across a wide number of
domains; we hope that our initial exploration of
multi-site table-based collaboration will aid others as
they begin to explore the area.

5. Acknowledgements

The authors wish to thank their collaborators at
Mitsubishi Electric Corporation in Japan for
providing motivation and domain expertise on this
project. We are especially grateful to Mr. Iku Ikeda
and Mr. Mitsuru Nakadan.

6. References
[1] Bridgit (www2.smarttech.com).

[2] Dietz, P., and Leigh, D. “DiamondTouch: A Multi-User
Touch Technology,” ACM Symposium on User Interface

Software and Technology (UIST), pp. 219-226, November
2001.

[3] DVIiT (www.smarttech.com/DViT/).

[4] Esenther, A.; Forlines, C.; Ryall, K.; Shipman, S,
“DiamondTouch SDK: Support for Multi-User, Multi-
Touch Applications,” Demonstration at ACM Conference
on Computer Supported Cooperative Work (CSCHW),
November 2002. Available as MERL TR2002-043.

[5] Esenther, A.; Ryall, K. “Fluid DTMouse: Better Mouse
Support for Touch-Based Interactions,” To appear in
Proceedings of Advanced Visual Interfaces (AVI) 2006.

[6] Esenther, A.; Wittenburg, K., “Multi-User Multi-Touch
Games on DiamondTouch with the DTFlash Toolkit,”
Intelligent Technologies for Interactive Entertainment
(INTETAIN), November 2005.

[7} Greenberg, S., Gutwin, C. and Roseman, M,.
“Semantic telepointers for groupware,” In Proceedings of
the OzCHI '96 Sixth Australian Conference on
ComputerHuman Interaction, Hamilton, New Zealand,
November 1996.

[8] Hourcade, JP and Bederson, B.B
»Architecture and Implementation of a Java Package for
Multiple Input Devices (MID),”
HCIL-99-08 , CS-TR-4018 , UMIACS-TR-99-26, May
1999.

[9] Morris, M. R..; Ryall, K.; Shen, C.; Forlines, C.;
Vemnier, F., “Beyond Social Protocols: Multi-User
Coordination Policies for Co-located Groupware,” ACM
Conference on Computer Supported Cooperative Work
(CSCW), November 2004.

[10] NetMeeting (www.microsoft.com).

[11] Rekimoto, J. “SmartSkin: An Infrastructure for
Freehand Manipulation on Interactive Surfaces,”
CHI2002.

[12] Ryall, K.; Esenther, A.; Everitt, K.; Forlines, C.;
Ringel Morris, M.; Shen, C.; Shipman, S.; Vernier, F.,
“iDwidgets: Parameterizing Widgets by User Identity,”
IFIP TC13 International Conference on Human-Computer
Interaction (Interact), September 2005.

[13] Shen, C.; Vemnier, F.D.; Forlines, C.; Ringel, M.,
“DiamondSpin: An Extensible Toolkit for Around-the-
Table Interaction,” ACM Conference on Human Factors in
Computing Systems (CHI), pp. 167-174, April 2004.

[14] Tang, A., Neustaedter, C., and Greenberg, S.
“Embodiments and Video Arms in Mixed Presence
Groupware,” Report 2004-741-06, Department of
Computer Science, University of Calgary, March 2004.

[15] Webex: (www.Webex.com).

