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Abstract: Cloud computing provides many advantages for both the cloud service provider and the clients. It is also
infamous for being highly dynamic and for having numerous security issues. The dynamicity of cloud computing
implies that dynamic security mechanisms are being employed to enforce its security, especially in regards to access
decisions. However, this is surprisingly not the case. Static traditional authorization mechanisms are being used in
cloud environments, leading to legitimate doubts on their ability to fulfill the security needs of the cloud. We propose
a risk adaptive authorization mechanism (RAdAM) for a simple cloud deployment, collaboration in cloud computing
and federation in cloud computing. We use a fuzzy inference system to demonstrate the practicability of RAdAM.
We complement RAdAM with a Vulnerability Based Authorization Mechanism (VBAM) which is a real-time autho-
rization model based on the average vulnerability scores of the objects present in the cloud. We demonstrated the
usefulness of VBAM in a use case featuring OpenStack.
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1. Introduction

Modern computer systems are highly dynamic. This fact is
epitomized by cloud computing, which is a novel paradigm in
Information Technology (IT) that features data externalization
and low cost of computing infrastructures. The National Insti-
tute of Standards and Technology (NIST) [1] defines cloud com-
puting as “a model for enabling ubiquitous on-demand network
access to a shared pool of configurable resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or ser-
vice provider interaction.” Despite the fact that cloud computing
is profitable for both adopters and providers, its security issues re-
main a concern; particularly, the fact that traditional static autho-
rization mechanisms are employed to enforce access decisions.
The current situation reflects an unsuitability between cloud com-
puting and the authorization mechanisms to date. Novel autho-
rization mechanisms are needed. In the early 2000s, the JASON
report [2] pioneered the usage of risk in modern authorization
mechanisms in order to keep with the dynamicity of modern IT
platforms.

Their idea supposes that every access request is associated with
a risk decision that will be challenged by a threshold to allow
(resp. deny) the access request. That marks the genesis of a num-
ber of work about risk-aware access controls. Among those re-
searches, a seminal paper [3] defined the principles of a risk aware
access control. In that regard, we propose a risk adaptive autho-

1 Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
a) doudou-f@is.naist.jp
b) okuda@is.naist.jp
c) youki-k@is.naist.jp
d) suguru@is.naist.jp

rization mechanism (RAdAM) which is a dynamic real-time risk-
aware authorization mechanism for cloud computing. We ascer-
tained that RAdAM follows the principles of a risk aware access
control as defined in Ref. [3]. We proposed authorization mech-
anisms for the most prominent cases that exist in cloud comput-
ing. We consider the situation where the user is a simple cloud
customer with basic services. Afterwards, we slightly compli-
cated the atmosphere by proposing an authorization mechanism
for collaboration in cloud computing. Finally, we designed an
authorization mechanism for the most complicated case in cloud
computing: cloud federation. We employed a fuzzy inference
system (FIS) [4] to demonstrate how RAdAM functions.

The main contribution of RAdAM is not in the risk determina-
tion itself but in the way the authorization algorithms work and
the novel parameters we introduce in order to allow the autho-
rization to be as flexible as possible. To complement RAdAM,
we also proposed a vulnerability-based authorization (VBAM)
mechanism which is a variation of the Bell-Lapadula multi-level
security (MLS) [5]. The most important point of VBAM is the
usage of the vulnerability score of the objects to enforce a deci-
sion. We contend that modern authorization mechanisms should
not only be dynamic, but also should be tailored to the vulnera-
bilities of the objects that are being accessed. We demonstrated
the usefulness of VBAM by explaining how it could be used in
an OpenStack environment. The rest of the paper is structured
as follows: Section 2 contains the motivation and the background
explanation of a risk aware access control. The related work is
developed in Section 3. We explain the details of RAdAM in
Section 4. We expand upon the usage of RAdAM in a fuzzy in-
ference system in Section 5. Section 6 contains the explanation
of VBAM and a use case of a possible usage. In Section 7, we
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discuss the shortcomings of our proposals and future work that
lies ahead. Section 8 concludes the paper.

2. Background: Risk Aware Access Control

Information sharing has always been a subject of controversy.
That is why it drew the attention of the security experts in the
early stages of computing. Many security mechanisms have
been developed for the purpose of information sharing: starting
from the basic Access Control Lists (ACLs) to Mandatory Access
Control (MAC) [6], Discretionary Access Control (DAC) [7], and
Role-Based Access Control (RBAC) [8]. Currently, we are fac-
ing new challenges as the shared infrastructure became dynamic
and those aforementioned ACs are not flexible enough to meet
the new challenges. It became an urgent matter to engineer ac-
cess controls that can cope with the new challenges brought by
the modern computer systems. The JASON report [2] pioneered
the idea of a modern access control by defining three fundamental
principles that should be included in their design:
• Measure risk: “if you can measure it, you can manage it”.

In other words, knowing the risk associated with an event
permits a better handling.

• Establish an acceptable risk level
• Ensure that the information is tailored to the level of the ac-

ceptable risk.
An authorization mechanism that is engineered by mirroring
these guidelines can deal with the reality of today’s information
sharing platforms. A seminal paper about an access control that
follows theses guideline was proposed by NIST and titled Risk-
Adaptable Access Control (RAdAC) [3]. RAdAC is a real-time,
adaptable risk-aware access control built by a combination of
Attribute-Based Access Control [9], Policy-Based Access Con-
trol, Machine Learning, and heuristics. Six factors are indispens-
able to make RAdAC decisions:
• Operational need: this factor is one of the factors that

RAdAC borrowed from traditional access controls. It in-
volves the notion of need to know, which means that a re-
quester should have a relation with the object he is request-
ing.

• Security risk: is the cornerstone of RAdAC. This factor
requires the use of machine learning for a real time proba-
bilistic determination of risk associated to a request.

• Situational factors: sometimes the access decisions are
made depending on the actual situations; it is possible that
the Operational need outweighs the Security risk.

• Access Control Policy: as any normal AC, policies need to
be enforced. The policies should respect the mechanisms of
RAdAC by, among other things, setting the acceptable risk
level and defining the conditions on which the Operational

Need can outweigh the Security Risk.
• Heuristics: the goal is to use past access control decisions

to make present and future decisions. The utilization of past
decisions will help to better determine the Security Risk and
Operational Need and will increase the positive number of
access control decisions.

3. Related Work

To the best of our knowledge, this technique is novel as it has
not been employed by other researchers. Nevertheless, a quick
perusal over the literature of risk based access control revealed
interesting facts.

Despite the fact that cloud computing is the archetypical dy-
namic system, there is not a tremendous amount of research re-
lated to risk aware access control in cloud computing. In fact, Fall
et al. [10] and Dos Santos et al. [11], [12] are the only researchers
who are evangelizing the usage of this method in cloud comput-
ing. Fall et al. [10] proposed a semantic for adapting RAdAC [3]
in cloud computing. Unfortunately they did not propose any im-
plementation of their idea. Santos et al. [11] proposed a risk-
based access control architecture for a highly scalable cloud
federation. They demonstrated the usefulness of their proposal
through a prototype by using a combination of tools including
XACML [13]. In their other paper [12], they extended [11] by
adding three modules to the XACML 3.0 architecture. A risk
policy module that explains to the cloud service provider how the
access control must be handled. The risk engine module handles
the processing of risk policies. The risk quantification and web
services module quantifies the risk for every access request.

Cheng et al. [14] extended the Bell-Lapadula multi-level se-
curity (MLS) access control model with the concept of risk and
named their proposal FuzzyMLS. In FuzzyMLS, risk is the value
of utility loss, multiplied by its leakage probability. The leakage
probability is jointly dependent on the temptation and inadvertent
leakage probabilities. The temptation is calculated by the security
level of the subject and object, and the inadvertent leakage by a
fuzzy approach. They use different risk thresholds to make access
decisions. Ni et al. [15] proposed a risk based access control built
on fuzzy inference. They claim that the inflexibility of traditional
access control is a major inhibitor for information sharing. They
first proposed fuzzy BLP and compared it to FuzzyMLS [14].
Moreover, they argue that despite fuzzy inference being an excel-
lent solution for modern access control, it raises new issues that
have to be addressed. Particularly, the fact that, generally, risk
aware access controls are time-consuming thus malicious users
can take advantage of the time window that exists between an ac-
cess request and the risk mitigation. Further, they proposed some
algebraic adjustment to solve the issues of conjunction and dis-
junction in fuzzy inference.

Burnett et al. [16] proposed TRAAC a trust and risk aware ac-
cess control that provides a policy coverage, dynamic access con-
trol decisions, appropriate denial of risk and rights delegation.
They claim that their system fits the healthcare domain perfectly
though it can be extended to other domains. First, they defined
a zone policy model where the data owner has total control of
the privileges on his data which he can share with other users,
hence including them in the domain. The trust is defined in terms
of sharing trust and obligation trust that permits the verification
of whether the requester respected the obligations that are as-
signed to him or not. They used a probabilistic computational
trust model called Subjective Logic to formulate their trust assess-
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ment. The risk is computed in the classical manner of expected
loss in terms of unwanted disclosure. Khambhammettu et al. [17]
designed a risk aware framework for decision making where risk
is evaluated as the product of threats and impact scores. The
authorization is made by weighing the security risk against the
operational-need and security factors. The framework embraces
four approaches based on the sensitivity level of the object, the
trustworthiness of the subject, and the remaining are made of the
combination of the two aforementioned approaches. Throughout
their paper, they proposed successful instances of their proposal.
Shaikh et al. [18] proposed two methods of risk aware access con-
trol based on trust and risk. The formulation of trust and risk
depends on rewards and penalties which are updated either pos-
itively (rewards) or negatively (penalties) after an access request
decision is made (allow or deny, respectively). An increase of the
trust causes a decrease of the risk and vice versa. The method
is based on Multi-Level Security (MLS) systems [5]. Due to the
slow responses in access rights, they proposed another risk aware
access control based on Exponentially Weighted Moving Average
(EWMA) [19]. This method has similar functionalities as the first
method.

4. Risk-Adaptive Authorization Mechanism:
RAdAM

In this section, we will shed some light on our proposal. We
propose an authorization mechanism for three cloud deployment
methods: user-mode, collaboration mode and federation mode.

Our authorization mechanism respects the aforementioned
principles of RAdAC. We reiterate that, in this model, every ac-
cess request is evaluated by a risk that will be challenged against
a threshold. We introduce a number of parameters that are handy
while designing the authorizations. If the access request is al-
lowed (resp. denied), the parameters are ‘positively’ (resp. nega-
tively) updated in a way that risk will be better (resp. worse) for
the next access request. We assume the existence of a set of ob-
jects O and a set of subjects S. An object represents a piece of
data which is controlled by the system.

4.1 RAdAM: Cloud User
We are aware of the fact that in basic cloud environments, the

prominent actors are the users and the cloud administrator. We
suppose that the cloud administrator is honest so our authoriza-
tion mechanism focuses on the user. We interchangeably say user
or subject. We consider the data of the user as objects. Thus in our
authorization mechanism, we have the tuple <Subject, Object>.
As we strive to build a real time risk adaptive authorization mech-
anism, we introduce two tokens that will be used to compute the
risk associated with a request:
• α: represents the dynamic token of the user that is linked

with the object the subject is trying to access.
• β: stands for the token of the object that is being accessed.
In our system, every single access is associated with a risk cal-

culation. The risk is calculated in function of the token of the user
α and the token of the object β. Risk is represented by Risk(α, β).
To be in line with the principles of a risk adaptive authorization
mechanism, we introduce a threshold T(α, β). The threshold is

also inherently attached to the subject and that particular object.
For situational factor purposes, we also introduce two other pa-
rameters:
• The average risk, which is the sum of the risk accumulated

by the subject divided by the number of objects:
Risk(α, β)A =

∑
Risk(α, β) / n.

• The average risk threshold, which is the sum of the thresh-
olds to all subject/object risk attempts divided by the number
of objects:
T(α, β)A =

∑
T(α, β) / n.

The average risk gives us the general behavior of the user. In
case the Risk(α, β) is equal to the threshold T(α, β), the system
verifies whether the average risk is greater than or equal to the
average risk threshold to subsequently allow the access request
or deny it otherwise.

We want to clarify how the system works in detail as the pa-
rameters defined above are for generic purposes. We consider that
we have a set of subjects S. A subject si ∈ S has a set of objects
Oi = {oi1, . . . , oin}. So for an access request to object oik, the risk
is defined by Risk(αik, βik). Similarly the threshold is T(αik, βik).
The average risk would be given by:
Risk(αi, βi)A =

∑n
j=1Risk(αi j, βi j) / n. We used αi j and βi j in the

summation where i represents the user thus constant and j repre-
sent the object and is variable. αi j is the dynamic token of the
user si who has a set of objects Oi so only j varies in the summa-
tion. βi j represents the token of the object that is being accessed.
The user si is constant and j varies according to the objects.
The average risk threshold is: T(αi, βi)A =

∑n
j=1T(αi j, βi j) / n.

The authorization algorithm is highlighted in Eq. (1).

Au(si, oik) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if Risk(αik, βik) > T (αik, βik) allow

if Risk(αik, βik) = T (αik, βik) then, if

Risk(αi, βi)A ≥ T (αi, βi)A allow

otherwise, deny (1)

4.2 RAdAM: Cloud Collaboration
4.2.1 Data Owner

In our understanding, collaboration in cloud computing reflects
the idea of a subject expressing a desire to share their data with
other subjects. While collaboration creates added values, re-
source misuse and irresponsibility inflict costs and damages on
affected resources. Permission misuse and legitimate user attacks
are among the most serious threats which users in cloud comput-
ing collaboration face today. The situation is made even worse
due to the dynamic aspect of cloud computing. The authoriza-
tion mechanism that we display in this section solely concerns
the data owner. We discuss the authorization mechanism for the
other subjects in the appropriate section. The parameters we de-
fined in the previous section are carried over in this section. We
also introduce new parameters that are inherent to collaboration
in cloud computing:
• γ: represents the dynamic collaboration token of the user

that is attached to the object which the user is trying to ac-
cess.

• δ: represents the token of the object in collaboration mode.
• Risk(γ, δ): is the risk associated with a collaboration access
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request.
• T(γ, δ): the risk threshold to which the risk will be evaluated

against.
• Risk(γ, δ)A: the average collaboration risk is the sum of

the accumulated collaboration risk divided by their number:
Risk(γ, δ)A =

∑
Risk(γ, δ) / n.

• T(γ, δ)A: The average collaboration risk threshold is the sum
of the risk collaboration thresholds divided by their number:
T(γ, δ)A =

∑
T(γ, δ) / n.

The above-introduced parameters are solely used in the case
of collaboration. Similar to the previous section, Risk(γ, δ)A and
T(γ, δ)A are only used for situational factors.

For an instance of the authorization mechanism in this collab-
oration case, we still consider the user si with his set of object
Oi={oi1,. . . ,oin}. If the user wants to access the object oik, the
collaboration risk is given by: Risk(γik, δik). γik represents the
dynamic collaboration token of the user si that is attached to the
object oik that the user is trying to get access to. δik represents the
token of the object oik in collaboration mode. The collaboration
threshold is: T(γik, δik). The average collabration risk is deter-
mined by: Risk(γi, δi)A =

∑t
l=1Risk(γil, δil) / t; t being the number

of objects, of the user, that are in collaboration mode. The aver-
age collaboration risk threshold is: T(γi, δi)A =

∑t
l=1T(γil, δil) / t.

The authorization mechanism is displayed in Eq. (2).
4.2.2 Collaborative User

In this situation we assume that the data owner wants to col-
laborate with another user in the cloud and thus share their data
with them. As there are different levels of permission (i.e, read,
write or execute), we introduce risk bands that define the level of
permission to which the user belongs to.

When a user attempts an access request, the system checks first
whether he/she has the adequate collaboration parameters. The
system then proceeds and computes the access risk based on the
parameters. The result will determine to which risk band the user
belongs to, hence his/her level of permission over the data he/she
is trying to get access.

Au(si, oik,C)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Risk(αik, βik) > T (αik, βik) and,

Risk(γik, δik) > T (γik, δik)
allow

if

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) = T (αik, βik) and,

Risk(γik, δik) > T (γik, δik) then,

if Risk(αi, βi)A ≥ T (αi, βi)A allow

if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) = T (αik, βik) and,

Risk(γik, δik) = T (γik, δik) then,

if

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Risk(αi, βi)A ≥ T (αi, βi)A and,

Risk(γi, δi)A ≥ T (γi, δi)A

allow

if

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) > T (αik, βik) and,

Risk(γik, δik) = T (γik, δik) then,

if Risk(γi, δi)A ≥ T (γi, δi)A allow

otherwise, deny (2)

4.3 RAdAM: Cloud Federation
4.3.1 Data Owner

Cloud federation is understood as indicating subjects from dif-
ferent cloud providers being able to access each other’s data [20],
[21], [22]. Cloud computing federation should cope with a
heterogeneous environment and dynamic sets of users and ac-
cess requests, and are under multiple administrative domains.
There is a great deal of identity management that is involved
in this paradigm and technologies like OpenID [23] appear to be
quintessential in these settings. In our authorization mechanism,
we ignore all the noise caused by the federation and only focus
on the user who is sharing their data with another user from a dif-
ferent cloud. We believe that cloud federation incorporates both
the simple cloud and the collaboration. Therefore, the parameters
defined in the previous section are carried over to this section. To
those parameters, we add the following:
• ε: represents the dynamic federation token for the user and

the object he is trying to access.
• η: represents the token of the object that user is trying to

access.
• Risk(ε, η): represents the risk of the federation request ac-

cess.
• T(ε, η): represents the threshold of the federation risk access

to which the federation risk will be compared to.
• Risk(ε, η)A: stands for the average federation risk and is cal-

culated by dividing the sum of all the federation risks by the
number of objects: Risk(ε, η)A =

∑
Risk(ε, η) / n.

• T(ε, η)A: represents the average federation threshold risk and
is computed by dividing the sum of all the federation risk
thresholds by the number of objects: T(ε, η)A =

∑
T(ε, η) /

n.
The access request is allowed (respectively denied) if the risk

for federation is strictly greater than (respectively, strictly lower
than) the risk threshold for federation. The other parameters are
used in the situational factor.

For an instance of the authorization mechanism in this fed-
eration case, we still consider the user si with his set of object
Oi={oi1,. . . ,oin}. If the user wants to access the object oik, the
risk federation is given by: Risk(εik, ηik). εik represents the dy-
namic federation token for the user si that is trying to get access
to the object oik. ηik represents the token of the object oik that
the user si is trying to access. The federation threshold is: T(εik,
ηik). The average federation risk is determined by: Risk(εi, ηi)A =
∑z

m=1Risk(εim, ηim) / z; z being the number of objects that are in
federation mode. The average federation risk threshold is: T(εi,
ηi)A =

∑z
m=1T(εim, ηim) / z. The authorization mechanism is rep-

resented in Eq. (3).
4.3.2 Federative User

Cloud federation can be described as a cloud collaboration on
a wider scale. In fact, Tang et al. [24] designed an RBAC model
for collaboration cloud services but exclusively used cloud feder-
ation, throughout their paper, to test their solution. In our system,
a data owner in cloud federation has the right to allow a user
from another cloud (federative user) to have access to their data.
In this case, the data owner decides the risk level (user token and
object token) of the federative user and can, at any moment, re-
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voke their rights. The authorization mechanism for the federative
user works as in Eq. (2).

Au =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) > T (αik, βik) and,

Risk(γik, δik) > T (γik, δik) and,

Risk(εik, ηik) > T (εik, ηik)

allow

if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) = T (αik, βik) and,

Risk(γik, δik) > T (γik, δik) and,

Risk(εik, ηik) > T (εik, ηik)

then, if Risk(αi, βi)A ≥ T (αi, βi)A allow

if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) > T (αik, βik) and,

Risk(γik, δik) = T (γik, δik) and,

Risk(εik, ηik) > T (εik, ηik)

then, if Risk(γi, δi)A ≥ T (γi, δi)A allow

if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) > T (αik, βik) and,

Risk(γik, δik) > T (γik, δik) and,

Risk(εik, ηik) = T (εik, ηik)

then, if Risk(εi, ηi)A ≥ T (εi, ηi)A allow

if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) = T (αik, βik) and,

Risk(γik, δik) = T (γik, δik) and,

Risk(εik, ηik) > T (εik, ηik)

then, if

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Risk(αi, βi)A ≥ T (αi, βi)A and,

Risk(γi, δi)A ≥ T (γi, δi)A

allow

if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) = T (αik, βik) and,

Risk(γik, δik) > T (γik, δik) and,

Risk(εik, ηik) = T (εik, ηik)

then, if

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Risk(αi, βi)A ≥ T (αi, βi)A and,

Risk(εi, ηi)A ≥ T (εi, ηi)A

allow

if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) > T (αik, βik) and,

Risk(γik, δik) = T (γik, δik) and,

Risk(εik, ηik) = T (εik, ηik)

then, if

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Risk(γi, δi)A ≥ T (γi, δi)A and,

Risk(εi, ηi)A ≥ T (εi, ηi)A

allow

if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Risk(αik, βik) = T (αik, βik) and,

Risk(γik, δik) = T (γik, δik) and,

Risk(εik, ηik) = T (εik, ηik)

then, if

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Risk(αi, βi)A ≥ T (αi, βi)A and,

Risk(γi, δi)A ≥ T (γi, δi)A and,

Risk(εi, ηi)A ≥ T (εi, ηi)A

allow

deny otherwise (3)

4.4 Outsourcing Data without Outsourcing Control
It is common knowledge that cloud computing prospective

adopters are not comfortable knowing that the cloud service
provider can access their data at anytime. This explains why
many financial institutions prefer to build their own private cloud

Fig. 1 RAdAM/XACML architecture.

instead of using the public clouds. In this Section, we show that
our model can be used to limit the power of the cloud adminis-
trator over the user’s data. In a perfect world, the cloud admin
should be limited to managerial rights over the user’s data. We
can use the risk bands as in collaboration to allow the user to
have more power over his data that the cloud provider. But the
concern that lingers is that the cloud admin administers the cloud
without being able to have a minimal access to the users data.

4.5 Architecture of RAdAM
We use XACML 3.0 to leverage the architecture for our au-

thorization mechanism which is depicted in Fig. 1. XACML is
an extensible, XML-encoded language that provides format for
authorization policies and access control decision request and re-
sponses. XACML 3.0 was approved as an OASIS standard on 22
January 2013 [13]. It includes a non-normative data flow model
that describes the major components involved in processing ac-
cess requests. Prior to any access request, the policy adminis-
tration point (PAP) writes policies and policy sets, that represent
the complete policy for a specified target, and transmits them to
the policy decision point (PDP) (step 1). Via the cloud API, the
user performs an access request (step 2). The policy encryption
point (PEP) intercepts the request and forwards it to the context
handler (step 3). The context handler converts the request into
an XACML request contest and sends it to the PDP (step 4). The
PDP requests to the context handler any supplemental attributes
it might deem necessary to correctly evaluate the XACML re-
quest (step 5). The context handler requests the attributes from
a policy information point (PIP) (step 6). The PIP retrieves the
requested attributes which include, among other things, all the
parameters that we introduced in our authorization mechanism
and then transmits them to the context handler (steps 7–8). The
context handler forwards the attributes to the PDP, and can op-
tionally include the resource (steps 9–10). The PDP sends the
attributes to the RAdAM module for evaluation (step 11). After
evaluation as per of our authorization mechanism, the RAdAM
module returns the decision to the PDP, which forwards it to the
context handler (steps 12–13). The context handler translates the
response to the native response format of the PEP and then sends
it to the latter (step 14). The PEP transmits the response to the
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cloud API and fulfills the obligations, which include updating the
tokens of the users (steps 15–16).

5. RAdAM Based on Fuzzy Inference System

Fuzzy inference systems (FIS) derive from fuzzy logic. Profe-
sor L.A. Zadeth of the University of California Berkley invented
fuzzy logic in 1965 [4]. Fuzzy logic is a multivalued logic that
permits intermediate values to be expressed in conventional eval-
uations like true/false, yes/no, high/low, etc. Fuzzy systems are
an alternative to traditional notions of set membership and logic.
The very basic notion of fuzzy systems is a fuzzy set. The con-
cept of fuzzy set extends the concept of a classical crisp set. A
classical crisp set is a collection of objects in a given range with
a sharp boundary, which means that a member either belongs to
that set or does not. The fuzzy set is fundamentally a more flex-
ible set as it allows its members to have a smooth boundary i.e.,
a member can belong to a set to some partial degree. The fuzzy
set convincingly provides interpretations that are similar to a hu-
man being thought processes. The implementation of fuzzy logic
requires the three following steps:
• Fuzzification: the first step to apply a fuzzy inference sys-

tem. It involves two processes: derive the membership func-
tions for input and output variables and represent them with
linguistic variables. This process is equivalent to convert-
ing or mapping classical set to fuzzy set to varying degrees.
The membership function is a graphical representation of
the magnitude of the participation of each input. It asso-
ciates a weight with each of the inputs that are processed,
defines functional overlap between inputs, and ultimately de-
termines an output response. The rules use the input mem-
bership values as weighting factors to determine their influ-
ence on the fuzzy output sets of the final output conclusion.
In practice, membership functions can have a multitude of
different types, such as the triangular waveform, trapezoidal
waveform, Gaussian waveform, bell-shaped waveform, sig-
moidal waveform and S-curve waveform. The exact type
depends on the actual applications. A triangular or trape-
zoidal waveform should be utilized for systems that necessi-
tate significant dynamic variations in a short period of time.
Systems that require a very high control accuracy are better
suited with a Gaussian or S-curve waveform.

• Fuzzy control rules: The fuzzy classifiers represent one ap-
plication of fuzzy theory. Expert knowledge is used and can
be expressed in a very human-like way using linguistic vari-
ables, which are described by fuzzy sets. The expert knowl-
edge can be formulated as rules:
IF A is X AND B is Y THEN C is Z
Linguistic rules describing the control system consist of two
parts; an antecedent block (between the IF and THEN) and
a consequent block (following THEN).

• Defuzzification: The two steps explained above constitute
the fuzzy inference system. The fuzzy conclusion (output)
is a linguistic variable and needs to be reverted back to the
crisp value: the process is denominated defuzzification.

Fig. 2 Membership functions of the object sensitivty.

Fig. 3 Membership functions of the subject clearance.

5.1 RAdAM Risk Estimation in FIS
In order to explain RAdAM risk estimation in FIS, it is helpful

to consider the following example. Let’s suppose that we have a
tuple <subject, object> in a cloud environment. The objects are
defined by their sensitivity: unclassified (U), public trust (PT),
confidential (C), secret (S), top secret (TS), and core secret (CS).
Similarly, the different clearance levels for the subjects are as fol-
lows: unclassified (U), public trust (PT), confidential (C), secret
(S), top secret (TS), and core secret (CS). As stated in previous
sections, the risk is calculated in function of the subject clearance
and object sensitivity and can be valued as negligible (N), low
(L), medium (M), high (H), and very high (VH). The first step
of the process of FIS consists of defining the input and output
variables of our system. The inputs are the object sensitivity and
the subject clearance and the output is the risk. We have decided
to represent the clearance of the user in a trapezoidal membership
function and the object sensitivity in a combination of trapezoidal
and triangular membership functions. The risk is represented as a
Gaussian membership function. The different membership func-
tions are depicted in Fig. 2, Fig. 3, Fig. 4. We subsequently estab-
lish the fuzzy classifier (if . . . then), which is shown in Table 1.
Different values of the risk are evaluated in Fig. 5 in function of
the subject clearance and the object sensitivity.
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Table 1 List of the rules for RAdAM risk evaluation.

S/O U PT C S TS CS
U L M H VH VH VH
PT N L H H VH VH
C N L L H H VH
S N L L L H VH
TS N N N M L H
CS N N N L L M

Fig. 4 Membership functions of the risk level.

Fig. 5 RAdAM risk evaluation.

Fig. 6 Membership functions of RAdAM decisions.

5.2 RAdAM Decision Evaluation in FIS
The same process is conducted in order to evaluate the deci-

sions of our authorization mechanism. It is important to note that

Fig. 7 RAdAM decision evaluation.

the threshold is also a risk. In this fuzzy system, the risk and
the threshold are the inputs and the decision (allow or deny) is
the output. The output is considered a constant as represented in
Fig. 6. The schema of the decision results is depicted in Fig. 7.
We can clearly see the decisions depending of the values of the
risk and the threshold.

6. Enforcement of RAdAM with Vulnerability
Based Authorization (VBAM) Mechanism

Until now, researchers in the access control fields have not
thought of using vulnerabilities score to determine access deci-
sions. We propose such solution by introducing Vulnerability-
Based Access Control. The modus operandi is to tailor an access
to an object to the vulnerability level of both the requester and the
object that is being requested. In traditional access control, users
are granted access to the objects regarding the privileges (read,
write, or execute). We contend that these types of access controls
are obsolete in modern computer systems like cloud computing.
For instance, let us say we have a user who has the privilege to
read an object. In simplistic thinking we might think that the
user has a low privilege over the object because he can only read
it. But the reality is that, if the object has a vulnerability with a
high impact, the user, if malicious, can exploit the vulnerability
and damage the system. That is the reason why we are advo-
cating the usage of a Vulnerability (Risk) Based Authorization
Mechanism (VBAM) where the users access to an object will be
decided by the security level of the user and the average vulner-
ability score of the object that is being accessed. In our model,
there is a need to have a standard vulnerability framework. The
objects are classified according to their vulnerability score: risk
level 1, risk level 2, . . . , risk level n. The users of the system
are also classified according to the same multi-level security sys-
tem. Whenever a user attempts an access, the system checks the
security clearance of the user before computing the average vul-
nerability score of the object that is being accessed. If the user
has a clearance level higher or equal to the clearance level of the
object then the access is granted, otherwise it is denied. In this
situation, if a user can only access objects with a low risk level,
and if they succeed to exploit the vulnerability, then the damage
would not be significant.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

6.1 Practical: VBAM with the Common Vulnerability Scor-
ing System

The basic premise of the traditional MLS Bell Lapadula model
is to determine if a subject is trustworthy enough and has the le-
gitimate need-to-know to access an object. A subject is usually a
person or an application running on behalf of a person. An object
is usually a piece of information such as a file. Each subject or
object is tagged with a security label which represents the sensi-
tivity level. A subject’s sensitivity level reflects the degree of trust
placed on the subject. An object sensitivity level indicates how
sensitive the object is or the magnitude of the damage incurred by
an unauthorized disclosure of the object. A subject can read an
object if their label dominates the object’s label

6.2 NVD and CVSS
The National Vulnerability Database (NVD) [25] is a publicly

available database for computer-related vulnerabilities. It is the
property of the United States (US) government, which manages
it throughout the computer security division of the U.S. National
institute of Science and Technology (NIST). The NVD is also
used by the U.S. government as a content repository for the Secu-
rity Content Automation Protocol (SCAP). The primary sources
of the NVD are as follows: Vulnerability Search Engine (Com-
mon Vulnerability Exposure (CVE) and CCE misconfigurations),
National Checklist Program (automatable security configuration
guidance in XCCDF and OVAL), SCAP and SCAP-compatible
tools, Product dictionary (CPE), Common vulnerability Scoring
System for impact metrics, and Common Weakness Enumeration
(CWE).

The Common Vulnerability Scoring System (CVSS) [26] is
a vendor-neutral open source vulnerability scoring system. It
was established to help organizations to efficiently plan their re-
sponses regarding security vulnerabilities. The CVSS is com-
prised of three metric groups classified as base, temporal, and
environmental. The base metric group contains the quintessential
characteristics of a vulnerability. The temporal metric group is
used for non-constant characteristics of a vulnerability, and the
environmental metric group defines the characteristics of a vul-
nerability that are tightly related to the user’s environment.

6.3 VBAM and CVSS
We aim to make use of the CVSS to demonstrate the suitability

of our proposal. We suppose that an OpenStack environment was
installed in an Internet Engineering laboratory; we have to use
VBAM to determine which group of users (faculty, Ph.D. stu-
dents, master students) can access to which OpenStack services
in the cloud environment. OpenStack is the most popular open-
source cloud management platform. In this study, we consider ten
of its services, which are briefly described hereafter. Dashboard,
also called Horizon (H), provides a web portal for the manage-
ment of the underlying OpenStack services. Compute or Nova

(N) facilitates the management of OpenStack’s instances. Net-
working, codenamed Neutron (Ne), this service, not only permits
network connection between OpenStack’s services, but also al-
lows users to configure networks by putting an API into their dis-
position. Object Storage helps with the storage and retrieval of

Table 2 Vulnerabilities of the different services of OpenStack.

H G Ne N K S C T Ce H
AS 4.3 4.4 5.1 4.3 4.8 5.3 3.4 2.1 3.5 4.1

arbitrary unstructured data objects. It is also known as Swift (S).
Block storage or Cinder (C) provisions persistent block storage
to running instances. The identity service is responsible of the
identity management (authentication, authorization, endpoints)
for the rest of OpenStack’s services. This service is codenamed
Keystone (K). The image service, codenamed Glance (G), takes
charge of the storage and the retrieval of virtual machine disk im-
ages. Telemetry, codenamed Ceilometer (Ce), helps monitoring
and metering the business aspects of OpenStack like billing or
benchmarking. Orchestration, or Heat (H), facilitates the orches-
tration of multiple composite cloud applications. The Database
as a Service, named Trove (T), provides a scalable and reliable
cloud database provisioning functionality.
We know that the CVSS provides vulnerability scores that range
between 0 to 10 and following the NVD severity ranking we have:
LOW (0 – 3.9), MEDIUM (4 – 6.9), HIGH (7 – 10). We apply
the same classification to the users of the laboratory to get the
following:
• Master students→ LOW
• Ph.D. students→MEDIUM
• Faculty members→ HIGH

This means that users with a security level of LOW can only
access objects with a similar security level. Users with a secu-
rity level of MEDIUM, can access objects with security levels
of MEDIUM and LOW. Finally, users with a security level of
HIGH, can access all the services. We conducted a static method
by retrieving from the NVD all the vulnerabilities of the differ-
ent services of OpenStack that are in play in this paper, and their
respective vulnerabilities. These details are recorded in Table 2.
The last row of the table represents the average score (AS) of the
vulnerabilities of the different services. Henceforth, a straightfor-
ward analysis of the table reveals that VBAM allows the faculty
members to access all the services while the master students can
only access Cinder, Trove and Ceilometer.

7. Discussion

In this section, we elaborate on different scenarios in which
RAdAM could be used. Furthermore, we propose a solution to
thwart some of the limitations of RAdAM.

In this research, our goal is to focus on the algorithm we pro-
pose for a risk aware authorization mechanism. Risk aware au-
thorization mechanisms are required for modern systems that are
highly dynamic; cloud computing is an example. We proposed
different types of algorithms that, we deem, fit perfectly the en-
tire ecosystem of cloud computing. We start from the principle of
risk aware access decisions that every access request is dynami-
cally evaluated. In the case of simple cloud scenario, where we
consider that a user requests the basics services of a cloud service
provider, we proposed a simple algorithm that encompasses all
the intricacies of an access decision. We introduced parameters
that are used in the algorithm for making the decision. To the best
of our knowledge, we are the first to introduce the average pa-
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rameters (average risk and average risk threshold) for situational
factors. Additionally, many researchers define a risk formula for
a given user, and the access decision uses the risk value regardless
of the object that the user is trying to get access to and they also
have the same threshold for all the objects that a particular user
tries to get access to. In our model, every object has a risk that
is associated to it. We contend that this is a more fine-grained
type of authorization mechanism that can provide to a user dif-
ferent access levels to different objects. The average parameters
we defined give an overall behavior of the user. Our algorithm
is also versatile as we showed how it could be employed in col-
laboration and federation in cloud computing. We believe that
the main weakness of RAdAM resides in the fact that we did not
take into account many aspects of cloud federations, especially
with regards to federated identity management. In the future, we
will try to find how to integrate RAdAM in federation mode with
federated identity management. The main issue with risk aware
access control in general is the cost of computation. Our proposal
does not solve the issue. The excitement about risk-aware access
control revolves around the fact that in each access request, the
risk will be evaluated. This certainly helps in making better ac-
cess decisions but it is costly in terms of resource consumption.
Furthermore, as stated by Ni et al. [15], an attacker can launch
attacks in the time window between the access request and risk
mitigation. In the future, we will try to see how we can leverage
the computing power offered by cloud computing to resolve this
issue. We believe that if our proposal is implemented in a system
with ‘unlimited’ computer power, as cloud computing offers, the
issue will become obsolete.

We also proposed VBAM, a vulnerability (or risk) based autho-
rization mechanism that can cope with the dynamicity of modern
computer systems like cloud computing. We contend that the fu-
ture of access control revolves around tailoring the access deci-
sions to the vulnerability score of the objects. We are aware that
most attacks are the results of exploited vulnerabilities. There-
fore, to limit the damages of a probable attack, we must adopt
VBAM and other similar authorization mechanisms. One of the
main issues of risk-aware access control in general is computa-
tional cost: our proposal is not an exception to that rule. Indeed,
the fact that the system is at work every time a user makes a re-
quest results in high resource usage. The second point of con-
tention relates to how our method can be used in an environment.
We contend that it can be used in a kind of 2-step access control.
Where VBAM will be used as primary authorization mechanism
and a second authorization mechanism will decide whether the
user can read write or execute the objects that he/she is allowed
to get access to by VBAM. One might argue that our proposal
does not solve the problem of authorization mechanism because
a user with a high security level can exploit a vulnerability that
has an equally high damage factor. While this is true, we argue
that, in our system, users with a high security level are trusted
users and they should be a limited number. Therefore detecting
the culprit in any of these types of attacks is easy, as we already
know the possible damages that each user can make. The same
applies for the other security levels. As future work, we seek to
implement our system in combination with the XACML frame-

work in order to provide a more flexible authorization mechanism
for the cloud.

8. Conclusion

We proposed a risk-aware authorization mechanism flexible
enough to deal with the dynamicity of cloud computing. We pro-
posed algorithms for simple user access, collaboration and feder-
ation modes. To complement RAdAM, we proposed a variation
of MLS model where the risk is represented by the vulnerability
score of the objects. We showed the applicability of our methods
by using fuzzy inference systems for RAdAM and by proposing
an OpenStack use case for VBAM. We contend that a combina-
tion of authorization mechanisms similar to the one we proposed
in this paper represents the future of highly dynamic systems.
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