
Electronic Preprint for Journal of Information Processing Vol.24 No.2

Regular Paper

A Practical and Efficient Overhearing Strategy for Reliable
Content Distribution over

a Single Hop Ad Hoc Network

Hiroaki Yokose1 Koji Nitta1 Satoshi Ohzahata1,a) Toshihiko Kato1

Received: June 29, 2015, Accepted: December 7, 2015

Abstract: Nowadays, wireless LAN is equipped in most portable devices and widely deployed, and then we can com-
municate over wireless link with low cost. However, when the same content is simultaneously downloaded by several
terminals with unicast in a wireless LAN, the bandwidth must be divided among the terminals and the download speed
is reduced. With using the broadcast nature of wireless media, pseudo multicasting methods, which overhear the uni-
cast flow to realize multicast like communication, have been proposed. In the pseudo multicasting methods, since parts
of the content is obtained by overhearing the TCP/UDP flows of a specific content going to other terminals in a wireless
LAN, and the server need not send the content for each client repeatedly. These methods enable to realize multicasting
with a practical way. However, redundant unicast traffic is still generated because the receivers do not obtain contents
via overhearing in an efficient way. Based on the pseudo multicasting, we propose an efficient, flexible and reliable
content distribution method over single hop wireless ad hoc network in this paper. In the proposed method a content
is divided into pieces and the server distributes it according to the download status of each receivers at the applica-
tion level. To accelerate downloading, we propose a method for selecting the piece and the terminal for transmission
taking the effect of network coding for efficient overhearing. We developed a testbed and confirmed that the proposed
scheduling accelerates the download speed even when the communication speed of each terminal is different.

Keywords: ad hoc network, content distribution, overhearing

1. Introduction

Communication speed in wireless LAN has been increasing
each year, and a large file is often shared among tablet devices
over wireless LAN. However, when many terminals simultane-
ously intend to download a specific large file via unicasting in a
wireless LAN, the download speed is reduced even though the
file is being downloaded via an identical wireless network. This
is because the bandwidth of the broadcast media has to be shared
among the terminals. In addition, since the same content is re-
peatedly downloaded, the bandwidth is consumed by the redun-
dant traffic. For these reasons, a method for accelerating the dis-
tribution of content is required for a wireless LAN.

When a specific content is distributed to many terminals by
unicast, the content has to be distributed multiple times. To re-
duce such redundant traffic, the reliable multicasting [1], [2] is
proposed for wireless networks. However, when wireless condi-
tions at the receivers are different, the transfer speed for all ter-
minals is limited by the speed of the slowest terminal. So as not
to reduce the transfer speed for the multicast terminals, in the hy-
brid approach, the server also sends the same data using unicast to
the terminals operating under bad conditions [2]. Even though a
multicasting in the transport layer has to rely on the media access

1 The University of Electro-Communications, Chofu, Tokyo 182–8585,
Japan

a) ohzahata@is.uec.ac.jp

control method in a wireless network, effect of MAC retransmis-
sion is not well considered.

Farther improve the problems in a practical way, pseudo mul-
ticast methods [3], [4] are proposed to solve the problems that a
multicast cannot consider wireless conditions for each receiver
and the retransmission control of IEEE 802.11 MAC. In the
pseudo multicast, a target node is selected as a destination of uni-
cast flow, and the other terminals downloading the same content
overhear the unicast flow. Since the pseudo multicast commu-
nicate with a unicast flow, retransmission controls of MAC and
TCP are effectively used and the communication speed of IEEE
802.11 physical layer can be selectable for wireless conditions of
the terminal by selecting the target node adaptively. The pseudo
multicast effectively works because a wireless link is error-prone
and each terminal has different wireless conditions in general.
However, it is difficult to effectively select the target node while
considering the range of the overhearing and MAC transmission
speed. In addition, the above methods rely on the sequence num-
ber of the transport layer for the reliability of the byte stream, and
then all the terminals have to simultaneously start downloading at
the beginning of the content distribution.

Ditto [5] and REfactor [6] apply the content piecing to a wire-
less network to improve the network utilization. In these meth-
ods, the overhearing of a wireless link is used to cache content
pieces at the nodes in the communication route or the terminal

A part of this paper is presented in AINTEC 2013.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

when pieces of the content are downloaded by the client termi-
nal in the router. Then, these cached pieces can be reused when
these are repeatedly requested by the clients along the route to
reduce the redundant traffic in a multi-hop wireless network or
a wireless LAN. The content piecing also enables to release the
restriction of the byte stream communication whereby the clients
have to join the multicast group from the beginning of a content
download. However, since these methods do not consider a piece
diffusion strategy in the wireless network to accelerate download-
ing, overhearing is not used efficiently.

BitTorrent [7] is a popular peer-to-peer content sharing system,
and enables the distribution of large files among many terminals.
In BitTorrent, a file to be downloaded is divided into small pieces
in the application layer and these pieces are exchanged among
the recipients. Since the parallel download is realized by the ex-
change of file pieces among terminals, the terminals can get the
higher throughput than that achievable with download from the
server. In addition, file piecing provides flexibility and reliabil-
ity in downloading. The client need not download a file from
the beginning, and can download a file at different timings and
from different positions within the file. Since completeness of
the pieces is checked by their hash value, the reliability can also
be served at the application layer level. However, since BitTorrent
constructs an overlay network in the application layer, the content
is delivered by unicast. Then, when BitTorrent transfers a content
over a wireless LAN, a collision occurs in MAC layer if multiple
terminals transmit a data frame at the same time. Therefore, the
terminals are not allowed to perform a simultaneous communica-
tion in the communication range under a CSMA/CA control, and
the parallel downloading does not work effectively [8].

Network coding [9] improves the throughput because the pack-
ets are XOR coded from multiple packets, and the number of
transferred packets is decreased. For an efficient communication
in a wireless network, network coding can be added to the re-
transmission control of the MAC layer to reduce the number of
retransmissions [10], [11]. However, when the network coding
effectively works, the coded frames have to be correctly received
at all receivers by broadcasting. Then, since the communication
conditions in a wireless network do differ among receivers, net-
work coding in the MAC layer for a wireless network does not
effectively work in general.

In this paper, we propose a reliable content distribution method
based on the pseudo multicast over single hop wireless ad hoc
network*1, whose basic idea was presented in Ref. [12]. The
method is proposed to share contents (documents, photos, videos
and so on.) among a group of up to a few dozen terminals via
wireless LAN, and supposes that the receivers start download-
ing before ending the download of the other terminals to realize
simultaneous downloading of a part of the content via overhear-
ing efficiently. In the method, since the content is divided into
small pieces in the application layer and is sent and managed
in units composed of some pieces, terminals can asynchronously

*1 References [2], [3], [4] suppose the infrastructure mode of wireless LAN
and a server multicasts via single AP or multiple APs, but our method
supposes that a content is downloaded with ad-hoc mode without infras-
tructure.

download using file piecing, and the method can be adapted eas-
ily to different wireless conditions for multiple terminals because
each communication is controlled by the TCP unicast. However,
we found that there were limitations to how much improvement
can be achieved when each terminal needs to download different
pieces, and the previous method cannot use the bandwidth of the
wireless network efficiently. Then, we propose piece scheduling
to allow adaptation when the wireless conditions of the terminals
are different and each terminal starts downloading at a different
timing, and also add network coding in the application level to the
above mentioned method. The proposed method is implemented
in a testbed and the evaluation results show its effectiveness.

This paper is organized in as follows. Section 2 shows an
overview of the proposed method, and the proposed scheduling
methods are described in Section 3. Section 4 evaluates the pro-
posed method in testbed environments, and we discuss some is-
sues of the proposed method in Section 5. Finally, Section 6 con-
cludes this paper.

2. Content Distribution with File Piecing and
Overhearing

2.1 Overview
In multicast or broadcast methods, a content is simultaneously

transferred to many terminals with the broadcast nature of a wire-
less media. However, these methods cannot work effectively be-
cause conditions of wireless communication are different for each
terminal. Then, pseudo multicast methods [3], [4] improve prob-
lems of multicasting by overhearing the unicast flow because a
retransmission control and a transmission speed control of MAC
protocol for unicast can be used. Then, the transfer speed of the
physical layer can be adjusted with considering the communica-
tion quality of the receivers. However, there are still unsolved
problems below.
Problem 1: The terminals cannot join content downloading at

the middle of the communication of the other terminals be-
cause a byte stream is used as the data structure of the com-
munication and a part of the content cannot be distinguished
in the stream.

Problem 2: In case of downloading the same content, each ter-
minal does not always request the same part of the content
because timings of joining content downloading are different
for each terminals. This means the same part of the content
has to be delivered repeatedly and generates redundant traf-
fic.

Problem 3: A pseudo multicast method employs the target
node as the destination of the unicast flow. However, it is dif-
ficult to effectively select the target node because the trans-
mission range and the transmission speed depend on com-
munication conditions of the target node, and then the selec-
tion method affects the performance of content delivery.

To solve the problems 1 and 2, we proposed a method that
uses file piecing and overhearing to produce a reliable content dis-
tribution over single hop wireless ad hoc network environments
even when communication conditions at each terminal are differ-
ent [12]. The proposed method is based on the pseudo multicast
method, and a content (e.g., software or video) is divided into

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 1 Overview of the proposed method.

pieces, and sends them by TCP. The terminals receive their own
pieces and also overhear and use pieces addressed to other termi-
nals to realize the pseudo multicast (Fig. 1). In addition, network
coding is used to accelerate file downloading. Based on them,
the destination and piece selection scheduling methods are pro-
posed to solve problem 3. Overview of the proposed method is
described in this section, and the scheduling method is shown in
Section 3.

2.2 Pseudo Multicast with Content Piecing
In a wireless ad hoc network environment, the communication

quality at each terminal differs because of the distance or obsta-
cles between the server and the terminals. However, the content
server must control the transfer rate and the reliability so as to
produce a higher throughput. In the conventional pseudo multi-
cast method, a multicast-like communication is achieved by over-
hearing the unicast flow of the other terminals. Since TCP is used
for the communication, we can also use the retransmission mech-
anism, congestion control and reliability control of TCP, and Auto
Rate Fallback (ARF) and retransmission mechanism in the MAC
layer as they are. However, since TCP sends a byte stream and
the sequence number starts with a random number, the overheard
data’s position in the file cannot be specified in the transport layer,
and this fact produces Problems 1–3 in Section 2.1.

In our method, a file is divided into pieces and an application-
level header is added to specify the position. With using informa-
tion of the content pieces, the terminals report the piece posses-
sion status to the server, and the server thereby obtains informa-
tion on the piece possession, the download speed and the over-
hearing relations among the terminals. Using this information,
the clients do not have to simultaneously start a content down-
loading at the beginning (solution for Problems 1 and 2). Then,
the server can improve piece transfer scheduling; i.e., which piece
should be addressed as the destination terminal, taking the over-
hearing status into consideration (a solution for Problems 2 and
3).
2.2.1 Asynchronous Download by Content Piecing

When users download a file, they start the download at different
times and their communication environments are usually different
in general. However, since the multicast protocol in the transport
layer sends out content as a byte stream, all the terminals have
to start downloading the content from its beginning at the same
time.

In our method, since a file is divided into small pieces in the
application layer and distributed by TCP unicast, these pieces are
adequately delivered by unicast controls of each layer even for
a different start timing of download and different wireless con-
ditions for each terminal. To identify the pieces from overheard
frames, pieces are sent with a header. The header includes an
identifier for the piece, the length of the piece, the position of the
piece in the file, and the destination. Since the terminals down-
load a file in application level pieces, the terminals can request
different pieces of it at different times. In addition, the server ob-
tains requests for pieces and a notification of the pieces received
at the terminals. Such information is useful when the server se-
lects pieces to transfer for an efficient use of the bandwidth.

To further improve the efficiency, we apply network coding for
the pieces in the application level. Since a reliable byte stream is
delivered by TCP or a part of a reliable byte stream is checked by
the hash map for pieces, network coding effectively works even
for the overhearing terminals with different wireless conditions.
2.2.2 Reliability Control by Content Piecing

For a reliable communication, retransmission and congestion
controls are implemented on the MAC or TCP layer, and these
controls and the pseudo multicast can easily use these controls of
the unicast. In the proposed method, the destination terminal of
TCP confirms the reliability of received data, and the other over-
hearing terminals can check the reliability of the byte stream of
overheard data by the sequence number and checksum of TCP
without additional message exchanges. In addition, since the
server distributes a file as pieces at the application level, all the
terminals can correctly identify the byte streams received and re-
quest pieces that were not received from the server.

2.3 Network Coding for Piecing
We apply network coding [9] to improve the efficiency of our

content distribution with reducing the number of retransmissions.
The network coding is applied for the pieces, and XOR is calcu-
lated for each correspondent bit for pieces. In the case that the
server sends pieces of P1 and P2 but the receiver cannot receive
P2, the server has to retransmit P2. Then, the sender makes an
XORed piece as in Eq. (1), and sends PN with the information of
the piece numbers as the header to the receiver.

P1 ⊕ P2 = PN (1)

Then, the receiver calculates XOR to get P2 as in Eq. (2)

PN ⊕ P1 = P2 (2)

This method effectively works in the case that some of the re-
ceivers do not correctly receive pieces P1 or P2 because PN piece
will be the same effect of a retransmission control for both of
the pieces P1 and P2 with single transmission. However, since
the coded piece of PN has to be received by all the receivers, the
server sends the coded piece with the lowest transmission speed
of the receivers. This control also increases a range of overhear-
ing and effect of network coding.

2.4 Procedures of Downloading
In the proposed method, the terminal establishes a TCP con-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 2 Communication procedures.

nection and downloads pieces via the connection directly, and
also via the overhearing. The terminals repeat the direct piece
reception and the reception of overhearing until completion of
the download. These procedures are described in Fig. 2.
(1) A TCP connection is established between the server and the

terminal.
(2) The terminal requests to join the group receiving the file. If

the server accepts the request, a unique ID is given to the
terminal.

(3) The terminal requests information on the file including the
overall length, the piece length and a hash map for the piece
validation, and then the server replies to the request.

(4) The server sends a list of terminals that are joining the
group, and also sends information of the new terminal (ter-
minal ID, IP addresses, port numbers) to the other terminals.

(5) The terminal requests pieces from the server.
(6) The server decides which pieces to send and their destina-

tion according to the piece requests and the piece possession
status and overhearing conditions of the terminals, and then
sends the pieces. As long as no terminal joins, leaves or re-
quests information, the server continues to send pieces.

(7) The terminal overhears the pieces using information from
the server.

(8) The terminal notifies its overhearing status periodically.
Since the destination address is added to each piece distribu-
tion, the overhearing terminal can get a success ratio of over-
hearing for each terminal in the group. Then, if the constant
time is elapsed without the overhearing notification from the
terminal, the server determines that the client failed to over-
hear (overhearing timeout).

(9) The terminal repeats requesting pieces, receiving them and
notifying its status until the terminal has received all pieces
of the file. When the terminal finishes downloading, the ter-
minal leaves the group, and the server notifies this leaving to
the other terminals.

Fig. 3 Control procedures for overhearing.

2.5 Pseudo Multicast Procedures of Overhearing
In the proposed method, the terminals overhear frames for the

other terminals that are downloading the same file. To realize
pseudo multicast, the terminals has to obtain frames to the con-
tent in downloading. Thus, practical multicast or broadcasting is
realized by overhearing unicast flows that deliver the same con-
tent ID in the application. For this reason, the server makes a
group of unicast communications for the downloading content,
and periodically reports the information to the receiver terminals.
The receiver terminal selects frames for the content, reconstructs
the TCP byte stream, and extracts the content pieces from it.

Figure 3 shows the overhearing procedures in the terminal.
The terminal receives a message that includes information for
overhearing from the server (Procedure (1), Procedures (1)–(3)
in Fig. 2). The client application in the terminal controls filters
on each layer according to the information from the server so as
not to pass frames/pieces that are not needed to the upper layer
(Procedure (3)–(6)). The TCP byte stream is reconstructed by
the sequence number and segment length for each flow (Proce-
dure (7)). Provided the sequence number is continuous, the re-
constructed stream is correctly received without loss. If a gap
is found in the overheard byte stream, interruption of the byte
stream is notified to the upper layer because the terminal cannot
request a retransmit by TCP. The reconstructed TCP byte stream
is sometimes discontinuous. However, if the byte stream is valid,
the terminal can obtain some pieces from the byte stream, and
then these pieces are passed to the application (Procedure (2) and
(8)). The application saves the pieces if the pieces are a part of a
downloading file and have not yet been received. Then, the termi-
nal periodically notifies its status with respect to received pieces
to the server (procedure (9)).

3. Scheduling for Piece and Terminal Selection

In the pseudo multicast methods, the server selects the receiver
of the unicast as the target node [3], [4]. The target node has to
be selected carefully because the transfer ratio of physical layer
affects the communication quality such as the transmission range,
the error ratio, and the retransmission ratio. In addition, our

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

method divides the content into pieces when these are delivered to
terminals, and some of the terminals often need the same pieces
simultaneously. Then, the piece selection of the proposed method
also affects the number of pieces effectively used in the terminals
because the number of terminals requesting the pieces is different
for each piece. The destination terminal selection and piece selec-
tion have to be decided during scheduling. For the above reasons,
the server selects a piece and a terminal for sending, taking the
piece request status and the piece reception status via overhear-
ing into consideration. In the following, we show three methods
for selecting a destination terminal and a piece selection when the
server transfers the piece.

3.1 Method A: Simple Selection

Algorithm 1 Simple scheduling.
� k ← 0 initialization.

� Select a terminal in round robin manner.

Tdest ← Terminals[k % Terminals.length]

k ← k + 1

scoremax ← 0

for i = 0 to Tdest.Pieces.length−1 do

if Tdest.Pieces[i] = ‘requested’ then

s← 0 � s is # of terminals requesting piece i.

for j = 0 to Terminals.length−1 do

if Terminals[j].Pieces[i] = ‘requested’ then

s← s + 1

end if

end for

if s > scoremax then

pid ← i � Select piece with maximum s.

socremax ← s

end if

end if

end for

return Tdest, pid � Destination: Tdest, Piece ID: pid

In method A, the destination terminal is selected in a sim-
ple round robin manner, and the method is described in Algo-
rithm 1 [12]. The sender selects the piece which has the largest
number of requests from the terminals, and the piece has to be
required by the terminal selected as the destination. In this pro-
cess, each terminal is assigned at least 1/N of the total receiving
opportunities (N is the number of terminals). In addition, many
terminals can obtain a requested piece through a single transmis-
sion because the piece is requested by many terminals. Note that
Terminals is an array of terminals, the member function Pieces

represents its member function (Requested by the terminal: ‘re-
quested’, and Received by the terminal: ‘have’).

3.2 Method B: Considering Piece Reception Status
In cases where the success ratio of overhearing is low or the

requested pieces are different, a terminal cannot get pieces from
overhearing and the download speed is reduced for the terminal.
In these situations, the number of pieces received in the slow ter-
minal should be increased. Then, method B takes into account
the slow terminal as in the pseudo multicast, and then the piece is
selected with considering the effect of overhearing. This selection

Algorithm 2 Considering Piece Reception Status.
� Select Terminal having the lowest E as Destination.

Tdest ← Terminals[0]

for i = 1 to Terminals.length−1 do

if Terminals[i].E < Tdest.E then

Tdest ← Terminals[i]

end if

end for

� Calculate # of terminals expected to receive.

scoremax ← 0

for i = 0 to Tdest.Pieces.length−1 do

if Tdest.Pieces[i] = ‘requested’ then

s← 0 � s is a sum of reception ratio of terminals requesting piece

i.

for j = 0 to Terminals.length−1 do

if i = j then

s← s + 1

else if Terminals[j].Pieces[i] = ‘requested’ then

s← s + Terminals[j].R[Tdest]

end if

end for

if s > scoremax then

pid ← i � Select piece with maximum s.

socremax ← s

end if

end if

end for

return Tdest, pid � Destination: Tdest, Piece ID: pid

method is described in Algorithm 2 and Algorithm 3.
In Algorithm 2, the ratio of the number of pieces effectively

received in a terminal is defined as En in Eq. (3). In the equation,
“# of pieces received in terminal n” also includes pieces via the
overhearing.

En =
(#o f piecesreceivedinterminaln.)
(#o f piecessent f romtheserver.)

(3)

En is calculated in the server every time when the piece is trans-
mitted to each terminal. The terminal which has the smallest En is
selected as the destination of the piece. With this control, oppor-
tunities for the piece to be received become proportionally equal
because the number of transmissions for the terminal is increased.
In addition, a terminal which has a low success ratio of overhear-
ing because of the wireless conditions is often selected as the des-
tination. Since the server often selects the terminal having a low
transmission rate at the physical layer, the success ratio of over-
hearing is also improved.

In Algorithm 2, a member variable of array E shows the num-
ber of terminals receiving a piece for a single transmission, and
member variable R is the success ratio of overhearing (in case
where the destination is the other terminal). First, the terminal
which has the lowest En is selected as the destination. Next,
the server lists the pieces which the destination terminal is re-
questing, and calculates the success ratio of overhearing in each
terminal for all the listed pieces. A piece (pid) which has the
largest number of expected receivers (Eq. (4)) is selected for the
transmission. Note that N = Terminals.length is the number of
terminals in downloading, and Tdest is a destination terminal in
Algorithm 4.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Algorithm 3 Update of # of pieces effectively received.
� Piece m is transmitted to Terminal n.

for i = 0 to Terminals.length−1 do

if i = n then

Terminals[i].E ← α × Terminals[i].E + (1 − α)

else if Terminals[i].Pieces[m] = ’requested’ then

Terminals[i].E ←
α × Terminals[i].E + (1 − α) × Terminals[i].R[n]

else

Terminals[i].E ← α × Terminals[i].E

end if

end for

Algorithm 4 Update of Success ratio of overhearing.
� The server receives a having piece notification from Terminal n because

of overhearing the piece addressed to Terminal m.

Terminals[n].R[m]← β × Terminals[m].R[n] + (1 − β)

� The server does not receives a having piece notification within the over-

hearing timeout.

Terminals[n].R[m]← β × Terminals[m].R[n]

(#o f terminalsexpectedtoreceivethepiece)

=

N−1∑

n=0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Terminals[n].R[Tdest]
: Pieceise f f ectivelyused.

0 : Pieceisnote f f ectivelyused.

(4)

In the above procedures, the download speed is fairly con-
trolled among the terminals for status of download, wireless link
and overhearing.

Note that the number of pieces effectively received in terminal
n, Terminals[n].E, is updated with Algorithm 3. Terminals[n].E
is updated every time a piece is transmitted and the value is
smoothed by α (0 ≤ α ≤ 1). Before smoothing, Terminals[n].E
is set as 1 for the case where the piece is sent as the destination,
is set as ‘the success ratio of overhearing for the terminal’ for the
overhearing, and is set as 0 otherwise. Terminals[n].R[m] is the
success ratio of overhearing in Terminal n for pieces addressed
to Terminal m, and is updated every time the server receives the
piece from the terminal in Algorithm 4. Before calculation of the
smoothing (0 ≤ β ≤ 1), Terminals[n].R[m] is set as 1 for the case
where the piece is received, and 0 for the case where the piece is
not received.

3.3 Method C: Network Coding for Pieces
Overhearing is an effective method for piece distribution when

terminals request the same pieces. However, overhearing in
Method B does not work effectively when almost all terminals
are ending the download because each terminal requests different
pieces. In Method C, the server uses network coding to transmit
multiple pieces as one coded piece in the application layer in the
case where each terminal needs different pieces. Then, the re-
ceivers can obtain the desired piece by decoding the coded piece
via overhearing.

The server selects the destination and the pieces to transmit
with Method B. If the number of expected receivers (Eq. (4)) is
increased by network coding, network coding is applied. When
the coded piece is decoded in the receivers to obtain the desired

Algorithm 5 Piece selection for Network Coding.
� Destination terminal n and Piece m are selected.

terminalList ← [] � Piece m, to Expected receiver.

for i = 0 to Terminals.length−1 do

if Terminals[i].Pieces[m] = ’requested’ then

terminalList.add(Terminals[i])

end if

end for

pids← [] � Arrary of Pieces for Network coding.

loop

�Make Array of Pieces for all in terminalList.

intersectList ← terminalList[0].indexesOf(’have’)

for i = 1 to list.length−1 do

intersectList ←
intersectList.intersect(

terminalList[i].indexesOf(’have’))

end for

if intersectList.length = 0 then

� End if Receiver has no piece.

Break

end if

scoremax ← 0

pidmax ← null

destsmax ← []

terms← Terminals − terminalList

� # of expected terminals, select Max.

for pid = 0 to intersectList.length−1 do

score← 0

dests← []

for i = 0 to terms.length−1 do

� Terminals requesting Piece i will decode.

if terms[i].Pieces[pid] = ’requested’ then

score← score + terms[i].R[n]

dests.add(terms[i])

end if

end for

if score > scoremax then

scoremax ← score

pidmax ← pid

destsmax ← dests

end if

end for

� End if no piece for Network coding.

if destsmax.length = 0 then

Break

end if

� Add Receiver expecting.

terminalList ← terminalList + destsmax

pids.add(pidmax)

� End if # of Receivers == # of all terminals.

if terminalList.length = Terminals.length then

Break

end if

end loop

� Return an Array of Piece ID for Network coding.

return pids

pieces, the receivers have to have piece(s) except for the desired
piece. The server calculates the number of expected receivers for
every combination of pieces which meets the condition for de-
coding, and selects the combination with the highest number at

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

that time.
The procedures used in Method C are described in Algo-

rithm 5. In the algorithm, the destination terminal n and the piece
m are selected for transmission. First, Algorithm 5 lists com-
monly having pieces (intersectList) of terminals requesting piece
m. These listed pieces can be decoded by these terminals if the
pieces are coded with piece m for transfer. If no common piece
exists in terminals requesting piece m, network coding is not per-
formed. Then, for all cases of listed piece(s), the possibility of de-
coding at the terminals is calculated when these pieces are coded
with piece m, and the combination with the largest number of
pieces is selected. By repeating these procedures while there are
possible combinations for the network coding the server selects
the pieces. Note that a method of ‘indexesOf’ returns the same
array index with the parameter, a method of ‘intersect’ returns
the same array element with the array parameter, and an ‘add’
method adds the parameter to an array.

4. Evaluation

4.1 Evaluations in Testbed
4.1.1 Evaluation Setup

The proposed method was implemented in a user space appli-
cation running on Linux, and laptop PCs with a wireless inter-
face were used as the hardware. The application established a
TCP connection with the content distribution server, requested
the pieces, and received them. At the same time, the application
opened the raw socket in promiscuous mode to process the over-
heard frames.

We aim to evaluate the basic performance of the proposed
method in the case that the terminals start downloading at the
same timing, and at different timings. The content size of doc-
uments, videos or photos is supposed, and the size is enough to
evaluate the scheduling of pieces and terminals. In the experi-
ments, we prepared one server (Terminal 1) and 6 receivers (Ter-
minals 2–7). Terminals 2 and 3 are placed near the distribution
server (1–2 m), and Terminal 4–7 are placed further away from
the server (10–12 m) in our laboratory. Then, all the terminals
join the group to download content because the proposed method
does not suppose to join a terminal whose the transfer speed of
MAC from the server is very low. We evaluated Methods A, B,
and C in the situation where all of them started downloading at the
same time (Simultaneous start), and Terminals 2–7 started down-
loading from the server at 5-second intervals (Sequential start).
In case of Sequential start, the downloads start in order from Ter-
minal 2 to 7. Tables 1 and 2 show the experiment environment
and conditions. α in Algorithm 3 and β in Algorithm 4 are 0.8
and 0.8, respectively.
4.1.2 Results

The average throughput is shown in Table 3, and the average
throughput for each terminal is shown in Fig. 4 and Fig. 8. The
throughput for Method C is 4.3 times faster than that of HTTP
for a simultaneous start, and is 3.2 times faster than that of HTTP
for a sequential start. The piece and the destination selection
method improve the performance when we compare Methods A–
C. With regard to the average throughput of each terminal, the
improvement of Terminal 7, which had the lowest throughput,

Table 1 Environment of the experiment.

Server, Terminal DELL vostro 3550
(Core i3 2.10 GHz, Mem: 3.5 GB)

OS Debian GNU/Linux 6.0
(Kernel 2.6.32-5)

WLAN interface Buffalo WLI-EXC-AG300N

WLAN standard IEEE802.11a

WLAN channel 5220 MHz (44 ch)

WLAN mode Ad-hoc, ARF ON

Table 2 Conditions of Experiment.

Size of distribution file 100 MB

Size of piece 128 KB

Number of terminals 6

Interval of piece having message 0.5 sec

Overhearing timeout 1.0 sec

Table 3 Average throughput.

Method Simultaneous Start Sequential Start

HTTP 3.44 Mbps 4.13 Mbps

Method A 10.3 Mbps 10.9 Mbps

Method B 11.0 Mbps 12.5 Mbps

Method C 14.8 Mbps 13.4 Mbps

Fig. 4 Throughput of HTTP, and Method A-C (Simultaneous start).

was the greatest as a result of changing the selection method for
both start times. In Method B, the throughput of some of the ter-
minals is reduced because a reduced bandwidth is used in order
to improve the throughput of terminals having a low throughput.
However, the network coding employed in the case of Method C
improved the performance of the terminal with a low throughput
without reducing the throughput of the other terminals. How-
ever, the HTTP server transmits content with 20.64 Mbps (6 ter-
minals × 3.44 Mbps) but the average throughputs of Method A–C
are smaller than the server throughput. This is because the server
tends to select terminals with a low transmission speed of MAC
to extend the overhearing range, and then this control reduces the
efficient use of the bandwidth of MAC. We discuss this trade-
off in Section 5. Note that the average throughput of HTTP is
almost the same even though the transmission speed of the physi-
cal layer for each terminal is different in Fig. 4. Since CSMA/CA
fairly shares opportunities of frame transfer for each terminal, the
shared bandwidth for each terminal is almost the same if frame
losses do not affect the congestion control of TCP [14]. Evalua-
tions in this paper assume wireless conditions are not extremely
worse and the retransmission controls of IEEE 802.11a recovers
frame losses.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 5 Cumulative number of pieces received for each terminal (Method A,
Simultaneous start).

Fig. 6 Cumulative number of pieces received for each terminal (Method B,
Simultaneous start).

Fig. 7 Cumulative number of pieces received for each terminal (Method C,
Simultaneous start).

Fig. 8 Throughput of HTTP, and Method A-C (Sequential start).

Figures 5–7 and 9–11 show the cumulative number of pieces
received by each terminal for Methods A–C. In the case of a
simultaneous start (Figs. 5–7), the throughput of terminal 7 had
the lowest throughput in Method A because the terminal 7 can-
not overhear frames of the other terminals. Since the terminal
7 is often selected as the destination in Method B, the through-
put of the terminal 7 is improved by 12%. In Methods A and B,

Fig. 9 Cumulative number of pieces received for each terminal (Method A,
Sequential start).

Fig. 10 Cumulative number of pieces received for each terminal (Method
B, Sequential start).

Fig. 11 Cumulative number of pieces received for each terminal (Method
C, Sequential start).

the throughputs are reduced after 40 seconds, but Method C im-
proved the reduction of throughput and the average throughput by
35%. Since each terminal requests different pieces at the end of
downloading where the start was simultaneous, network coding
has a significant effect.

In the case of a sequential start (Figs. 9–11), the throughput re-
duction at the end of downloading in Method A is improved by
17% in Method B. In this case, the improvement in throughput is
larger compared to that obtained with a simultaneous start. Since
the download status is different for each terminal, a terminal at
the end of downloading is often selected as the destination by the
controls of Method B. For Method C, the average throughput is
improved by 7% compared to Method B. This is because there are
fewer cases where each terminal requests different pieces com-
pared to a simultaneous start. There is therefore a lower improve-
ment in throughput compared to a simultaneous start. Note that
the performance of terminal 4 is low for Method A—C because
terminal 4 in Fig. 8 cannot overhear the other terminals due to its
wireless conditions. Then, since Method C works to improve ef-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 12 Average throughput for the number of terminals (Simultaneous
start).

ficiency by decoding the network coded pieces via overhearing,
the network coding does not effectively work for terminal 4.

4.2 Evaluations in the Emulation Environment
Next, we evaluate the scheduling A–C in case that the num-

ber of terminals is increased in the emulation environment. As a
distributed emulation environment, we use EMANE [13]. How-
ever, since the original EMANE has problems for dealing with
overhearing frames in MAC layer, we fixed the problems [15].
Parameters setting of the emulation environment is to get almost
the same results of a testbed. We confirmed by checking it with
the overhearing conditions and throughput in 6 terminals case. In
the following evaluations, the same setting is used except for the
number of terminals. Since the terminals are placed at the same
distance from the server terminal, results of Method A are omit-
ted in this section.

Figure 12 shows the average throughput of one terminal while
changing the number of terminals in case the terminals start
downloading simultaneously. For increasing the number of ter-
minals, the average throughput for the HTTP case is reduced
from 4.1 to 0.9 Mbps. Since overhead of MAC and the proposed
method are increased for increasing the number of terminals, the
average throughput of the proposed methods are also reduced.
The average throughput of Method B and Method C are also re-
duced from 14.4 to 9.3 Mbps and from 16.9 to 12.3 Mbps, respec-
tively. However, these methods keep 10–13 times throughput for
that of HTTP in case of 24 terminals. In Method C, the reduc-
tion is smaller than that of Method B because the network coding
can reduce the number of transmissions by transmitting multiple
pieces as one XORed piece. With using the network coding, the
proposed method works effectively even if the number of termi-
nals are increased.

5. Discussion

In the proposed method, the server terminal has to run Algo-
rithms in Section 3 to select pieces and terminals. In case the
number of terminals or pieces are increased, the calculation com-
plexity is also increased and it will cause a heavy load on the
server terminal. For Method B and C, although the calculation
complexity is suppressed by adding a restriction for possible des-
tination terminals and pieces to send, the complexity is still large.
We confirmed the proposed method can work for a group of a few
dozen terminals in case of conditions of Section 4.1. However, it
will be difficult to accommodate over one hundred terminals of

a group. We need more sophisticated algorithms to reduce the
calculation complexity without reducing the accuracy of the se-
lections for the scalability issue.

As we mentioned in Section 4.1.1, the proposed method does
not suppose to join a terminal whose the transfer speed of MAC
from the server is very low. Then, the server terminal controls to
be the range of overhearing large with selecting a terminal with
the low transfer speed terminal as the destination. However, this
control may reduce the download speed of terminals in the group
because the transmission speed for the low wireless link quality
terminal is slow. Then, we have to carefully choose terminals
to join the group with considering wireless link quality because
there is a tradeoff between a range of overhearing and a transmis-
sion speed of MAC. In case that a terminal with low wireless link
quality joins the group, the server may have to exclude the termi-
nal from the group not to reduce the download speed of terminals
in the group with considering the tradeoff. It will be the future
work of our study.

6. Conclusion

In this paper, we have proposed a piece and a detonation termi-
nal selection method that enables a reliable content distribution in
a single hop wireless ad hoc network by adding file piecing to the
pseudo multicast scheme. The scheduling takes into account in
the case where communication conditions are different for each
terminal, and the download status of each terminal. We also use
network coding to improve the overhearing efficiency. We devel-
oped a testbed, and the performance of our method was evalu-
ated on the testbed. The results of the evaluation show that net-
work coding improves the download speed regardless of whether
downloading of content begins at the same or different times. In
future research, we apply the method to multi hops wireless com-
munication to deal the terminals in a poor wireless communica-
tion condition, and to accommodate a large number of terminals.

Acknowledgments This work is supported by KAKENHI
(23700071).

References

[1] Lin, J.C. and Paul, S.: RMTP: A reliable multicast transport protocol,
Proc. IEEE INFOCOM’96, Vol.3, pp.1414–1424 (1996).

[2] Holland, O. and Aghvami, H.: Dynamic Switching between One-to-
Many Download Methods in “All-IP” Cellular Networks, IEEE Trans.
Mobile Computing, Vol.5, No.3, pp.274–287 (2006).

[3] Dujovne, D. and Turletti, T.: Multicast in 802.11 WLANs: Experi-
mental study, Proc. 9th ACM MSWiM, pp.130–138 (2006).

[4] Chandra, R., Karanth, S., Moscibroda, T., Navda, V., Padhye, J.,
Ramjee, R. and Ravindranath, L.: DirCast: A practical and efficient
Wi-Fi multicast system, Proc. IEEE ICNP, pp.161–170 (2009).

[5] Dogar, F.R., Phanishayee, A., Pucha, H., Ruwase, O. and Andersen,
D.G.: Ditto: A system for opportunistic caching in multi-hop wireless
networks, Proc. Mobicom, pp.279–290 (2008).

[6] Shen, S.-H., Gember, A., Anand, A. and Akella, A.: REfactor-ing con-
tent overhearing to improve wireless performance, Proc. MobiCom,
pp.217–228 (2011).

[7] The BitTorrent Protocol Specification, available from 〈http://www.
bittorrent.org/beps/bep 0003.html〉.

[8] Krifa, A., Sbai, M.K., Barakat, C. and Turletti, T.: BitHoc: A content
sharing application for Wirless Ad hoc networks, Proc. IEEE PerCom,
pp.1–3 (2009).

[9] Katti, S., Rahul, H., Wenjun, Hu, Katabi, D., Medard, M. and
Crowcroft, J.: XORs in the Air: Practical Wireless Network Coding,
IEEE Trans. Networking, Vol.16, No.3, pp.497–510 (2008).

[10] Rozner, E., Iyer, A.P., Mehta, Y., Qiu, L. and Jafry, M.: ER: Efficient

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

retransmission scheme for wireless LANs, Proc. ACM CoNEXT Con-
ference, pp.8:1–8:12 (2007).

[11] Nguyen, D., Tran, T., Nguyen, T. and Bose, B.: Wireless Broadcast
Using Network Coding, IEEE Trans. Vehicular Technology, Vol.58,
No.2, pp.914–925 (2009).

[12] Yokose, H., Ohzahata, S. and Kato, T.: An Efficient Contents Distri-
bution Method Using Overhearing and File Piecing in Wireless LAN,
Proc. APSITT, pp.1–6 (2012).

[13] Natalie, I., Rivera, B. and Adamsonk, B.: Mobile ad hoc network em-
ulation environment, Proc. IEEE MILCOM, pp.1–6 (2009).

[14] Heusse, M., Rousseau, F., Berger-Sabbatel, G. and Duda, A.: Perfor-
mance anomaly of 802.11b, Proc. INFOCOM, pp.836–843 (2003).

[15] Nitta, K., Ohzahata, S. and Kato, T.: Improving Cause-and-effect Re-
lationships among Single-hop Neighbors of Wireless Ad-hoc Network
for Parallel Network Emulation, IEICE Trans. Commun., JB-98, No.2,
pp.107–115 (2015) (in Japanese).

Hiroaki Yokose received his M.E. de-
gree from the University of Electro-
Communications, Tokyo, Japan, in 2013.
His research interests include content dis-
tribution for wireless environments.

Koji Nitta received his M.E. degree
from the University of Electro-Communi-
cations, Tokyo, Japan, in 2014. His
research interests include distributed
emulation environment for wireless
network.

Satoshi Ohzahata received his B.S.,
M.E., and D.E. degrees from University
of Tsukuba in 1998, 2000 and 2003, re-
spectively. He was a Research Associate,
Department of Computer, Information
& Communication Sciences at Tokyo
University Agriculture and Technology
from 2003–2007, and was an assistant

professor of the same university from 2007–2009. Since 2009,
he has been an associate professor at Graduate School of Infor-
mation Systems, the University of Electro Communication. His
interests are mobile ad hoc networks, the Internet architecture in
mobile environments and Internet traffic measurement. He is a
member of IPSJ, IEEE, ACM and IEICE.

Toshihiko Kato received his B.E., M.E.
and Dr. Eng. degrees electrical engineer-
ing from the University of Tokyo, in 1978,
1980 and 1983, respectively. He joined
KDD in 1983 and worked in the field of
communication protocols of OSI and In-
ternet until 2002. From 1987 to 1988, he
was a visiting scientist at Carnegie Mellon

University. He is now a professor of the Graduate School of In-
formation Systems in the University of Electro-Communications
in Tokyo, Japan. His current research interests include protocol
for mobile Internet, high speed Internet and ad hoc network.

c© 2016 Information Processing Society of Japan

