
Electronic Preprint for Journal of Information Processing Vol.24 No.2

Regular Paper

A Reliable Volunteer Computing System
with Credibility-based Voting

Takeshi Sakai1,a) Masaru Fukushi1,b)

Received: June 30, 2015, Accepted: October 2, 2015

Abstract: In order to realize highly-reliable volunteer computing (VC), this paper develops a VC system with
credibility-based voting. Credibility-based voting is known as an efficient technique for eliminating incorrect calcula-
tion results returned by participant (worker) nodes. Although its theoretical performance has been studied in detail, its
implementation and practical performance have not been fully studied yet. Our VC system consists of a management
server and a number of worker nodes. In the management server, each process that includes credibility-based voting
is multithreaded, and all information is managed in a database for high performance and stable operation. Through
performance evaluations, we found that the most time-consuming processes are the credibility-based voting in a net-
work environment with a small delay (e.g., Intranet), and the process for sending jobs in a network environment with
a moderate delay (e.g., domestic Internet). Moreover, multithreading is shown to be effective for those performance
bottlenecks, and feasible system configurations are also revealed for a variety of request rates.

Keywords: volunteer computing, desktop grid, credibility-based voting, multithreading

1. Introduction

Volunteer Computing (VC) is a type of distributed comput-
ing paradigm, which allows any participants on a network (In-
tranet or Internet) to contribute their idle computing resources
(CPU cycles) toward solving large parallel problems. Some ex-
amples of VC include SETI@home [1], Folding@home [2], and
distributed.net [3]. By making it easy for anyone on the network
to join a computation, VC makes it possible to build very large
and high performance computing environments at a low cost.
Nowadays, VC is used for scientific computations in various ar-
eas such as biology [4], astronomy [5], and physics [6].

One of the critical problems which must be addressed in VC
is sabotage-tolerance [7], [8], [9]. Unlike grid systems that are
appropriately managed by administrators [10], [11], [12], [13],
participant nodes of a VC system are owned and managed by
general users, and thus may behave erratically and return incor-
rect results. The incorrect results can be generated by several
reasons on the participants’ side (e.g., hardware/software errors,
computer virus infection, or malicious behavior for falsifying the
computation). It has been reported that a large fraction of partic-
ipant nodes (about 35%) actually returned at least one incorrect
result in a real VC [7]. In today’s VC systems, majority voting
is widely employed for this problem. BOINC [14], a major VC
middleware, uses m-first voting which simply collects m match-
ing results for each computation.

To enhance the efficiency of the voting, credibility-based vot-
ing [15] has been proposed. This method conducts a weighted

1 Graduate School of Science and Engineering, Yamaguchi University,
Ube, Yamagichi 755–8611, Japan

a) u017vk@yamaguchi-u.ac.jp
b) mfukushi@yamaguchi-u.ac.jp

voting based on the credibility of each participant. The key ad-
vantage of this method is the capability of guaranteeing the com-
putational correctness mathematically. The theoretical perfor-
mance of this method has been studied in detail and is shown to
be better than the popular m-first voting; however, its implemen-
tation issue and practical performance have not been fully studied
yet.

In this paper, for the purpose of realizing highly-reliable VC,
we developed a VC system with credibility-based voting by im-
proving our previous prototype implementation [16]. In the pro-
posed VC server, each process that includes credibility-based vot-
ing is multithreaded, and all information is managed in a database
(DB) for high performance and steady operation. Then, we reveal
a bottleneck process in the VC server, and show the effectiveness
of multithreading for the bottleneck.

The main contributions are as follows:
(1) a VC system with credibility-based voting and a DB is de-

veloped, and its operation is confirmed to be correct,
(2) performance bottleneck is found in the proposed VC server

and relieved by multithreading, and
(3) a feasible system configuration is revealed for a network en-

vironment with a small or a moderate delay.
The rest of this paper is organized as follows. Section 2

presents the computation model of VC and its sabotage-tolerance
mechanism. Section 3 describes the proposed VC system inclu-
sive of DB structure and the access method. Section 4 evaluates
the performance of the developed VC system under various VC
environments. Finally, Section 5 concludes the paper.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 1 Master-worker model.

2. Volunteer Computing

2.1 Computation Model
The popular master-worker model is assumed as the computa-

tion model of VC. This model is used in almost all VC systems
practically. The details of this model are summarized in Fig. 1
and below.
• A VC system consists of a management server (master) and

W participant nodes (workers).
• A computation project to be processed in the system is com-

posed of N independent jobs.
• The master manages the computation project, and assigns a

job to a worker at the request of the worker.
• Each worker executes the assigned job and returns the cal-

culation result to the master. Workers repeat this process as
long as a job is assigned by the master.

• The computation project is completed when all N jobs are
finished.

In this model, there exist � f × W� saboteurs, where f is the
fraction of saboteurs. Saboteurs return incorrect results with a
constant probability s, which is known as the sabotage rate. The
values of f and s are unknown to the master.

2.2 Sabotage-tolerance Mechanism
To eliminate the effect of incorrect results, some sabotage-

tolerance mechanism must be used in VC.
2.2.1 m-first Voting

The most commonly used method for the sabotage-tolerance
of VC is voting [17], [18]. Basically, a master replicates a job
and distributes them to several workers for a majority decision.
In m-first voting, the result which collects m matching values first
is accepted as the final result for the job. In practical VC systems
like SETI@home [1], m is set to 3. Since it has a minimum re-
dundancy of 3 regardless of f , the performance of VC systems
may be significantly decreased, i.e., less than 1/m.
2.2.2 Spot-checking

Some sampling techniques were developed to overcome the
limitations in voting. Examples are naive, quizzes, ringers, and
spot-checking [8]. In spot-checking, a master sometimes assigns
decoy jobs called spotter jobs. The master knows the correct
results of the spotter jobs, and thus can directly check whether
workers behave correctly or not. If a worker returns an incor-
rect result, the master recognizes the worker as a saboteur. Then,

the master can counter against the saboteur by the following
two methods; invalidating all results returned from the saboteur
(backtracking), and/or preventing the submission of any results in
any subsequent computation (blacklisting).
2.2.3 Credibility-based Voting

In credibility-based voting [15], a master conducts a weighted
voting which combines the functions of m-first voting and spot-
checking. In this method, each system element such as worker,
result, and job is assigned a credibility value which represents
its correctness. Using these credibility values, the final result for
each job is decided by weighted voting. This method guarantees
the correctness of the final results mathematically, which is an
important feature that no other voting method possessed. This
method is also applied to the job scheduling problem of VC to re-
duce overall computation time [19], [20]. Therefore, in this paper,
we focus on this method for realizing highly-reliable VC.

We briefly present the definition of credibility and the method
of determining final results.

The credibility of worker w, denoted by CW (w), is determined
by the number of times that w survives spot-checking, i.e., w
returns correct results for spotter jobs. When w survives spot-
checking k times, CW (w) is given by

CW (w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − fmax (k = 0)

1 − fmax

k
(k � 0),

(1)

where fmax is the maximum fraction of saboteurs assumed by the
master.

The credibility of result r returned by worker w, CR(r), is equal
to CW (w).

CR(r) = CW (w). (2)

Suppose that the results returned for a job are divided into g re-
sult groups G1,G2, ...,Gg, each of which includes results having
the same value. The credibility of result group Ga, denoted by
CRG(Ga), is defined by

CRG(Ga) =

PT (Ga)
∏

i�a

PF(Gi)

g∏

i=1

PF(Gi)+
g∑

n=1

PT (Gn)
∏

i�n

PF(Gi)

, (3)

PT (Ga) =
∏

r∈Ga

CR(r), (4)

PF(Ga) =
∏

r∈Ga

(1 −CR(r)). (5)

PT (Ga) (or PF(Ga)) represents the probability that all results in
Ga is correct (incorrect). CRG(Ga) in Eq. (3) represents the con-
ditional probability that the results in Ga are correct and those in
all other groups are incorrect.

The credibility of job j, CJ(j), is equal to the credibility of the
result group that has the highest credibility in all result groups for
job j.

CJ(j) = CRG(Gx) = max
1≤a≤g

CRG(Ga). (6)

When CJ(j) is greater than or equal to a threshold θ(= 1 − εacc),

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

the result of Gx is accepted as the final result of job j, and then
job j is finished. εacc is the acceptable error rate and the value can
be set in accordance with the reliability requirement imposed for
the computation project.

Credibility-based voting is an efficient voting method which
balances the redundancy and the reliability of computations.
However, to the best of our knowledge, no study has revealed
its practical performance.

3. Developed VC System

For the purpose of realizing highly-reliable VC, we develop a
VC system with credibility-based voting. In this section, details
of the system structure are described inclusive of DB structure
and the access method.

3.1 System Structure
The VC system we developed consists of a master and sev-

eral workers as shown in the computation model in Section 2.
Figures 2 and 3 show the configurations of the master and the
worker, respectively. In both figures, rectangles in solid lines rep-
resent independent processes. Each process is implemented as a
thread and works in parallel. In this system, each thread is imple-
mented with standard Linux Pthreads.

On the master side, a FIFO queue is employed between two
adjacent threads to pass data between them. Information about
workers, jobs, and result groups is managed in the DB. Before
describing each thread, we define three types of requests: Partici-
pate Request, Job Request, and Send Result Request. Participate
Request is sent once when workers join the VC, while Job Re-
quest and Send Result Request are sent every time when they
need to obtain a job and return the result, respectively. Details of
each thread are explained below.
• Accept Request

This thread waits for requests from workers through accept
and connect functions (accept() and connect()) of the BSD
socket API. When the master is connected from a worker,
connect() returns a socket number which is used for subse-
quent communication with the worker. The socket number
is stored in the FIFO queue to be passed to the next thread.

• Receive Request
This thread establishes communication with the worker to
receive a request. Then, the socket number and the received
request are stored in the queue.

• Identify Request
This thread identifies the type of the received request and
forwards it to the corresponding thread. If the request is a
Participate Request, the socket number is passed to the next
Accept New Worker thread. If it is a Job Request or a Send
Result Request, the socket number and the worker ID are
passed to the next corresponding thread.

• Accept New Worker
This thread processes Participate Requests. This thread
sends a new worker ID to the worker and then adds the
worker ID to the DB.

• Send Job
This thread processes Job Requests. This thread sends a job

Fig. 2 Master structure.

Fig. 3 Worker structure.

to the worker. When selecting a job to be sent, it checks
whether the job is completed or not by inquiring the DB.

• Receive Result
This thread processes Send Result Requests. This thread re-
ceives a result from the worker and then passes it to the next
Credibility Calculation thread.

• Credibility Calculation
This thread calculates the credibility associated with the re-
ceived result and performs credibility-based voting as ex-
plained in the previous section.

On the worker side, three threads run in parallel as shown in
Fig. 3. Main and Send Result threads are memory-resident, while
the Execute Job thread is forked by the Main thread as necessary.
Details of each thread are explained below.
• Main

This thread sends requests (either Participate Request or Job
Request) to the master and manages the Execute Job thread.
By a Perticipate Request, the worker receives a worker ID
from the master. When sending a Job Request, the worker
ID is also sent with the request.

• Execute Job
This thread executes an assigned job. When the execution of
the job is completed, this thread is killed by the Main thread.

• Send Result
This thread sends Send Result Requests to the master to re-
turn the calculation result. Together with the request, the
worker ID is also sent.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 4 Data format of four tables.

3.2 Database Structure and Access Method
In the developed VC system, the DB is used to manage infor-

mation about workers, jobs, and result groups. The DB is imple-
mented using MySQL. In the previous system [16], DB access is
a cause of performance bottleneck. Therefore, we propose a new
DB structure and access method to improve the access times.

The proposed DB structure consists of one Worker table, one
Job table, N Result Group tables, and W Job History tables, as
shown in Fig. 2. The Worker and Job tables store the informa-
tion of all W workers and J jobs as W and J entries, respectively.
The Result Group table for job j stores the information of re-
sult groups for job j. The Job History table for worker w stores
the information of jobs calculated by worker w. The data format
of each table is shown in Fig. 4. In Worker and Job tables, the
Worker ID and Job ID are unique.

In the previous system [16], the DB consists of only three ta-
bles, Worker, Job and Result Group tables. The Result Group
table stores all information about result groups for all jobs, which
makes the table size quite large. We found this is the cause of
the long access times. For Worker and Job tables, the access time
can be kept small by specifying the entry to be accessed. On the
other hand, access to the Result Group table involves a full search
because the result information is added in the order of returned re-
sults. Therefore, in the new DB structure, the Result Group table
is divided by job to keep the table size small. This allows faster
information search in the DB.

The master frequently accesses the DB when executing Cred-
ibility Calculation. DB access differs depending on the type of
received result.
• Normal Process

When the master receives a calculation result for a job j from
worker w, then the master updates CRG(Ga) for 1 ≤ a ≤ g and
CJ(j) by the following procedures:
(1) Add the received result and the worker ID into the Re-

sult Group table for job j.
(2) Add the job ID into the Job History table for worker w.
(3) Get all of the necessary data to calculate the job’s cred-

ibility (i.e., result values and credibility of all workers
who returned results to job j) from the Result Group
and Job History tables.

(4) Update the end flag in the Job table when CJ(j) ≥ θ(=
1 − εacc).

(5) Check the end flag for all jobs in the Job table.

Due to the modification of the DB structure, this access
method requires two procedures to add data (i.e., procedures
(1) and (2)). The main difference between the above pro-
posed method and the previous method [16] is the number of
SQL commands to obtain the necessary data. In the previ-
ous method, all data in the above procedure (3) are obtained
sequentially by individual SQL commands, whereas, in the
proposed method, it is done by only one SQL command.

• Success Process
When the master receives the correct result for a spotter job
from worker w, then the master updates CJ(j) of all jobs ex-
ecuted by w. All CRG(Ga)s are updated by the following pro-
cedures:
(1) Update the credibility of worker w in the Worker table.
(2) Get all jn job IDs from the Result Group table, where

jn represents the number of jobs for which w returned
the results.

(3) Calculate the job’s credibility by the same procedures
of (3)–(5) in the Normal Process. This is repeated jn
times.

• False Process
When the master receives an incorrect result for a spotter job
from worker w, then the master deletes all results returned by
w by the following procedures:
(1) Get all jn job IDs from the Result Group table.
(2) Delete all jn results from the Result Group table.
(3) Calculate the job’s credibility by the same procedures

of (3)–(5) in the Normal Process. This is repeated jn
times.

In adding, updating and deleting data, the master locks and
unlocks a entry of a table in the DB, which also needs two DB
accesses.

4. Performance Evaluation

4.1 Experimental Overview
We have implemented the VC system described in Section 3

using the PCs listed in Table 1. The master runs on PC1 and is
directly connected to PC2. At PC2, the round-trip communica-
tion delay is generated using the Linux tc command. Workers run
on PC3 as multiprocess virtual workers. Although virtual jobs
are used to simulate the VC, actual jobs can be used as well for
performing VC. We have confirmed the correct operation of the
implemented VC system.

We have conducted VC experiments to evaluate the practical
performance of the credibility-based voting for various system
configurations and VC environments. In the experiment, each
worker sends a request (either a Job Request or a Send Result Re-
quest) to the master per second and the master responds to them.
This process is continued for three minutes. The experimental
parameters are shown in Table 2. Since 100 workers send a re-
quest per second for three minutes, the total number of requests
the master receives is 18,000.

4.2 Evaluation of DB Access Methods
To compare the DB access methods in the previous and the

proposed systems, we measured the total processing time and ac-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Table 3 Breakdown of Credibility Calculation.

process name number of processes
total processing time (s) total processing time (s)

(previous system) (proposed system)

Normal Process 16,231 (90.2%) 30.28 (14.1%) 17.97 (26.7%)

Success Process 1,749 (9.7%) 184.00 (85.4%) 49.16 (73.1%)

False Process 20 (0.1%) 1.18 (0.5%) 0.11 (0.2%)

total 18,000 (100.0%) 215.46 (100.0%) 67.25 (100.0%)

Table 1 Specifications of PCs.

PC OS CPU memory
PC1

Vine Linux 6.2
Intel Core i7

8 GB
(master) 3.4 GHz (4 cores)
PC2

Linux Mint 16
Intel Core 2 Duo

3.9 GB
(mediator) 3.33 GHz (2 core)
PC3

Linux Mint 15
Intel Core i3

3.7 GB
(worker) 2.13 GHz (2 cores)

Table 2 Experimental parameter.

number of jobs (N) 10,000

number of workers (W) 100

spot-check rate (q) 0.1

maximum fraction of saboteurs
0.35

(fmax)

fraction of saboteurs (f) 0.1

sabotage rate (s) 0.1

acceptable error rate (εacc) 0.01

cess count for the three processes in the Credibility Calculation
(i.e., Normal Process, Success Process, and False Process). The
access count denotes the number of times the DB is accessed.
In this evaluation, no communication delay is set by the tc com-
mand because the processes in the Credibility Calculation do not
require any communication.

Table 3 shows the total processing time for the three processes.
This table shows the breakdown of all 18,000 processes in the
Credibility Calculation. As shown in this table, more than 90%
are Normal Processes. Since the spot-check rate q is set to 0.1, the
sum of Success Process and False Process is approximately equal
to 10%. Although the proportion of Success Processes is less than
10%, the total processing time is significantly large compared to
the other two processes in both systems. The proposed system
achieves a total processing time that is about 60% smaller than
the previous system.

Figures 5 – 8 show the access count of Normal Process and
Success Process. In these figures, the x-axis is the order of the
request received by the master. In Fig. 5, the access count in each
request is almost constant. After the 10,001st request, the ac-
cess count slightly increases because each job begins to receive
a second result from a worker and information necessary for the
credibility calculation is increased. In Fig. 6, the access count is
always constant because the reference of all necessary data (i.e.,
procedure (3)) is done at a time by one SQL command.

The access count of the Success Process is quite large com-
pared to that of the Normal Process there is a tendency to increase
gradually as the computation of VC proceeds. When a result is
returned for spot-checking by worker w, all jobs which have been
processed by w need the credibility updated. The number of such
jobs (i.e., jn in Success Process) is increased as computation pro-

Fig. 5 Access count of Normal Process in the previous system.

Fig. 6 Access count of Normal Process in the proposed system.

Fig. 7 Access count of Success Process in the previous system.

ceeds; hence the access count is increased accordingly. The pro-
posed system substantially reduces the access count compared to
the previous method. This is because of less DB accesses in pro-
cedures (3)–(5) for the Normal Process. Although both systems
show almost the same access count as in Fig. 5 and Fig. 6, we
found through investigating the DB log that the proposed system
needs only two DB accesses for procedures (3)–(5), while the
previous system needs four or five accesses. The other six ac-
cesses in the proposed system are for procedures (1) and (2)
which involve a total of four lock and unlock operations. Since

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 8 Access count of Success Process in the proposed system.

procedures (3)–(5) are repeatedly executed in the Success Pro-
cess, the difference becomes large, as shown in Fig. 7 and Fig. 8.
This data indicates the reason for the reduction in total processing
time in the proposed system.

Access count for the False Process is similar to that of the Suc-
cess Process; therefore, the data is omitted here.

4.3 Evaluation of VC server
To evaluate the performance of the proposed system, we mea-

sured the average processing time, average waiting time, and av-
erage queue length of a request for four main processes in the
master (i.e., Receive Request, Send Job, Receive Result, and
Credibility Calculation).
4.3.1 Results under no additional delay

First, no communication delay is added by the tc command. In
this case, the average communication delay between the master
(PC1) and workers (PC3) was less than 1 ms. This corresponds to
a delay time on the Intranet, e.g. in a university.

Figures 9, 10 show the experimental results. In the four main
processes, Credibility Calculation has the longest processing and
waiting time, and others are much shorter than the Credibility
Calculation. Figure 9 also shows DB access time as a break-
down. The DB access time occupies almost 99% of the pro-
cessing time of the Credibility Calculation, meaning that DB ac-
cess is the cause of the bottleneck. These results indicate that
credibility-based voting is a performance bottleneck and the main
cause is spot-checking, which is the key to reducing redundancy
in credibility-based voting. These results also provide important
insight into the use of credibility-based voting; that is, it may
need some restriction on updating credibility in Success Process
in practical VC. Otherwise, a large number of DB accesses will
be a critical bottleneck for the VC server. For example, updat-
ing the credibility of completed jobs can be stopped to avoid a
continuous increase in the access count.

To further reduce the processing time, the number of threads is
increased by multithreading. Let NS , NR, and NC be the number
of threads for Send Job, Receive Request, and Credibility Calcu-
lation, respectively. Figures 11 – 13 show the average processing
time, average waiting time, and average queue length as a func-
tion of the number of threads NC . NS and NR are set to be one.
Figure 11 shows that the average processing time increases with
increasing NC . This seems to be due to the overhead of thread
switching. Figures 12 and 13 show that the waiting time and the

Fig. 9 Average processing time.

Fig. 10 Average waiting time.

Fig. 11 Average processing time of Credibility Calculation.

queue length drop sharply at NC = 2, then gradually decreases up
to NC = 5.

Figure 14 shows the average processing time of the Credibility
Calculation for 100 requests. Since each of 100 workers send one
request per second, the average processing time over one second
indicates that the processing capacity of the master is not suf-
ficient for the request rate. Figure 14 shows that the processing
time for the Credibility Calculation can be significantly decreased
by increasing NC . For a VC system deployed in an Intranet, a VC
server of NS = NC = 1 and NC = 5 is sufficient to handle 100

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 12 Average waiting time of Credibility Calculation.

Fig. 13 Average queue length of Credibility Calculation.

Fig. 14 Average processing time of Credibility Calculation (100 requests).

requests per second.
4.3.2 Results Under Additional Delay of 50 ms

Next, a communication delay of 50 ms is added by the tc com-
mand. This corresponds to the delay time in a domestic Internet,
e.g. within Japan.

Figures 15 and 16 show the experimental results for the VC
server with NS = NR = NC = 1. In contrast to the results in
Fig. 9 and Fig. 10, the processing time and waiting time of Send
Job and Receive Result threads are increased due to the commu-
nication delay. In a Send Job thread, two-stage communication

Fig. 15 Average processing time (communication delay: 50 ms).

Fig. 16 Average waiting time (communication delay: 50 ms).

Fig. 17 Average processing time (communication delay: 50 ms).

occurs between the master and a worker for one request; that is,
the master first sends a job ID and then the job file to the worker.
Thus, the processing time and the waiting time are about twice as
large as those of the Receive Request. These results indicate that
the VC server of NS = NR = NC = 1 will eventually hang up due
to poor performance.

Figure 17 shows the average processing time of each thread
for 100 requests. The results show that, in the case of a network
with a delay of 50 ms, a VC server of NS = 60, NR = 20 and
NC = 20 is required to handle 100 requests in a second.

We investigated system configurations for a request rate R

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Table 4 Feasible system configuration.

request rate Send Receive Credibility
(per second) Job Result Calculation

20 11 3 3
40 11 4 4
60 15 6 6
80 21 11 10

100 43 16 16

which can handle R requests in one second. Table 4 shows the
system configurations that consist of the minimum number of
threads. For R = 100, a feasible system configuration is found to
be NS = 43, NR = 16 and NC = 16. In the case of SETI@Home,
R is about 23 [1]; hence, the above server has adequate perfor-
mance for practical use.

We discuss the relationship between the average request rate,
average number of workers, and job’s granularity. In the com-
putation model presented in Section 2, one worker sends a Job
Request to obtain a job, processes the received job, and sends a
Send Result Request to return the calculation result. Suppose that
all the three processes are completed in T seconds. Then, the av-
erage request rate R can be represented by R = 2W/T , provided
that all W workers ideally return the results in T seconds. This
assumes the worst case scenario. If some workers do not return
the results, the master will receive requests less than 2W/T in T

seconds. We can roughly estimate W using R and T . The VC en-
vironment of T = 1,000 and R = 100 roughly corresponds to that
of W = 50,000 workers. Moreover, once the average W and T are
estimated, we can determine a feasible system configuration for
the server using our VC system. For a large scale VC over several
hundred thousand workers, we need to allocate VC servers across
several regions to distribute the processing load. It is expected
that the proposed system and the above discussion will help us to
decide the specification, the number, and the configuration of VC
servers.

5. Conclusion

In this paper, we developed a VC system with credibility-based
voting. In the proposed VC server, each process that includes
credibility-based voting is multithreaded and all information is
managed in a DB for high performance and stable operation. We
found by performance evaluations that the credibility-based vot-
ing and the process for sending a job are the bottlenecks in an
Intranet and the Internet, respectively. Moreover, multithreading
is shown to be effective for these performance bottlenecks, and
feasible system configurations are also revealed for a variety of
request rates. These are new results that cannot be obtained theo-
retically.

As future work, we will deploy the developed VC system in
a real network environment to show the feasibility of a highly-
reliable VC.

Acknowledgments This work was supported by the Program
to Disseminate Tenure Tracking System, MEXT, Japan and JSPS
KAKENHI Grant Number 15K00171.

References

[1] SETI@home. (online), available from 〈http://setiathome.berkeley.
edu/〉 (accessed 2015-10-15).

[2] Folding@home. (online), available from 〈http://folding.stanford.edu/〉
(accessed 2015-10-15).

[3] distributed.net. (online), available from 〈http://www.distributed.net/〉
(accessed 2015-10-15).

[4] Rosetta@home. (online), available from 〈http://boinc.bakerlab.org/
rosetta/〉 (accessed 2015-10-15).

[5] Knispel, B. et al.: Pulsar Discovery by Global Volunteer Computing,
Science, Vol.329, No.5994, p.1305 (2010).

[6] Virtual LHC@home. (online), available from 〈http://lhcathome2.cern.
ch/test4theory/〉 (accessed 2014-02-06).

[7] Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L.M., Fedak,
G. and Cappello, F.: Characterizing Error Rates in Internet Desktop
Grids, Proc. 13th European Conference on Parallel and Distributed
Computing, pp.361–371 (2007).

[8] Domingues, P., Sousa, B. and Silva, L.M.: Sabotage-tolerance and
trust management in desktop grid computing, Future Generation
Computer Systems, Vol.23, No.7, pp.904–912 (2007).

[9] Ling, X., Hong, W., Takizawa, H. and Kobayashi, H.: A Reliabil-
ity Model for Result Checking in Volunteer Computing, Proc. In-
ternational Symposium on Applications and the Internet, pp.201–204
(2008).

[10] Litzkow, M.J., Livny, M. and Mutka, M.W.: Condor - a hunter of idle
workstations, Proc. ICDCS, pp.104–111 (1988).

[11] Sato, M., Boku, T. and Takahashi, D.: OmniRPC: A Grid RPC Sys-
tem for Parallel Programming in Grid Environment, IPSJ Trans. ACS,
Vol.44, No.SIG11, pp.34–45 (2003).

[12] Foster, I. et al.: Globus: A Metacomputing Infrastructure Toolkit, J.
HPCA, Vol.11, No.2, pp.115–128 (1997).

[13] Ninf-C. (online), available from 〈http://ninf.apgrid.org/〉 (accessed
2014-03-12).

[14] Virtual BOINC. (online), available from 〈http://boinc.berkeley.edu/〉
(accessed 2013-09-06).

[15] Sarmenta, L.F.G.: Sabotage-tolerance Mechanisms for Volunteer
Computing Systems, Future Generation Computer Systems, Vol.18,
No.4, pp.561–572 (2002).

[16] Sakai, T. and Fukushi, M.: Implementation of A Reliable Volunteer
Computing System with Credibility-based Voting, Proc. of Second
International Symposium on Computing and Networking, CANDAR
2014, pp.345–359 (2014).

[17] Zuev, Yu.A.: On the Estimation of Efficiency of Voting Procedures,
Theory of Probability and its Applications, Vol.42, No.1, pp.73–81
(1998).

[18] Casanova, H.: Benefits and Drawbacks of Redundant Batch Requests,
Journal of Grid Computing, Vol.5, No.2, pp.235–250 (2007).

[19] Watanabe, K., Fukushi, M. and Horiguchi, S.: Expected-credibility-
based Job Scheduling for Reliable Volunteer Computing, IEICE
Trans. Inf. Sys., Vol.E93-D, No.2, pp.306–314 (2010).

[20] Watanabe, K., Fukushi, M. and Kameyama, M.: Adaptive Group-
Based Job Scheduling for High Performance and Reliable Volunteer
Computing, Journal of Information Processing, Vol.19, pp.39–51
(2011).

Takeshi Sakai received his B.E. degree
from Yamaguchi University in 2014. He
is currently a master grade student in the
Graduate School of Science and Engi-
neering at Yamaguchi University. His re-
search interest is high-performance dis-
tributed systems.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Masaru Fukushi received his B.Sc. and
M.Sc. degrees from Hirosaki University
in 1995 and 1997, respectively, and his
Ph.D. degree in information science from
the Graduate School of Information Sci-
ence at Japan Advanced Institute of Sci-
ence and Technology (JAIST) in 2002. He
is currently an associate professor in the

Graduate School of Science and Engineering at Yamaguchi Uni-
versity. Prior to joining in the Yamaguchi University, he was an
assistant professor in the School of Information Science at JAIST
from 2002 to 2004, and in the Graduate School of Information
Sciences at Tohoku University from 2004 to 2012. His research
interests include dependable parallel VLSI architectures, depend-
able and high-performance distributed systems, and parallel and
distributed computing. Dr. Fukushi is a member of IEEE, IPSJ,
IEICE.

c© 2016 Information Processing Society of Japan

