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Abstract: Bugs in operating system kernels threaten system reliability and availability. Static analysis of device
drivers is one of the most useful methods to find and fix bugs in operating systems. Unfortunately, existing tools focus
on bug patterns that come from developers’ ad hoc beliefs and experiences, although the developers have a chance
to utilize many past bug reports. The objective of this paper is to uncover particular types of real bugs in a widely
used operating system. Specifically, this paper presents a case for finding six real bugs in Linux when obtaining 160
bug reports about interrupt request line (IRQ) handlers in past Linux. The 160 bug reports enable us to recognize
nine patterns of mishandling IRQ handlers, and our analyzer, which is based on the recognized patterns, successfully
detects the uncovered bugs.
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1. Introduction

Static analysis is one of the most useful methods for finding
bugs in software. Numerous tools and techniques for static anal-
ysis have been proposed to debug large-scale C code. A good ex-
ample of large-scale C code is an operating system such as Linux
and Windows because these code bases are huge and complicated.
In fact, static analysis is widely used to find bugs in Linux and
Windows, especially in their device drivers [1], [2], [3], [4], [5],
[6], [7], [8], [9].

The key concept of static analysis to find bugs is identifying
typical bug patterns in code. For example, the Clang Static Ana-
lyzer can search code locations for potential NULL pointer deref-
erences. However, typical bugs in complex software like Linux
are not only such generic C programming mistakes but also other
domain-specific issues. A field study of Linux bugs in file sys-
tems [10] reveals that file system-specific bugs are dominant. Ad-
ditionally, the sheer number of the previous work for finding un-
known bug patterns ([1], [3], [5], [6], [9], [11], [12], [13], etc.)
suggests that new bug patterns will continue to show up in the
future. In other words, static analysis assumes developers are
continuously making efforts to keep up with new typical bug pat-
terns.

Nevertheless, one of the biggest obstacles to finding bugs is to
recognize what to check as mentioned by Engler et al. [9]. Much
work tackles the issue by using static analysis with pattern infer-
ence engines [9], [14], dynamic state tracking [13], and tools for
exploiting developer’s knowledge and experiences [12], for ex-
ample. Unfortunately, these efforts implicitly focus on bugs that
are often based on a developer’s ad hoc beliefs and experiences,
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rather than actual typical bugs reported in the past.
Our prior work [15] shows preliminary results of using natural

language processing for static analysis developments. Specifi-
cally, the work reports nine bug patterns from a patch group and
two bug types they found in Linux PCI device drivers. How-
ever, their focus is to extract a group of similar patches from a
large number of patches, and thus, it does not fix bugs. Besides,
the work lacks details of the bug patterns they identify and im-
plementation details of static analysis. This paper presents our
experiences of each process to uncover real bugs.

The objective of this paper is to uncover particular types of real
bugs in a widely used operating system. Specifically, this paper
presents a case for making use of 160 past bug reports to develop
static analysis to find bugs in a commodity operating system. The
used reports are derived from the results of natural language pro-
cessing with more than 370,000 patch documents [15]. With such
a methodology for “big-data processing”, developers can directly
recognize real problems and what to check. However, there re-
mains a gap between extracting typical bugs and obtaining static
checkers. Developers still need to understand system behaviors to
be validated, select an appropriate static analysis framework, and
implement checkers along with the framework characteristics.

The major contribution of this work is to find and fix six real
bugs in Linux device drivers. At the time of this paper, five fixes
are accepted by Linux maintainers and landed on the upstream
kernel. All the bugs our static analysis found have existed for
three to ten years in Linux, although it has been one of the most
widely used pieces of software in the world for decades. The 160
bug reports enable us to recognize nine patterns of misusing IRQ
handlers, and our analyzer, which is based on the recognized pat-
terns, successfully detects the uncovered bugs. The result implies
that utilizing software repositories for static analysis is promising
to enhance future software quality by detecting bugs that many
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developers overlook.
The process of detecting real bugs in this work starts with a

study of 160 bugs about freeing IRQ handlers with relevant APIs
in Linux. Our investigation reveals four typical misuses of in-
kernel APIs. The point of the studied bugs is that they poten-
tially cause serious failures in operating systems, kernel dead-
locks, or unexpected interleaving of interrupt handlers, which all
techniques find hard to avoid and recover from without system
rebooting. Our observation also shows that the failures happen
under transient conditions such as particular error occurrences
and environments, which other bug-finding techniques are hard
to cover.

The bug reports in the past informed us of three challenges to
finding the bug patterns with static analysis. First, the static an-
alyzer cannot track down the whole state transitions of IRQ han-
dling on complex, dynamic execution-flows due to external event
handling. Second, various kinds of driver classes can cause IRQ
handler misuses although they have different semantics for their
event callbacks in Linux. Third, the static analyzer needs to iden-
tify the time when drivers should free a resource in the case of
checking resource-release omissions within the lifetime of device
drivers.

On the other hand, past bugs simultaneously give us the idea
that IRQ handling often happens among event callbacks for
drivers. Based on this idea, our solution to the challenges is to in-
ject analysis-dedicated code that emulates the typical execution-
flows of device drivers in a .c file with which static analysis runs.
The code is just a function that invokes event callbacks in the
typical order. Although there can be many, complicated flows
of these driver invocations, we expect that developers can easily
develop the emulation function by utilizing both symbolic exe-
cution characteristics and abundant C language expressions. Be-
sides, the emulation function enables developers to validate com-
plex state transitions involving external events in the manner of
simple inter-procedural analysis.

Our bug-finding tool implementation uses the framework of
the static analyzer in Clang 3.7. It consists of the main static
analysis engine and code injector to assist static checking. The
code injector automates the process of writing emulation func-
tions and scale to 2287 device drivers in Linux 4.1-rc1. In this
work, we perform static analysis of 8 driver classes in Linux:
generic (platform drivers in Linux), Peripheral Component Inter-
connect (PCI), Serial Peripheral Interface (SPI), Inter-Integrated
Circuit (I2C), network operations (open, close), control and mea-
surement device interface (Comedi), and PCMCIA devices.

In the experiment, the tool detects 598 device drivers that man-
age IRQ handling in Linux. The problem of false positives in
static analysis is out of the scope of this work, although more
than a hundred happen. To find bugs more practically, we obvi-
ously need to reduce the number of false positives in future work
as existing work already has [3].

The rest of this paper is organized as follows. Section 2 gives a
detailed overview of target bugs and discusses the design choice
of bug-finding tools that are specialized to the obtained bug pat-
tern. Sections 3 and 4 describe our strategy for developing a spe-
cialized static analysis. Section 5 shows our experiments on the

latest Linux to show the capability of our tool to find bugs. Sec-
tion 6 explains our related work, and Section 7 concludes this
paper.

2. Analysis of Real-world Bugs for IRQ han-
dling

In this section, we show challenges to detecting particular bugs
in the real world with static analysis even if the patterns are well-
known pairwise misuses. Specifically, we show 160 mistakes of
managing IRQ handlers in Linux as a case we solve in this work.
We observed most of the bugs were mistakes of releasing IRQ
handlers in device drivers. In particular, we frequently observed
misuses of request irq() and free irq().

2.1 API Semantics and the Programming Model
Before discussing the investigated bugs, we briefly describe

API specification for ease of understanding the issue discussed
in this section. API specifications we validate are in Fig. 1. Re-
quest irq() and free irq() are in-kernel APIs for the registration of
IRQ handler in Linux. They require various arguments, includ-
ing an interrupt request number (irq), a flag of interrupt types, a
function pointer for the interrupt handler corresponding to the irq,
and an extra variable (dev id). Free irq() is an API for releasing a
requested irq by specifying the irq and dev id. Linux uses dev id
to validate requesting and releasing an irq shared among multiple
drivers.

Also, we need to consider the programming model of Linux
device drivers to understand the problem we are trying to solve.
In particular, Linux device drivers often offer event-driven pro-
gramming. The Linux kernel core dynamically invokes driver
callbacks that the driver initialization routine registered for each
external event such as physical device probe, removal, and power
management.

Figure 2 shows typical API usages in device drivers to be
checked. Drivers often store driver-specific states like IRQ num-
bers to given callback arguments (struct X *x in the example).
The usage of the APIs is similar to that of other typical pairwise
APIs (e.g., malloc/free, lock/unlock). However, there are subtle
but significant differences for checker implementation in practice.
For example, when checking a shared IRQ, we need to validate
the consistency of two arguments unlike malloc/free, lock/unlock.
Another primary difference is that drivers know the IRQ num-
ber before calling request irq(). This means we do not need to
validate accidental free irq() on request-failed IRQs while failed

Fig. 1 Two checked API declarations and comments for each argument (de-
clared in include/linux/interrupt.h).
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Fig. 2 Typical API usages.

Table 1 Investigated bugs. Natural language processing (NLP) in our prior
work [15] extracts a cluster for around 5000 patches whose key-
words contain ‘irq’. NLP shows us what keywords each patch ex-
planation have. We further manually investigated 331 patches from
them by selecting patches whose keywords also contain ‘free’. The
table lists 160 bugs we identified in the patches.

Bug type Description Num.
Argument free irq() with inconsistent dev id 41
Argument free irq() with an invalid irq number 25
Leak missing free irq() at driver initialization

errors
25

Leak missing free irq() at driver unloading 13
Leak missing free irq() before device is sus-

pended
6

DoubleFree double free irq() 9
Order releasing other src before free irq() 7
Order releasing pages with interrupt disabled 7
Order freeing shraed irq with interrupt disabled 5
Other 22
Total 160

malloc() returns NULL pointer that free() ignores. In practice,
catching request irq() failures is more error-prone than expected,
especially when requesting multiple IRQs as shown in an exam-
ple in Section 2.2.

2.2 Bug Patterns
Table 1 shows our observation results of bugs extracted in our

prior work [15] *1. We define four bug types: Argument, Leak,
DoubleFree, Order. Each type has some of the minor divi-
sions. Inconsistent arguments (Argument) are the major cate-
gory of bug patterns. Missing free irq() is the second largest cat-
egory in our observation (Leak), although Argument bugs con-
sequently cause the same effect as Leak bugs. Like for general
bugs, double-frees (DoubleFree) and order violations of releas-
ing resources (Order) were observed. Order types had seven
cases that were not for interrupt handler registrations. Table 1

*1 The mining accumulates patches that have topics for ‘irq’ and ‘free’ by
using natural language processing. Thus, the result includes not only
bugs for free irq(), although most of the bugs were relevant to it. The
prior paper [15] describes details of the mining method and results with
the preliminary result of our static checking.

Fig. 3 Example of Leak bug in an error path.

Fig. 4 Example of Leak bug depending on user inputs.

shows all but Order type were the imbalance of API usages.
Figure 3 shows an Argument bug in the unified diff format

of its fix. One of the typical mistakes of freeing IRQs occurs
during the failure paths like that in the example. Typical device
drivers initialize their IRQ handlers as well as other resources.
However, the resource initializations might fail. It means drivers
have to revoke all the acquired resources as if the system did not
load the driver in such cases. Before fixing the bug in Fig. 3, the
driver frees only an IRQ after failing to request an IRQ although
she intended to free all the allocated IRQs. These kind of bugs
in failure paths are difficult to find by testing in debugging en-
vironments. In this case, requesting IRQs rarely fails; we may
encounter such rare cases when we load a particular device driver
that (un)intentionally uses the same IRQ number.

Figure 4 is an example of a Leak bug. The driver re-
quests an IRQ when it opens a serial port and frees the
IRQ when it shutdowns the serial port. We can check
the example bug by loading and unloading the driver with
specific models of Samsung system-on-chips that make
s3c24xx serial has interrupt mask(port) true. However, not all
the maintainers have the specific models, and the models might
be rare or old ones in the future. Also, there are too many device
drivers that handle IRQs as described in the next section. Thus,
such runtime testing by using physical devices is time-consuming
and not cost-effective for checking a large number of drivers.

Most bugs in Table 1 potentially cause serious consequences
in systems although they are difficult to test by running systems.
For example, no other device driver can use an IRQ number until
the system shutdowns as the consequences of Leak bugs like in
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Table 2 Callbacks for registering and releasing IRQs.

Callers of request irq() Callers of free irq()
struct name::member name Num. struct name::member name Num.
platform driver::probe 398 pci driver::remove 253
pci driver::probe 329 platform driver::probe 240
i2c driver::probe 204 pci driver::probe 210
net device ops::ndo open 121 platform driver::remove 175
spi driver::probe 72 i2c driver::probe 145
platform driver::remove 62 net device ops::ndo stop 116
pci driver::resume 42 i2c driver::remove 108
work struct::func 38 comedi driver::detach 102
pcmcia driver::probe 34 net device ops::ndo open 67
comedi driver::auto attach 31 spi driver::probe 56

the example in Fig. 4. In the case of Argument bugs, we may
also unintentionally release IRQ handlers in other running de-
vice drivers. In other words, we do not release an IRQ handler
in Argument bugs like the example in Fig. 3. DoubleFree bugs
cause either just redundant executions or missing free irq() calls,
depending on the developers’ intention. The manifestation of
Order bugs depend on the timing of device interrupts, context
switches, and concurrent executions. For example, an interrupt
handler may access invalid heap memory, and memory-mapped
I/O (MMIO) if the driver releases the MMIO and memory earlier
than IRQ.

2.3 Candidates of Fault Sites
The examples in Figs. 3 and 4 suggests mistakes on IRQ re-

leases happen on device drivers, i.e., loadable kernel modules
in Linux kernel. An existing tool to detect intra-procedural
resource-release omissions [3] shows the cases for initialization
failures like in Fig. 3. However, the example also implies there
can be more difficult cases involving user operations like in Fig. 4.

To confirm the validity of the implication, we analyzed at
which event device drivers call request irq() and free irq() in
Linux 4.1-rc1. The analysis first detects the root functions whose
call graph includes at least one of the calls of two API and their
family such as request threaded irq(). Then, it searches for an
event callback in a device-specific struct (e.g., pci driver). Fi-
nally, we join the two analysis results so as to obtain event call-
backs that call the two API families. We describe the details of
extracting event callbacks in Section 4.2.

Table 2 shows a part of the analysis results. The biggest
users of the IRQ handler APIs were generic device drivers (func-
tion pointers in struct platform driver) and PCI drivers (function
pointers in struct pci driver). As the example indicates, drivers
call request irq() at driver constructions such as device probes,
opens, and resumes. Free irq() occurs at driver destructions such
as device removal and failure paths in device probes. The result
shows that checkers should consider not only API pairwise con-
fined within an event callback like in Fig. 3, but also API pairwise
crossing event callbacks like in Fig. 4. Also, it shows there are
many kinds of device drivers that request IRQs that potentially
cause bugs described in Section 2.2.

2.4 Summary and Discussion
Our observation of IRQ bugs in this section shows that there

are many imbalances of request irq() and free irq() in the real
world. This indicates that developing static checkers specific to

validating the balance of the pairwise like Ref. [3] can effectively
reduce debugging efforts during device driver developments. This
is because the bug characteristics offer high coverages that dy-
namic testing cannot achieve.

However, Table 2 and past examples show that we need to track
API pairwise crossing event callbacks. We do not focus on Order
bugs in this work because they are less frequent than API im-
balances, and such timing-dependent bugs should be covered by
fuzzing tests like Ref. [16].

3. Finding mistakes of IRQ handling

In this work, we use symbolic execution for our inter-
procedural, path-sensitive static analysis to find IRQ bugs on the
basis of our observation in Section 2. One of the biggest ad-
vantages of symbolic execution is that it can achieve high cov-
erages from normal paths to exceptional, rarely executed paths
even without running a target system [2]. Table 1 shows 25 bugs
appeared on rarely-executed paths such as error paths in driver
initializations. Besides, we observed many Argument bugs on
failure paths like the example in Fig. 3. Symbolic executions also
enable us to check such inconsistency of symbolic (or concrete,
if possible) values for corresponding arguments.

3.1 Workflow
Figure 5 shows our abstract workflow to detect IRQ bugs.

First, our tool generates checked code from the original driver
code and specifications of driver lifecycle (i.e., event callback
execution-flows) given by users. Then, the execution engine runs
on each translation unit (e.g., single .c file and included .h files)
until it completes analyzing all the translation units. During the
execution, our analyzer simply checks the state of each IRQ han-
dler to validate the balance of API usages. After all the analy-
ses have finished, our bug-finding tool summarizes bug reports in
HTML formats.

We do not analyze driver complete binaries because our ob-
servation indicates that uses of pairwise API like IRQ handling
mostly appeared in the same .c file. In other words, our tool
ensures that device drivers confine their unit of system rules [1]
within a translation unit. For example, our tool alerts us of a
potential bug if a pair of request irq() and free irq() appears in
different .c files.

3.2 IRQ State Tracking
Figure 6 shows our simplified version of an IRQ state transi-

tions that our tool tracks and checks. At the beginning of ana-
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Fig. 5 Analysis workflow.

Fig. 6 IRQ state transitions. Circles are the main states of IRQs, while rect-
angles are the consequence of state transitions.

lyzing a driver, the checker assumes the state is not tracked (Un-

tracked). When the analyzed driver calls request irq(), the an-
alyzer stores the symbolic value for the arguments and moves
the state to Requesting. Then, it bifurcates the state into Re-

quested and RequestFailed for the succeeded and failed paths, re-
spectively. FreeRequestFailed represents erroneous cases where
drivers free non-existing IRQs specialized for request-failed (i.e.,
not-allocated) ones. By the bifurcation with symbolic executions,
our checker can independently check two possible state transi-
tions after request irq() returns. Thus, after RequestFailed, our
analyzer checks if free irq() is called or not. Finally, it moves a
Requested state to Freed when the driver calls free irq() with the
consistent symbolic values of the arguments. In current Linux,
free irq() never fails, and thus, there are no bifurcations after
free irq(). The report of a Leak bug appears when the driver does
not call free irq() for a Requested state at the end of the analy-
sis. We keep the value pairs even after freed IRQs so that we can
report DoubleFree bugs if a driver frees an IRQ twice without
requesting it again.

The analysis focused on a translation unit potentially overlooks
bugs when an analyzed driver passes tracked states via pointers
to external functions outside of a translation unit. For an example
of IRQ numbers, drivers often store them inside a single struct
variable instantiated for each driver (see the first argument of re-
quest irq() in Fig. 4). When the driver passes the pointer to the
variable to an external function, the analyzer cannot detect the

modification of tracked states by the function. As other check-
ers do in the Clang Static Analyzer, we mitigate the issue by
introducing an Escaped state. The Escaped state may confuse
users by emitting false reports, but it enables users to prioritize in-
specting reports with fewer false negatives. Thus, users can start
their report inspections by using more doubtful reports such as
FreeRequestFailed, Double Free, and Leak/Argument before less
doubtful ones like MayLeak. Thus, the Escaped state is impor-
tant for users to reduce manual efforts to find bugs in large-scale,
complex source code such as operating systems.

When the driver passes the pointer to the variable represent-
ing a Requested state to an external function, the analyzer turns
the state to Escaped. We do not change states other than Re-

quested because we rarely observe external functions that call
free irq() i.e., Double Free and FreeRequestFailed rarely happen
in external functions. The analyzer treats Escaped states like Re-

quested states except for tracked values. For Escaped states, it
tracks symbolic values of the address that stores the values that
the analyzer tracked for the Requested state beforehand. When
the analyzer detects the symbolic value of the address for argu-
ments of free irq(), it moves the Escaped state to Freed. Note
that the analyzer reports all the analysis results that went through
Escaped states (e.g., MayLeak) in order to avoid false negatives.

However, we cannot always track Escaped states. For exam-
ple, we generate Leak reports when the address for the tracked
state is potentially modified, although they might be false ones.
This limitation affects the strategy of detecting Argument bugs.
In Fig. 6, free irq() to an Untracked state transits the state to a
Freed state. The analyzer could report Argument bugs when there
was no consistent pair of arguments of free irq() in stored argu-
ments. In that case, however, escaped states cause false reports.
Thus, we alternatively detect Argument bugs as Leak bugs.

3.3 Execution-flow Emulation
The previous section described how we manage and check state

transitions inside a static execution-flow. However, execution-
flows of Linux device drivers are not always static because of the
programming model of Linux device drivers.

To forge events at symbolic execution time, we inject an emu-
lating function, which simply calls registered callbacks for events
in a typical order. We do not modify or re-use existing execu-
tion engines so that we can avoid the complexity increases of
IRQ state tracking. Existing symbolic execution engines for C
language can already emulate execution-flows that mainly appear
in every function definition because of the nature of C language.
Thus, we can emulate execution-flows at static analysis by adding
a function that invokes callbacks in a typical event order.

To write the emulating function, we first need to identify the
typical event order at runtime. We describe it with an example of
PCI device drivers in this section. A typical PCI driver execution-
flow is Fig. 7.

Considering that we focus on the exeuction-flow in Fig. 7, the
emulation code should first call probing callback in PCI device
drivers immediately after the symbolic execution starts. Then, the
symbolic execution engine bifurcates the checker execution into
two because PCI device drivers in Linux sometimes fail to initial-
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Fig. 7 PCI driver execution-flow.

ize their resources in probing functions. After probing devices,
the driver might have to handle suspending or physical removal
events. A suspending event can fail, so the execution engine bi-
furcates the checker execution as well as for probing events. On
the other hand, removal and resuming events do not fail in Linux.
Note that removal events can always happen physically except
that Linux guarantees the event atomicity like resuming; device
drivers have to handle even when users remove suspended devices
or re-probe removed devices.

Figure 8 is the simplified version of injected code. We inject
the code simply by appending a code fragment like in Fig. 8 to
existing .c files. Each step of the driver invocation corresponds
to driver callbacks (e.g., for a device probe, the injected code
calls a struct pci driver::probe()). The Linux documentation de-
scribes that the kernel core invokes PCI drivers by calling func-
tion pointers in struct pci driver registered at the initialization of
a device driver. We detect the defined callbacks by traversing ab-
stract syntax tree to find initialization of function pointers in struct
pci driver as well as static analysis in Section 2.3. We manually
write the specification template like Fig. 8 and automatically re-
place x * function with the functions obtained in the static analy-
sis.

Our code injection is to utilize symbolic execution properties.
The injected code uses an external dummy function (random() in
the figure) to bifurcate the execution into more than two. Also,
symbolic execution engine stores a single generic driver state
(pdev in the figure), and we can share the state among callback
invocations by passing it as a function argument. In the Linux ker-
nel, most of the drivers store dynamically allocated driver-specific
states like IRQ numbers to the generic driver states. Thus, the
injected function has parameters including driver state to create
symbolic values for IRQ numbers in any invoked function. If the
driver modifies the symbolic value for irq or dev id after calling
request irq(), our tool can detect the imbalance of IRQ handling

Fig. 8 Example of injected code. x probe, x remove, etc. are calling
pci driver::probe(), remove(), etc. x power is a function to emulate
the state transition of suspends, hibernations, etc.

APIs.
Additionally, our code injection is to utilize rich C expressions

to define driver execution-flows. For example, we use a loop
counter to conduct a bounded number of re-probing. We also
use a local variable to maintain the current state of the PCI driver.
The extra requirements for learning domain-specific languages to
define driver execution-flow are not necessary. Thus, we can eas-
ily extend the emulating function implementation to other driver
classes than ones that we check in this work.

4. Implementation

We implement our bug-finding tool as a plugin of Clang 3.7.
The tool consists of two components: IRQ state tracker and
code injector for emulating typical driver execution-flows in static
analysis. The Clang Static Analyzer hooks compiler invocations
and runs the analysis with the code and the same compiler op-
tions. We analyzed the Linux kernel with all options enabled (i.e.,
allyesconfig).

The IRQ state tracker described in Section 4.1 utilizes rich
compiler-level information such as ASTs, call graphs, symbolic
value information, and so on. The implementation consists of
1374 lines of C++11 and 264 lines of Python script. Clang pro-
vides us the framework for customized static analysis including
the symbolic execution engine.
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4.1 IRQ State Tracker
During symbolic executions, our state tracker hooks the calls

of request irq() and free irq() to track IRQ state transitions. How-
ever, to analyze only specified driver execution-flows, it ignores
these two call expressions when the root of the traversed call se-
quence is not a specified entry function (“Test*” in our proto-
type).

At request irq(), our state tracker makes new concrete value
and symbolic value for both succeeded and failed return code of
the API. Specifically, the succeeded value is zero (constant), and
the failed value is a symbolic value for lower than zero. Then, our
state tracker creates two execution contexts that add the new value
constraints to the current symbolic execution state to emulate both
succeeded and failure path of request irq(). Request irq() and
free irq() are external functions for checked drivers, and thus, it
is necessary for our static analysis

When the execution hits an expression that calls APIs re-
quest irq() or free irq(), our state tracker extracts symbolic or
concrete values for two arguments of the APIs: irq and dev id.
In the Linux kernel, paired values of the irq and dev id represent
IRQ identification. Thus, we use symbolic or concrete values of
them to identify if the released pair was already requested by the
driver, for example. If our state tracker confirms an IRQ state re-
mains Requested at the end of the entry function, it generates a
Leak bug report.

Escaped states can appear on the expression of function calls
with any pointers. After detecting the expression, we identify
type information of a pointed variable if the pointer passing po-
tentially modifies values of irq and dev id. If the escaped pointer
can reach either irq or dev id via struct member access or oth-
ers, we mark the IRQ state Escaped. We assume no buffer over-
runs that modify irq and dev id because buffer overruns should
be detected in other bug-finding tools. Other statements such as
temporarily copying to global variables can cause Escaped states,
but we do not handle such cases currently because we did not ob-
serve many and can recognize them when we manually check bug
reports.

4.2 Code Injector
Manual implementations in Fig. 8 for each driver costs too

much in terms of engineering. Thus, we implment a code injector
that automates the process of identifying the registered callbacks
and generating injected functions.

Linux device drivers often register callbacks stored in constant
variables like in Fig. 9. We recursively parse all the initialization
statements to pick up declared function names passed as function
pointer. Specifically, we look up the left-hand side whose type is
a function pointer. If so, we record the identifier of the left-hand
side (with the struct type name), and the right-hand side. In the
example, we first obtain ‘pci driver’, ‘probe’, and ‘e1000 probe’.
The callback interface allows us to modify the callback functions,
but we ignore such cases because drivers often do not change
them dynamically.

After the callback identification, we inject code generated from
a template we wrote. We carefully wrote the template so that we
can emulate possible event orders as described in Section 3.3. We

Fig. 9 An example of callbacks we collect.

refered to Linux documents and driver implementations to learn
the possible event orders. For PCI drivers, the example code
in Fig. 8 is extended to track physical device errors that typical
PCI protocol defines (err handler in Fig. 9). On the basis of our
observation in Section 2, we focus on 8 driver classes: generic
(platform drivers in Linux), Peripheral Component Interconnect
(PCI), Serial Peripheral Interface (SPI), Inter-Integrated Circuit
(I2C), network operations (open, close), control and measure-
ment device interface (Comedi), and PCMCIA devices. Finally,
we wrote 588 lines of C code for the template.

5. Experiments

We inject emulation code into 2287 drivers in the Linux 4.1-
rc1 and finally checked 598 drivers that managed IRQ handlers.
Our tool generated 60 bug reports (i.e., Leak/Arguments, Dou-

ble Free, and FreeRequestFailed), 177 MayLeak reports, and 294
Escaped reports. The 60 bug reports are more likely to contain
bugs because the analyzer completely tracked symbolic values re-
lated to IRQ API uses. MayLeak reports may contain Leak bugs
in which the analyzer detects no free irq() calls with a requested
IRQ, although it can track state transitions to MayLeak in Fig. 6.
Escaped reports may contain bugs that the analyzer cannot track
(MayLeak reports are excluded), but are more likely to be false
positives than other report types. Our experiment runs on a single
thread with Intel Xeon X5650 2.67 GHz and 15 Gbytes RAM on
HP ProLiant DL360 G7. Our static analysis required 13.2 hours
for generating emulation code of driver lifecycles and 7.4 hours
for checking state transitions. Our manual investigation started
with the more suspicious of the 60 bug reports and then moved
on to the less suspicious ones and found six cases of real bugs
within two weeks. When we found suspicious code, we wrote
and sent a patch to Linux maintainers in order to validate our re-
sults. Five out of six patches were accepted and will be merged
into the upstream version of Linux. At the time of writing, one
patch we wrote had not been accepted because a developer re-
sponding to our report pointed out problems of our patch in code
other than fixed IRQ handling. Because we cannot judge if or
not he determines the fixed code to be a bug, Table 3 only shows
“Not yet.” In this section, we report details of bugs around IRQ
handling we found.

Table 3 overviews the result of our checking. five out of six
are on error paths at driver initializations. This is not suprising
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Table 3 Result. The table lists the overview of each bug we found. For precisely calculating the date of
bug introductions (Since), we tracked the changes of file names.

Fixed file Class Faulty callback Bug type Path Merged? Since
drivers/power/88pm860x charger.c Generic platform driver::remove() DoubleFree Nromal Yes Jul 27 2012
drivers/media/pci/ddbridge/ddbridge-core.c PCI pci driver::probe() FreeRequestFailed Error Yes Jul 3 2011
drivers/pcmcia/yenta socket.c PCI pci driver::probe() Leak Error Yes Apr 16 2005*
drivers/power/wm831x power.c Generic platform driver::probe() FreeRequestFailed Error Yes Aug 10 2009
drivers/usb/gadget/udc/fotg210-udc.c Generic platform driver::probe() FreeRequestFailed Error Yes May 30 2013
drivers/clocksource/sh mtu2.c Generic platform driver::probe() Leak Error Not yet Apr 30 2009

∗The beginning date of the Linux git repository. Thus, the lifetime of the bug in yenta socket.c is longer than ten years.

Fig. 10 Code snippet for a DoubleFree on a power charger.

because developers can check normal paths for their drivers by
reloading on their sites. However, one driver calls free irq() twice
at the normal path for a driver removal. Three FreeRequestFailed
shows the effectiveness of path-sensitive analysis to validate the
balances of two APIs.

Suprisingly, all the bugs we found have existed since the driver
was introduced into the Linux kernel. Thus, we detected bugs that
have survived a large number of code reviews, testing, and pro-
duction runs for three to ten years. The bugs we found potentially
cause typical transient failures as discussed in Section 2.2.

Although our analyzer tries to prioritize emitted reports, there
are a large number of false negatives. The 60 bug reports the ana-
lyzer detected contain one report for DoubleFree and three reports
for FreeRequestFailed in Table 3 (=93.3% false positives). On
the other hand, two Leak bugs in Table 3 appear in 177 MayLeak

reports (= 97.5% false positives). The 294 Escaped reports do
not contain bugs as far as we inspected. Thus, there are at most
525 false positives out of 531 reports (= 98.9% false positives).
Obviously, the false positive rate is very high even when we fo-
cus on the 60 bug reports. However, the analyzer reduces manual
inspections from 2287 drivers to 531 reports.

Figure 10 shows the double free on the driver for a power
charger. The bug can be found by simple intra-procedural anal-
ysis, but detecting it also requires loop extractions. Our fix is to
simply remove the redundant free irq() before the loop.

Figure 11 shows a Leak bug in a Cardbus driver. Static anal-
ysis reported MayLeak on this bug because socket->cb_irq
was potentially updated via a pointer socket in line 1256.
At runtime, the failure can be manifested only when pcm-
cia register socket() fails and the device delivers an interrupt.
Missing free irq() lets the interrupt handler read from or write to
resources freed by the error handling of pcmcia register socket().
Our fix is simply to add missing free irq().

Interestingly, the example in Fig. 11 also has four other
resource-release omissions in the error paths for the driver probe.

Fig. 11 Code snippet for a Leak bug on a Cardbus driver.

The maintainer found the problem and we fixed them as well as
the IRQ leak. For example, a timer created by setup timer(...)
was not destroyed at the failure paths after the false condition of
the first branch in Fig. 11. This implies that we can even detect
other kinds of bugs that frequently co-occur at the same path of
IRQ handling by validating IRQ handling.

Figure 12 shows a FreeRequestFailed bug. The code inappro-
priately unifies two error handling codes that are located after the
goto label fail1. Our checker tracked every paths and detected
free irq() after request irq() fails, while it is difficult to repro-
duce the problem with dynamic testing. After request irq() in line
1600, the symbolic execution engine in the Clang Static Analyzer
bifurcates (or forks) the execution of checking state transitions.
The bifurcated analyzer executions independently check state
transitions after the transition to Requested or RequestFailed. Our
fix adds a branch condition before calling free irq() because the
driver should call free irq() in the case where the driver in the
Requested state encounters another failure in line 1610.
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Fig. 12 Code snippet for a FreeRequestFailed bug.

6. Related Work

Since Engler et al. pioneered the idea of checking API usage
rules in operating systems [1], there have been numerous work for
extracting code patterns to be checked in particular code. Engler
et al. propose searching for them in the form of pairs of functions
that occur together frequently [9]. Yang et al. [13] extract system
models from a source code by tracking system behavior. Lawall
et al. [12] use the insights of experienced developers to extract
Linux API protocols. Saha et al. [3] focus on resource release op-
erations inside a function to reduce the number of false positives.
However, existing work often focuses on generic bug patterns that
appear on general software. In this work, we focus on the design
and implementation of checking bugs that are derived from our
prior work [15] to extract typical bugs from real bug reports in
Linux.

Given the complete specification of coding rules, it is easier
to recognize bug patterns because all deviations from the spec-
ification can be considered bugs. SeL4 [17] enables the formal
verification of an entire code by designing a verification-friendly
OS architecture. In Linux, device drivers can avoid bugs by au-
tomatic synthesis of a formal specification [18]. Jitk enforces
formal proof techniques to ensure bug-free BSD packet filters in
Linux [19]. Unfortunately, unstable in-kernel APIs in Linux pre-
vent them from supporting a broad range of driver classes.

DDVerify [20], [21], [22] verifies 1642 properties of 31 device
drivers in Linux 2.6.16 in over four hours [21]. On the other hand,
our analyzer checks 2287 drivers in Linux 4.1 in seven hours.
Their efforts result in detecting two real bugs of a spinlock and
IO port misuses. Unlike DDVerify, our checkers are not based on
any proofs of both Linux API usages and driver execution models.
However, our result of five fixes shows that static analysis based
on past mistakes can detect faults, although our checkers need to
reduce a large number of false positives for practical uses.

In the case of Windows, the specification of the kernel inter-
faces to the device drivers is provided. Static Driver Verifier
(SDV) [8] makes use of the specification to find bugs in Win-
dows device drivers. The model represents invocations of all the
classes of device drivers by Windows kernel so that SDV can in-
voke typical sequences of driver functions for each device event.

SDVRP [23] generalizes the SDV concept with a more robust and
performant analysis engine (SLAM2) [24], [25]. SDVRP allows
developers to conduct symbolic model checking by specifying
platform manager and API models for C modules. Our analyzer
and driver lifecycle emulations run as a Clang plugin, but we can
implement it with SDVRP by specifying each model (if the ana-
lyzer can handle GCC’s C language extensions, which Linux code
frequently uses). In particular, our idea of execution-flow emu-
lation is similar to their module entry specifications. However,
Linux driver interfaces inherently depend on its implementation,
and thus, specialized code analysis like our automatic generation
of injected code is necessary to scale to hundreds of drivers in
the Linux kernel. In addition to the execution-flow emulation,
the verification core is obviously more accurate and scalable than
our checkers. However, the case of our experience to fix five real
bugs implies that studying past patches like that in Section 2 leads
to bug-finding tools focusing on error-prone patterns in operating
systems.

7. Conclusion

We presented our experience for checking bug patterns that are
derived from real reports. The checkers we developed succeeded
in contributing five bug reductions in Linux device drivers. All
the detected bugs were serious but hard to find due to their non-
deterministic and rarely executed properties. We believe our case
shows that utilizing software repositories is promising and should
be further researched to enhance the future software quality.

However, there remains a gap between bug pattern recognitions
and checker development to achieve practical fault avoidance.
For example, all process for finding bugs such as identifying
bugs and implementing static analysis are very labor-intensive.
Also, even if they are automated in the future, the static check-
ing spends too much time for checking a large number of bug
patterns. Therefore, we believe this work is just the first step of
utilizing repository mining to achieve advanced systems of static
checking.
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