
IPSJ SIG Technical Report

A Semi-Supervised Data Screening for Network Traffic
Data using Graph Min-Cuts

Takayoshi Shoudai1,3,a) HikaruMurai2,3 Atsushi Okamoto3

Abstract: There are currently many projects aimed at devising efficient countermeasures against critical incidents
occurring on the Internet through early detection. A nasty problem is hard-to-find accesses by well-analyzed malware
whose packets make anomaly detection harder. In this paper, in order to find such accesses from raw data obtained
by network monitoring, we propose an automatic data screening method using graph-based semi-supervised learning
(Blum and Chawla, 2001) and show its effectiveness in experiments on darknet traffic.

Keywords: Semi-supervised learning, Minimum cut, Data screening, Incident detection, Darknet monitoring.

1. Introduction
Incidents caused by malicious users on the Internet, e.g. dis-

closure of personal information caused through computer viruses,

have become nasty problems. In particular, malicious users called

bot herders are causing serious problems. A bot herder scans spe-

cific network ranges and infects ordinary users’ computers in or-

der to control a large number of them remotely. A group of com-

puters controlled in this manner is called a botnet and can be used

to launch denial-of-service (DoS) attacks or spam e-mail. Many

researchers have been developing technologies aimed at early de-

tection and extermination of botnets.

Recently a number of Internet organizations have built obser-

vation networks for continuous monitoring to detect sudden net-

work incidents. Here, darknet observation is a way of contin-

uously monitoring for new attacks. A darknet is an IP address

space that is available on the Internet but is not used, i.e., not as-

signed to any computer. As such, correct packets rarely reach

a darknet. Nevertheless, many packets do indeed reach dark-

nets; for example, in 2013, about 12.88 billion packets reached

an anonymous darknet set up by a certain Japanese organization.

It is considered that the amount will only increase in the future.

Moreover, at present, it is very difficult and takes time to deter-

mine whether a packet reaching a darknet is part of a new mali-

cious attack or not.

Many studies aim to detect new attacks by using statistics

and/or visualization technology, but most of the measures pro-

posed so far have a common problem. Network traffic contains

huge amounts of simple malicious packets such as scans of IP ad-

dress spaces and ports, as well as backscatter caused by old mal-

1 Faculty of International Studies, Kyushu International University, 805-

8512, Japan
2 Department of Informatics, Kyushu University, Fukuoka, 819-0395,

Japan
3 Institute of Systems, Information Technologies and Nanotechnologies

(ISIT), Fukuoka, 814-0001, Japan
a) E-mail:shoudai@isb.kiu.ac.jp

ware. In addition, there is a relatively small amount of hard-to-

find packets from well-analyzed malware. Such packets obscure

new attacks and potentially hide them from monitoring. So be-

fore trying to detect a new attack, we need to execute screenings

to delete such malicious packets thereby make it easier to ana-

lyze the traffic. In fact, as the amount of traffic has been increas-

ing rapidly, screening has become an important preprocessing for

early detection of new attacks. In particular, for helping traffic

analysis, screening methods need to have a high noise reduction

capability and a short computational time for quick screening.

In this paper, we propose a screening method using semi-

supervised learning (see [7] for a survey) and experimentally ex-

amine it operating on actual darknet traffic data. Here, an ordi-

nary screening would be one that deletes all packets that have a

certain port number or specified TCP flags, e.g., SYN, ACK, and

RST. Such a method works well when there is no need to check a

certain port number or TCP flag. However, packets should not be

deleted if there is a chance to get clues from the number or flag;

that means deleting all of the packets may be going too far and a

more selective method should be used instead. Another method,

called filtering, checks packets against a registry containing the

characteristics of known worms or malware and deletes the pack-

ets matching them. This method of filtering is also problematic.

For example, its registers may not include all subspecies of a virus

and the amount of data in the registry can become too large. Be-

cause anyone can make subspecies easily, attempting to register

them all is a dubious way to catch a quickly evolving subspecies.

As screenings that take advantage of machine learning, the

ones devised by Tsuruta et al. [6] and Okamoto and Shoudai [4]

use frequent patterns. These methods delete packets by consid-

ering the discovered pattern’s coverage or size. Such screening

methods enable us to automatically delete groups in which huge

amounts of packets arrive in a short time. Such a group is called

a spike. However, it is difficult to use these methods to detect and

delete less frequent attacks such as slow scanning ones that con-

c© 2016 Information Processing Society of Japan 1

Vol.2016-MPS-107 No.3
2016/3/8

IPSJ SIG Technical Report

sist of one attack every ten or so minutes. Summarizing the above

points, the conventional screenings have problems as regards (a)

the quality of expression with increasing usable data, (b) accuracy

of deleting only traffic of unrelated attacks, and (c) adaptability

to new attacks or subspecies.

To solve these problems, we propose a traffic screening method

using semi-supervised learning with using graph minimum cut

(or min-cut, for short) methods [1]. Learning with min-cut is a

semi-supervised method based on graphs (see [5] for a review of

recent results). In this study, packets are considered to be vertices

that are partitioned into three labels, i.e. positive, negative, and

unlabeled. We construct a weighted directed graph and apply the

semi-supervised learning with min-cut to the weighted directed

graph. As a result, we obtain new labels so that almost all vertices

are labeled as either positive or negative. The labeled packets are

checked and some of them are deleted. We show the effectiveness

of this method in experiments on actual darknet traffic.

2. Preliminaries
2.1 Darknet and Its Traffic

A darknet is a space of IP addresses that are not used by active

computers but are available on the Internet. As such, most packets

sent to darknets are not proper accesses, but the result of some of

hacking activity. Some legitimate organizations have attempted

to catch a tendency of a hacking by monitoring packets sent to

darknets. Packets sent to darknets are considered to contain scans

made by malware, rebounding packets, called backscatter, from

hosts that are targets of distributed denial of service (DDoS) at-

tack, configuration error, preparatory action for reflection attacks,

and so on.

Each packet of darknet traffic contains the following informa-

tion: Source IP address and port, Destination port, TTL (Time To

Live), Identification, Sequence number, and Acknowledge (ACK)

number. By analyzing such information, we can clarify the past

situation of incidents, as well as detect attacks early that may

cause serious damage. The amount of traffic data reaching a dark-

net may be huge, and ordinarily, it is impossible to analyze all of

the data manually. Thus, many researchers have developed sys-

tems and techniques to analyze darknet traffic.

2.2 Semi-supervised learning
Semi-supervised learning is expected to output better results

than supervised or unsupervised learning. Semi-supervised learn-

ing uses relatively small amounts of labeled data together with

large amounts of unlabeled data. The labeled data is classified

into the two classes (positive and negative). In Section 4, we ob-

tain labeled data by executing another learning algorithm based

on non-negative matrix factorization (NMF) proposed by Kawa-

mura et al. [3]. Their algorithm is an unsupervised learning meth-

ods for early detection of network incidents. In this paper, we call

it the NMF-engine.

We propose a screening method based on a semi-supervised

learning on a weighted directed graph constructed from data pro-

cessed using the method of Blum and Chawla [1]. Their method

uses the maximum flow/minimum cut algorithm to find the mini-

mum cut in a weighted directed graph. It classifies the unlabeled

data into two classes according to the discovered minimum cut.

Here, let us briefly explain semi-supervised learning. Let X be

the whole data, and let Y be a set of labels, i.e., Y = {+,−}. The

elements + and − in Y represent positive and negative, respec-

tively. The inputs of a semi-supervised method are two subsets of

X, say L and U. Every element in L is labeled with 0 or 1. That

is, a function fL : L → Y is given in advance. Every element

of the set U is unlabeled. The output of the method is a function

f : L ∪ U → Y , i.e., a mapping the elements in Y to the elements

in L ∪ U, such that f (x) = fL(x) for all x ∈ L.

There are several kinds of semi-supervised learning. Meth-

ods based on classification start from an initial classification and

repeatedly update (refines) it. Self-training and co-training [7]

are examples of this kind. The most important point about this

method is how to compute or choose the initial classification. If

the initial classification is not good enough, the updates might in-

crease the number of errors. This means that the reliability of the

labeled data might determine the overall reliability. Subspecies

of various viruses are possibly included in traffic data, and new

subspecies are frequently generated. Therefore, if the identity of

the malware does not reflect these changes, it would not be ad-

visable to use it to label unlabeled data. For this reason, a label-

ing method that repeatedly uses a particular classification may be

considered inaccurate. On the other hand, in this paper, we con-

struct a labeling function f by using the maximum flow/minimum

cut algorithm, assuming that similar data tend to have the same

label. At first, we define the similarity between two packets in

detail. Next, we define the concept of similarity and construct a

weighted directed graph using similarity. After that, we describe

the screening method using the semi-supervised learning of Blum

and Chawla [1].

3. Graph-Based Screening
First let us explain how to construct a weighted directed graph

for graph-based learning. One packet in traffic data is represented

by one vertex of a weighted directed graph. In order to create

weighted directed edges, we define the similarity between two

vertices (see in Section 3.1). The similarity is a distance that is

calculated from traffic data described in Section 2.1. For any two

vertices, we decide on whether or not to create a weighted di-

rected edge between the vertices according to the similarity be-

tween them and the similarities among the k-nearest neighbors

(k ≥ 1) of them, where k is a constant positive integer that is

given in advance. The details on how to create a weighted di-

rected graph are described in Section 3.2.

3.1 Distance on traffic data space
3.1.1 IP header

The IP header is a prefix to an IP packet, and it determines the

destinations and routes. It contains a source IP address, destina-

tion IP address, TTL (Time To Live), and so on, which is common

information among all protocols. Below, we define distances in

terms of the source IP address, TTL, and identification of the IP

header.

• Distance determined by source and destination IP addresses

Here, we divide the source IP address of packet x1 into

c© 2016 Information Processing Society of Japan 2

Vol.2016-MPS-107 No.3
2016/3/8

IPSJ SIG Technical Report

Table 1 The initial values of typical operating systems

OS initial value of TTL

Windows 95 32

Mac OS 2.0.x 60

Mac OS X 64

Windows 98 128

Windows XP 128

MPE/IX (HP) 200

OpenBSD 255

octets. Let a1,1, a1,2, a1,3, and a1,4 be the 1st, 2nd, 3rd, and

4th octets of the source IP address of x1. Similarly, let

a2,1, a2,2, a2,3, and a2,4 be the octets of the source IP address

of packet x2. We can use the standard of allocating IP ad-

dresses to define a source address distance dsadr(x1, x2) be-

tween x1 and x2 such that the upper octet is weighted more

heavily than the lower octet.

dsadr(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if a1,1 � a2,1,

3 if (a1,1 = a2,1) ∧ (a1,2 � a2,2),

2 if (a1,1 = a2,1) ∧ (a1,2 = a2,2)

∧(a1,3 � a2,3),

1 (a1,1 = a2,1) ∧ (a2,1 = a2,2)

∧(a1,3 = a2,3)

∧(a1,4 & 0xf0 � a2,4 & 0xf0),

0 otherwise,

where “&” is the bitwise AND operator.

In a similar way, let b1,1, b1,2, b1,3, and b1,4 be the 1st, 2nd,

3rd, and 4th octets of the destination IP address of x1, and let

b2,1, b2,2, b2,3, and b2,4 be the octets of the destination IP ad-

dress of packet x2. We define a destination address distance

ddadr(x1, x2) between x1 and x2 as follows:

ddadr(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if b1,1 � b2,1,

3 if (b1,1 = b2,1) ∧ (b1,2 � b2,2),

2 if (b1,1 = b2,1) ∧ (b1,2 = b2,2)

∧(b1,3 � b2,3),

1 (b1,1 = b2,1) ∧ (b2,1 = b2,2)

∧(b1,3 = b2,3)

∧(b1,4 & 0xf0 � b2,4 & 0xf0),

0 otherwise.

• Distance determined by TTL

TTL (Time to Live) describes how long a packet survives,

i.e., the maximum number of times that a packet can go

through routers. The initial TTL value depend on the OS

and its version. The initial values of typical OSs are given

in Table 1. Eto et al. [2] described a way of estimating the

initial TTL value of a received packet. We give a brief sum-

mary in Table 2. The numbers attl(x1) and attl(x2) denote

the initial TTL values estimated from the received ones. The

TTL distance dttl(x1, x2) is defined as follows:

dttl(x1, x2) =

{
2 if attl(x1) � attl(x2),

0 otherwise.

• Distance determined by identification

In order to send and receive huge amount of data completely,

Table 2 Initial TTL estimated from received value (Eto et al. [2]).

receiving value of TTL d estimated initial value of TTL

0 ≤ d ≤ 21

22 ≤ d ≤ 39

40 ≤ d ≤ 59

60 ≤ d ≤ 89

90 ≤ d ≤ 120

120 ≤ d ≤ 159

160 ≤ d ≤ 189

190 ≤ d ≤ 255

32

48

64

100

128

168

200

255

that data has to be divided into packets. Identifications, i.e.,

IDs, are used to identify to which data a packet belongs.

Packets belonging to the same data will have the same iden-

tifications. Let aid(x1) and aid(x2) be the identifications of x1

and x2. The identification distance did(x1, x2) is defined as

follows:

did(x1, x2) =

{
1 if aid(x1) � aid(x2),

0 otherwise.

• From the above, the distance dip(x1, x2) as determined by the

IP header between x1 and x2 is defined as follows:

dip(x1, x2) = dsadr(x1, x2) + ddadr(x1, x2)

+dttl(x1, x2) + did(x1, x2).

3.1.2 TCP header
A TCP (Transmission Control Protocol) packet contains in-

formation identifying the source port, destination port, sequence

number, and acknowledgment number in its header.

• Distance determined by source and destination ports

Most malware tends to attack to a specific destination port.

For example, one piece of malware called “Morto” spreads

by misusing a remote desktop connection in Windows, and

it aims for the destination port number 3389. In view of

this, a difference in destination port number is regarded as

more important than one in source port number. Let spi and

dpi (i = 1, 2) be the source and destination ports of packets

xi (i = 1, 2). The distances dsport(x1, x2) and ddport(x1, x2)

between x1 and x2 as determined by the source ports and

destination ports are

dsport(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if sp1 � sp2,

0 otherwise.

ddport(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4 if dp1 � dp2,

0 otherwise.

• Distance determined by sequence numbers

The sequence number is a serial number for TCP communi-

cations. It is used for verifying lists of orders and detecting

midstream losses of a packets. This number determines how

much data is sent. It increases by 1 every time 1 byte is sent.

Its initial value must not be 0 and is chosen randomly. Let

seq1 and seq2 be the sequence numbers of x1 and x2. The

distance dseq(x1, x2) between x1 and x2 as determined by the

sequence number is defined as follows:

c© 2016 Information Processing Society of Japan 3

Vol.2016-MPS-107 No.3
2016/3/8

IPSJ SIG Technical Report

dseq(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if |seq1 − seq2| > 4,

0 otherwise.

• Distance determined by acknowledge numbers

The acknowledge number indicates how much data is re-

ceived. It is observable at the receiving side. It corresponds

to a sequence number. The receiving side adds 1 to a se-

quence number and returns its value to the sending side. Let

ack1 and ack2 be the acknowledged numbers of x1 and x2.

The distance dack(x1, x2) between x1 and x2 as determined

by the acknowledge number is defined as follows:

dack(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ack1 � ack2,

0 otherwise.

• From the above, the distance dtcp(x1, x2) between x1 and x2

as determined by TCP is defined as follows:

dtcp(x1, x2) = dsport(x1, x2) + ddport(x1, x2)

+dseq(x1, x2) + dack(x1, x2).

3.1.3 UDP header
UDP (User Datagram Protocol) only has information on the

source and destination ports, and the length of UDP data. The

length of UDP data is the value in bytes of the whole datagram

including its header and data.

• Distance determined by the length of UDP data

Let len1 and len2 be the lengths of UDP data of x1 and x2.

The distance dudp len(x1, x2) by the length of UDP data is de-

fined as follows:

dudp len(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if len1 � len2,

0 otherwise.

• The distance dudp(x1, x2) between x1 and x2 as determined

by UDP is defined as follows:

dudp(x1, x2) = dsport(x1, x2) + ddport(x1, x2)

+dudp len(x1, x2).

3.1.4 ICMP header
ICMP (Internet Control Message Protocol) handles error noti-

fication and transports control messages. ICMP is used to diag-

nose communication lines connecting computers. ICMP packets

contain type and code information.

• Distance determined by the code of ICMP data

Let code1 and code2 be the codes of the ICMP data of x1

and x2, and the distance dicmp code(x1, x2) as determined by

the code of the UDP data is defined as follows:

dicmp code(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if code1 � code2,

0 otherwise.

• The distance dicmp(x1, x2) between x1 and x2 as determined

by ICMP is defined as follows:

dicmp(x1, x2) = dsport(x1, x2) + ddport(x1, x2)

+dicmp code(x1, x2).

Algorithm MSSL

Input: a set L of packets each of which is labeled with + or −, and a set U of

packets with no label.

Output: a partition {U+,U−,U0} of U.

begin
(1) For any 2 packets x1, x2 ∈ L ∪ U, compute the distance d(x1, x2).

(2) Construct a weighted directed graph G = (V, E) as follows:

(a) Let V = L ∪ U ∪ {v+, v−} be a set of vertices, where v+ and v− are

new vertices.

(b) For any vertex x ∈ L∪U, find the k nearest vertices in the ascend-

ing order of the distances. Let the distances be D1, . . . ,Dk . For

each y ∈ L ∪ U that has distances Dj (1 ≤ j ≤ k) from x, make

the weighted directed edges (x, y) and assign the integer k − j + 1

as their weights.

(c) For any positive labeled vertex x ∈ L, make directed edges (v+, x)

and (x, v+), and assign infinity as their weights.

(d) For any negative labeled vertex x ∈ L, make directed edges (v−, x)

and (x, v−), and assign infinity as their weights.

(e) For two vertices having the same label if they have no edge be-

tween them, make weighted directed edges and assign infinity as

their weights.

(3) For the weighted directed graph constructed in the above way, execute

the maximum flow/minimum cut algorithm to compute the maximum

flow from v+ to v−.

(4) By removing the minimum cut-set obtained from the maximum flow,

divide V into the following three sets.

• V+ : the set of vertices that are reachable from v+,

• V− : the set of vertices reachable to v−,

• V0 : the set of vertices that are not reachable from v+ or to v−.

(5) Label the vertices in V+ with + and the vertices in V− with −.

(6) Let U+ = U ∩ V+, U− = U ∩ V−, and U0 = U ∩ V0.

end.
Fig. 1 Algorithm MSSL: Semi-supervised screening algorithm using mini-

mum cut on graph.

3.1.5 Distance between two packets
Finally the distance d(x1, x2) between two packets x1 and x2 is

defined as follows:

d(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dip(x1, x2) + dtcp(x1, x2)

if both x1 and x2 are TCPs,

dip(x1, x2) + dudp(x1, x2)

if both x1 and x2 are UDPs,

dip(x1, x2) + dicmp(x1, x2)

if both x1 and x2 are ICMPs,

∞ otherwise.

3.2 Semi-supervised screening algorithm using minimum
cut on graph

Figure 1 shows the algorithm that creates a weighted directed

graph and labels the vertices with either positive or negative

labels. The algorithm is based on the semi-supervised algo-

rithm proposed by Blum and Chawla [1]. Let k be a constant

positive number that is given in advance. Blum and Chawla

showed that when k = 1, minimizing the value of the minimum

cut corresponds to minimizing the LOOCV (leave-one-out cross-
validation) error.

4. Experiment on Real Darknet Data
Many researchers are engaged in developing early detection

c© 2016 Information Processing Society of Japan 4

Vol.2016-MPS-107 No.3
2016/3/8

IPSJ SIG Technical Report

Table 3 Labeled data that was randomly selected from the 13th period of 11th July 2011.

Number of packets
Numbers of packets to ports

22 23 3389

Positive data L+ 130 37 62 0

Negative data L− 137 0 3 0

Table 4 Remaining rate of unlabeled packets as determined by MSSL.

Total amount New positive data U+ Remaining rate

Unlabeled data U 355,495 222,327 37.46 %

Content: Packets to port No.22 35,242 29,013 17.64 %

Packets to port No.23 8,657 8,513 1.66 %

Packets to port No.3389 16,893 777 95.40 %

systems for network incidents. Their main purpose is to detect

new cyber attack patterns and to issue early warnings, not to de-

tect known patterns. It can be said that known patterns have been

dealt with. So when we search for new patterns of attacks, the

known ones make it difficult to detect new patterns. Our purpose

is to remove these known malware patterns from packets in order

to detect new patterns of malicious attacks.

The screening experiment needs data labeled with positive or

negative. The labels indicate whether the packet is already known

to be an attack or not. We used data labeled using the NMF-

engine of Kawamura et al. [3]. We applied Algorithm MSSL

to the labeled and unlabeled darknet traffic data. We screened

out darknet traffic data that had initially no labels other than new

positive ones, which would then be sent for further tests; i.e.,

for a given set U of unlabeled packets, we computed a parti-

tion {U+,U−,U0} of U by Algorithm MSSL and left U \U+, i.e.,

U− ∪ U0. Two experiments are discussed below.

4.1 NICT darknet data collected in July 2011
The National Institute of Information and Communications

Technology, Japan (NICT) has set up a darknet and monitors it in

order to examine and understand the behavior of Internet traffic

data. First, we have experimented on NICT darknet data collected

in July 2011. As preprocessing, packets with the TCP flag RST

were deleted because they are unrelated to any malware attacks.

After that, we divided the 24 hour data in amounts received in the

corresponding 30 minutes; i.e. we divided up the 24 hours worth

of data into 48 periods of which there were tens of thousands

packets in each.

The “Morto” malware was first recognized on 11th July 2011

(JST), when it attacked destination port number 3389. There are

12,252 packets identified to be malicious by the NMF-engine in

the 13th period of 11th July, which includes 29,277 packets. Dur-

ing this period, the NMF-engine detected packets bound for des-

tination port numbers 22 and 23 and issued alerts on them. We

considered that the malicious data detected by the NMF-engine to

be positive data. We randomly chose 131 packets from positive

data and set the set of these packets to be L+. We also randomly

chose 137 packets from negative data that consisted of packets

during the 13th period of 11th July that were not identified to be

malicious by the NMF-engine (Table 3). We set the set of these

packets to be L−.

The purpose of this experiment was to remove only packets

of known malware found by existing malware detection systems.

We expected to obtain new data that contained attacks to destina-

tion port number 3389, like “Morto”, at a higher rate.

Evaluation 1: We have applied Algorithm MSSL to every data

of the 14th to 48th periods, which were used as unlabeled data U.

To evaluate how many packets were still left in U− ∪ U0, we cal-

culated the remaining rate of packets attacking destination port

numbers 22, 23, and 3389. More precisely, let N be the number

of packets sent to destination port number A before screening,

and n the number of packets sent to the same port after screening.

The remaining rate of A is defined as n/N.

The rate of remaining packets considered to be part of known

attacks should be smaller than that of packets considered to be un-

related to any other attack. These “remaining rates” after screen-

ing are shown in Table 4. We can see that the remaining rate

for destination port number 3389 is much bigger than the oth-

ers. Therefore, it can be said that Algorithm MSSL successfully

reduced the number of packets of each data. However, the re-

maining rate of the whole unlabeled data was small. This is be-

cause the positive labeled data contains packets destined not only

to destination port numbers 22 and 23 but also to the other ports.

The remaining rates of packets sent to each port tend to depend

on the original labeled data.

4.2 International data collected in January 2014
Next, we ran Algorithm MSSL on data obtained by monitoring

a darknet in the Maldives on 29th January 2014 (JST). Packets

with SYN and ACK, or RST TCP flags were all removed because

we decided that those packets were unrelated to any attack.

4.2.1 Fixed labeled data
On 29th January 2014 (JST), the NMF-engine found malicious

packets in all of the 2nd to 18th periods. 149 positive labeled

packets were selected randomly at a 25% rate from the mali-

cious packets of the 2nd period on 29th January 2014. We set

the set of these packets to be L+. Moreover, 170 negative labeled

packets were selected randomly at a 25% rate from packets of

the same period that were not identified to be malicious by the

NMF-engine. We set the set of these packets to be L−. We used

unlabeled data of the 3rd to 18th periods on the same day. We

appied Algorithm MSSL to the 16 sets of packets in the 3rd to

18th periods. We refered these sets as U(i) for i = 3, 4, . . . , 18.

The total number of packets in each unlabeled data was 13,059.

The maximum and minimum numbers of packets in each period

were 1,197 and 204, respectively. We evaluated the accuracy of

learning as follows:

Evaluation 2: We evaluated the precision, recall, and F-

measure between the two kinds of the positive packets identified

c© 2016 Information Processing Society of Japan 5

Vol.2016-MPS-107 No.3
2016/3/8

IPSJ SIG Technical Report

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%
100.0%

3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

Precision of unlabeled data collected every 30 min.

Fixed labeled data Successively updated labeled data

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%
100.0%

3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

Recall of unlabeled data collected every 30 min.

Fixed labeled data Successively updated labeled data

Fig. 2 Transitions of Precision (on left) and Recall (on right) using data labeled by MSSL fixed or up-

dated. Horizontal axises means start times of divided by 30 minutes.

by the NMF-engine and Algorithm MSSL. Let L(i)
+ be the set of

packets in the i-th period for i = 3, 4, . . . , 18 that were identi-

fied to be positive, i.e., malicious, by the NMF-engine. Let U(i)
+

be the set of packets that were identified to be positive by Al-

gorithm MSSL on inputs L+, L−, and U(i). For i = 3, 4, . . . , 18,

the precision p(i), the recall r(i), and F-measure f (i) are defined

as p(i) = |L(i)
+ ∩ U(i)

+ |/|U(i)
+ |, r(i) = |L(i)

+ ∩ U(i)
+ |/|L(i)

+ |, and f (i) =

2 · p(i) · r(i)/(p(i) + r(i)), respectively.

The precision, recall, and F-measure of the whole data were

83.4%, 50.8%, and 63.1%, respectively. We consider that the

precision is high enough. Generally speaking, a screening traffic

data method will not remove packets originating from unknown

malware. Therefore, we organized the parameters so as to keep

the precision high. Consequently, the recall became relatively

low. One of the reasons is that semi-supervised learning has less

efficiency on little unlabeled data. Another reason is the fixed

labeled data. Since malware attacks are being replaced at faster

rates, accuracy with fixed labeled data is considered bad. There-

fore, we conducted an experiment in which the labeled data were

successively updated.

4.2.2 Successively updated labeled data
In the above experiment, we took positive data to be labeled at

a fixed point in time. Consequently, accuracy deteriorated over

time (Figure 2). For that reason, we experimented on our algo-

rithm using successively updated labeled data. In doing so, we

expected to improve accuracy. We applied Algorithm MSSL in

the following way (i = 3, 4, . . . , 18):

(1) Let L+ be a subset of the positive labeled packets selected

randomly at a 25% rate from L(i−1)
+ , and let L− be a subset of

the negative labeled packets selected randomly at a 25% rate

from packets of the (i − 1)-th period that were not identified

to be malicious by the NMF-engine.

(2) Apply Algorithm MSSL to unlabeled data U(i) in the i-th
period with L+ and get new positive labeled data W (i)

+ ⊆ U(i).

(3) Evaluate W (i)
+ and L(i)

+ by calculating its accuracy, i.e., its pre-

cision, recall, and F-measure, which are defined in the same

way as the previous experiment.

When the labeled data were updated every period, the precision

of the whole unlabeled data was 86.8%. This rate is better than

the 83.40% of when the labeled data is fixed. Moreover, the recall

and F-measure improved on average. Figure 2 shows the preci-

sion and recall when labeled data were fixed or updated succes-

sively. We can conclude that updating the labeled data improved

learning accuracy.

5. Conclusion
We proposed a screening method using semi-supervised learn-

ing based on graphs. Screening experiments were conducted on

real darknet traffic data using positive and negative data labeled

by the NMF-engine. We are currently developing a screening

method that achieves high recall while keeping precision high.

Acknowledgments This work was partially supported by

Proactive Response Against Cyber-Attacks Through Interna-

tional Collaborative Exchange (PRACTICE), Ministry of Inter-

nal Affairs and Communications, Japan, and partially supported

by Grant-in-Aid for Scientific Research (B) (Grant Numbers

26280087) from Japan Society for the Promotion of Science

(JSPS), and Grant-in-Aid for Scientific Research on Innovative

Areas (Grant Number 24106010) from the Ministry of Education,

Culture, Sports, Science and Technology (MEXT), Japan.

References
[1] Blum, A. and Chawla, S.: Learning from Labeled and Unlabeled Data

using Graph Mincuts, Proceedings of the 18th International Confer-
ence on Machine Learning (ICML2001), pp.19–26 (2001).

[2] Eto, M., Inoue, D., Suzuki, M., and Nakao, K.: A Statistical Packet In-
spection for Extraction of Spoofed IP Packets on Darknet,Proceedings
of the 4th Joint Workshop on Information Security (JWIS 2009),
(2009).

[3] Kawamura, Y., Shimamura, J., Nakazato, J., Yoshioka, K., Eto, M.,
Inoue, D., Takeuchi, J., and Nakao, K.: Experimental Evaluation of
A Botnet Detection Method based on Non-negative Matrix Factor-
ization (in Japanese), The Institute of Electronics, Information and
Communication Engineers, Japan, IEICE Technical Report, 113(288),
ICSS2013-61, pp.23–28 (2013).

[4] Okamoto, A. and Shoudai, T.: Mining First-Come-First-Served Fre-
quent Time Sequence Patterns in Streaming Data, Proceedings of the
IADIS International Conference on e-Society (ES2013), pp.283–290
(2013).

[5] Subramanya, A. and Talukdar, P.P.: Graph-Based Semi-Supervised
Learning, Synthesis Lectures on Artificial Intelligence and Machine
Learning, Morgan & Claypool Publishers (2014).

[6] Tsuruta, H., Shoudai, T., and Takeuchi, J.: Network Traffic Screen-
ing Using Frequent Sequential Patterns, Intelligent Control and Inno-
vative Computing, Springer, Lecture Notes in Electrical Engineering,
Vol.110, pp.363–375 (2012).

[7] Zhu, X. and Goldberg, A.B.: Introduction to Semi-Supervised Learn-
ing. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, Morgan & Claypool Publishers (2009).

c© 2016 Information Processing Society of Japan 6

Vol.2016-MPS-107 No.3
2016/3/8

