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A Consideration on the Residual Distribution in
Minimum Mean Absolute Error Prediction

Yoshihiko HASHIDUME'

Introduction
Recent years have seen an increased level of research
in lossless image compression, in addition to lossy com-
pression. Lossless image coding is required and desired
in certain applications such as medical imaging, satel-
lite imaging and digital archiving of cultural heritages.
Since the predictive coding scheme enables us to pre-
dict each pel one by one and rather precisely in aid of
adaptation, many lossless coding schemes employ pre-
diction. In prediction-based lossless image compression
systems, accurate prediction and statistical error mod-
eling play central roles and these issues are at the very
heart of this research.

For lossless image coding based on prediction, the
coding performance depends largely on the efficiency of
predictors. In general, predictors are optimized to min-
imize mean square error (mse), called mmse predictors
[ll[i , but these predictors suffer from large errors
at edges. In response, the authors have proposed mini-
mum mean absolute error (mmae) predictors which are
optimized to minimize mean absolute error (mae) and
are less sensitive to edges £4}. [4] says that using mmae
predictors the accuracy of prediction is enhanced and
entropy of prediction errors is reduced.

This paper addresses the modeling of prediction er-
rors. After designing of predictors, context-based clas-
sifications of prediction errors are conducted. The dis-
tribution of prediction errors based on mmae predictors
is leptokurtic, while the one based on mmse predictors
is less leptokurtic. Therefore, in this paper, we use the
Laplacian and the Gaussian function models for the
predictlon errors based on mmae and mmse predictors,
respectively, and show mmae predictors are superior to
mmse pre ictors in terms of coding performance.

2.

1.

Minimum Mean Absolute Error Pre-
dictor
When we denote the current pel p;’s value by B(p;),

the predicted value B(pz) is calculated by the following
equation:

B(pi) = ozT'aa

where 02' [B(pi1)7B(p'iz)7"’ ’
cal causal area vector of p; (see Figure 1) and a

Lal, ag, - a14] is the vector of predlctlon coefficients
or p;. When we denote the set of pels in coding area
by R = {p;/i = 1,2,---, S}, a problem to design mmae
predictors for R can be Written as a mathematical pro-
gramming problem as follows:

B(pm)]T is the lo-

Min}zmize el = Z [e:
piER

. ()
e=B-B,

subject to
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Figure 1: Region of pels for the prediction.

where e = [617 €2, 7eS]T> B = [B(pl))B(p2)7 Y B
ps)|T, B = [B(p1), B(p2),- -+, B(ps)]T, and note that
the parameters a to be found are included in B. The
absolute part of the objective function makes this prob-
lem difficult to solve. So, we transcribe the ith element
of the vector e as

e;=¢ef —e;, er>0,e >0,

3)
and boil down this problem to a linear programming
problem. In the same way, by transcribing a; which
is the jth element of the prediction coefficients a, the
problem (2) can be rewritten as a linear programming
problem as follows:

Min&mize 1T~e++ 1T . e~
subject to B=B-e* +e,
B(p) = 6T - (a* —a") “)
(fOTZ=1,2, )5)7
et >0, a* >0,
where et = [ef,e%,m,e?]T at = [af,azzt,' i]Ta
1=[1,1,---,1)T.

This problem could be solved using linear program-
ming methods such as the simplex method or the
interior-point method. In this paper, we employ Bar-
rodale’s method [5] which is based on the simplex
method, and requires minimal memory and compu-
tational time. Also, since our lossless coding scheme
employs classification-based technique [3], each block
(8 x 8 pels) of images is classified to select an appropri-
ate linear predictor in a mmae or a mmse sense from
C different kinds of predictors, and each predictor is
optimized for each class of blocks

Figure 2 (b) and (c) show the prediction errors of the
sample block shown in (a) using a mmae and a mmse
predictor designed for this block, respectively. Since
mmae predictors are designed to deemphasize outliers,
prediction accuracy of flat parts in the block is en-
hanced and the number of prediction errors close to
0 in the block increases than in case of mmse predic-
tors. At the same time, prediction accuracy of edge
parts in the block is dropped off and larger prediction
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(a) sample block (lena)

(b) prediction errors based on
mmae predictors
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Figure 2: Prediction errors based on mmae and mmse predictors. (b) and (c) show prediction errors of the sample
block shown in (a) in case of mmae and mmse predictors, respectively.

Table 1: Entropy (bits/pel) of prediction errors only.
In “mae” and “rmse” columns, mean absolute error
and root mean square error of prediction errors of each
image are shown, respectively, where predictors are de-
signed for each block (8 x 8 pels) and using them pre-
diction errors are found, and in “entropy” columns, en-
tropy of prediction errors of each image is shown. This
table indicates that using mmae predictors the accu-
racy of prediction is more enhanced than mmse predic-
tors.

mmae mmse
Image mae | rmse [entropy|| mae | rmse Jentropy
airplane [[2.364]4.660[ 3.519 [[2.556]4.207] 3.768
baboon 119.014|14.963| 5.274 ||9.678|13.937| 5.714
balloon {/0.953|1.612 | 2.469 | 1.018|1.501| 2.515
barb 2.39814.108 | 3.621 ||2.577|3.809| 3.814
barb2 3.727]16.760 | 4.117 |/ 4.023|6.279 | 4.435
camera |3.921]9.535| 3.920 |4.311|8.706 | 4.330
couple 2.093|4.333{ 3.311 |/2.274|3.942| 3.597
goldhill |3.278(5.532| 4.000 {/3.531|5.131| 4.268
lena 3.177(5.214| 3.991 {13.415|4.854 | 4.211
lennagrey|| 2.464} 4.183 | 3.660 (12.647|3.890| 3.848
peppers |/ 3.001|4.987| 3.922 ||3.229]|4.625| 4.126

Average ][3.308] 5.090] 3.800 ||3.569] 5.543] 4.057

errors occur. Also, Table 1 lists entropies ¥ of whole
prediction errors for each image, where predictors are
designed for each block and using them for each block
prediction errors of each image are measured. This ta-
ble implies that predictors designed in mmae sense are
more effective than in mmse sense in terms of coding
performance.

3. Modeling of Prediction Errors

After the prediction, context modeling of prediction
errors is conducted similar to [6]. Since neighboring
prediction errors are appeared to have strong correla-

1Using the event probability p(e) of each possible prediction
error e (= —255, 254, .. ., 255) in the image, entropy I is defined
as I .= —37 p(e)logp(e).
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Figure 3: Region of pels for the context modeling.

tions each other, in this paper the context function of
pel p; is defined as the weighted sum of 6 absolute pre-
diction errors in the local causal area given in Figure 3
as follows:

(5)

where d;; is the Manhattan-distance of the pel p; ; from
the pel p; and e;; = | B(p;;) — B(pi;) +0.5]. According
to our simulations, the weighting with the Manhattan-
distance improves lossless compression rates. Using U;
and thresholds each prediction error e; is classified to
Q quantization groups (step 1), and each scale param-
eter (see Table 2) for each group is found (step 2). In
step 1, optimal quantization group of each prediction
error and thresholds can be found using dynamic pro-
gramming [6]. In decoding procedure, the quantization
group of each prediction error is given by U; and the
thresholds. These procedures are repeated until the
likelihood }_; Pr (e; | B(p;),q) is maximized, where
g(=1,2,---,Q) is a label of quantization groups and
P, () is the conditional probability derived from mod-
eling probability density function (PDF) for group gq.
According to our simulations, in case of mmae predic-
tors, the Laplacian function is superior to the Gaus-
sian function as a modeling PDF for prediction errors
in terms of coding performance in average. On the
other hand, in case of mmse predictors, the Gaussian
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Table 2: The Laplacian and the Gaussian functions.

Laplacian Gaussian
|z — _(z—p)?
PDF L3t L e 5
270

Location — median(z;) X
parameter b= i g - n
Scale b= Zimlzimpl | o /30 (@imp)?
parameter n n

function is superior to the Laplacian function. So, in
this paper we use the Laplacian and the Gaussian func-
tion models (given in Table 2) for the prediction errors
based on mmae and mmse predictors, respectively.

4. Definition of Coding Bits

Since pel values and predicted values of grayscale
imges are in the range between 0 and 255, possible
values of prediction error e; = [B(pi)r— ng,-) +0.5]
are bounded between -255 and 255. Therefore, when
the e; and the quantization group ¢ of e; are given, the
conditional probability of e; is derived as

2 P (ei]q)
P, (e; | B i)y = : ) 6
.(& [ B(pi),9) S5 Pl (6)
where P (z | ) is given by PDF f(z) as
x+0.5
Ruelo= [ fed (”

with zero location parameter in PDF.
In this paper, as the coding bits for the prediction
error e;, the following cost function is used:

Ji = —logy Py, (e | B(p:),q). (8)

And as the coding bits for side information listed below,
the entropies of them are used.

o Prediction coefficients for each class (9 bits per el-
ement of prediction coefficients including sign bit).

o Class label of prediction coefficients for each block.

e Thresholds and scale parameters for each group.

5. Optimization Procedure

As mentioned in the previous sections, in the pro-
posed scheme, classification-based block adaptive pre-
diction technique is employed and context-based clas-
sification of prediction errors is conducted. In this sec-
tion, we describe the details of our optimization proce-
dure in the following steps.

1. Divide the test image into blocks of size
8 x 8 and design a predictor for each block
(“whole pels / (8 x8)” different kinds of predictors
are designed).
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“Whole pels /(8 x 8)” predictors are narrowed
down to C kinds of predictors using VQ.

Each block is classified to select an appropriate
predictor in a mmae or a mmse sense from C dif-
terent kinds of predictors.

Design predictors for each class of blocks.
Context modeling is conducted.

(a) Optimize the quantization group of each pre-
diction error and thresholds using dynamic
programming.

(b) Find scale parameter for each quantization
group.

(c) Repeat (a) and (b) until the likelihood
> Pr,(ei | B(pi), q) is maximized.

6. Stop if mae or mse is minimized, else go to 3..

6. Experimental Results

In order to evaluate the efficiency of mmae predic-
tors, we compare them with mmse predictors. The
experimental conditions are equal to each other all but
predictors and the modeling function. Table 3 and 4 list
compression results tested for several 8-bit continuous-
tone monochrome images. In our simulation, the num-
ber of Q is fixed to 16 and C is set to 16,32,64. In
Table 3, as coding bits of prediction errors the entropy
of them is used. The results show that accurate pre-
diction with mmae predictors improves coding perfor-
mance. In Table 4, as coding bits of prediction error
e; the cost function J; given by Eq.(8) is used. The re-
sults show that mmae predictors are superior to mmse
predictors in terms of coding performance, in each case
of C, including error modeling. Especially, bit rates
for ‘camera’ and ‘couple’ are reduced very much. On
the other hand, bit rates for ‘balloon’ are increased.
This is because the Gaussian function is more suitable
than the Laplacian as the modeling PDF for this im-
age. This problem can be taken care of by employing
the generalized Gaussian function [6] or the generalized
Laplacian function [7] as the modeling function.

Table 3: Entropy (bits/pel) of whole informa-
tion needed to encode several 8-bit continuous-tone
monochrome images in case of mmae and mmse pre-
dictors, where as coding bits of prediction errors the
entropy of them is used. This table indicates that ac-

curate prediction improves coding performance.

. mmae mrse
Image 16 | 32 | 64 6 | 32 | 64
airplane [ 3.679]3.687[3.702 ] 3.693 [ 3.696 | 3.716
baboon 5.747 | 5.754 | 5.776 || 5.751 | 5.757 | 5.774
balloon 2.722 | 2.720 [ 2.729 || 2.723 | 2.719 | 2.726
barb 4.004 | 3.973 | 3.957 || 4.057 | 3.982 | 3.966
barb2 4.346 | 4.339 | 4.346 || 4.404 | 4.389 | 4.370
camera, 4.049 { 4.077 | 4.137 || 4.121 | 4.144 | 4.219
couple 3.493 | 3.517 | 3.583 || 3.536 | 3.561 | 3.627
goldhill 4.293 | 4.294 | 4.307 || 4.310 | 4.303 | 4.311
lena 4.345 | 4.346 | 4.362 || 4.356 | 4.350 | 4.365
lennagrey|| 3.957 | 3.959 | 3.972 || 3.961 | 3.966 | 3.980
peppers || 4.278 | 4.284 | 4.296 || 4.279 | 4.283 | 4.298

Average | 4.083 | 4.086 | 4.106 || 4.108 | 4.105 | 4.123




FIT2007 (55 6 EIREMFERMI +—35 L)

Table 4: Bit rates (bits/pel) of whole informa-
tion needed to encode several 8-bit continuous-tone
monochrome images in case of mmae and mmse pre-
dictors. The number (16, 32, 64) written in the second
row indicates the number of classes of predictors.

Imae mmae minse

g 6 | 32 | 64 6 | 32 | 64
airplane [[ 3.706 [ 3.7103.722 ][] 3.736 | 3.734 | 3.750
baboon || 5.778 | 5.781 | 5.800 || 5.788 | 5.793 | 5.806
balloon || 2.772 | 2.767 | 2.772 || 2.740 | 2.733 | 2.739
barb 4.045 | 4.012 | 3.993 || 4.076 | 4.000 | 3.981
barb2 4.379 | 4.370 | 4.372 || 4.442 | 4.423 | 4.399
camera || 4.108 | 4.131 | 4.189 || 4.226 | 4.236 | 4.293
couple | 3.527 | 3.546 | 3.612 || 3.611 | 3.630 | 3.684
goldhill || 4.321 | 4.317 | 4.327 || 4.346 | 4.335 | 4.340
lena 4.37714.375 | 4.387 || 4.379 | 4.373 | 4.385
lennagrey| 3.988 | 3.988 | 3.997 || 3.986 | 3.990 | 4.001
peppers || 4.307 | 4.309 | 4.318 || 4.309 | 4.309 | 4.323

Average [[4.11974.11974.13514.14974.14174.155

7. Computational Complexity

In the normal simplex method, a lot of discharge cal-
culations are needed. So, computational time to solve
linear programming problems depends largely on the
order k of predictors and the number S of pels in each
prediction class. In addition, a simplex tableau which
is an array of dimentions (S + 1) x 2(k + S + 1) is
required. In our case, k is fixed to 14, but in the iter-
ation procedure noted Sec. 5. S happens to be over
10000. Therefore, this method is not realistic with re-
spect to computational time and memory. In response,
the Barrodale’s method [5] requires small size of sim-
plex tableau, an array of dimentions (S + 2) x (k +2),
and less discharge calculations. On the images whose
size is 512 x 512 pels, our scheme takes about 10 — 15
minutes with 3.60GHz Pentium(R) 4 processor.

8. Conclusion

We considered the residual distribution in minimum
mean absolute error prediction. Experimental results
demonstrate that accurate prediction improves coding
performance and mmae predictors are effective in loss-
less image coding. In this paper, we employed simple
PDFs such as the Laplacian and the Gaussian func-
tion as modeling functions. Since prediction errors
have some kinds of statistical structures, these func-
tions might not be sufficient for modeling. The gen-
eralized Laplacian function, the generalized Gaussian
function, or other mixtured models enable us to model
prediction errors more precisely and more reduction of
the bit rates is expected.

Also, as future works, improvement of predictors,
coding of side information, reduction of computational
time, implementation of arithmetic coding, and etc.
are desired.
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