FIT2007 (55 6 BREHRMZFRM I+ —5 L)

1-005

VISUALIZATION OF LARGE RLE-ENCODED VOXEL VOLUMES

ATy R TUT
Sven Forstmann

Abstract

We present a method for visualizing large voxel volumes
based on optimized ray-casting. Other than conventional
methods casting a ray for each pixel on the screen, our method
only casts one ray per column and then traverses the voxel
volume in a front to back manner. This can be done efficiently as
our data is encoded by run-length-encoding (RLE), reducing the
overall cost for the traversal. To exploit frame-to-frame
coherency and to make the visualized scene rotation invariant,
we are storing the rendered result temporarily in a cube-map. As
the cube-map might have any orientation when finally rendered
as cube around the view-point, 6 DOF are achieved.

1. Introduction

Volume rendering is an area with many applications and it has
been studied well in the past history. The algorithms that have
been utilized to achieve the visualization of volume data are
various, and range from simple ray-casting over slice based
rendering to more complex acceleration structures like octrees,
Kd-trees or other space-skipping techniques to improve the
visualization speed. A comprehensive review of all significant
techniques can be found in [1]. The intention of our research is,
to optimize ray-casting based rendering especially for voxel
volumes. This is a special case of volume rendering, as empty-
space skipping can be treated more efficiently. The main purpose
of our algorithm is, to utilize newest graphics hardware for
performing ray-casting directly on the GPU using CUDA [4],
rather than using inflexible Shaders, which have been used so far
for general-purpose computations.

2. Algorithm design

Our intended algorithm is based on the partially documented
method of Ken Silverman [3]. The algorithm basically does ray-
casting of run-length-encoded (RLE) volume data in a front-to-
back manner. The main advantage over conventional volume
rendering approaches is that the RLE-encoding drastically
accelerates the ray-traversal for average complex scenes. For
performing an accurate volume traversal, a gradient based
traversal algorithm similar to [2] is used. To further improve the
speed, mip-maps of the volume data are generated which speed-
up the rendering of distant objects. Our desire is to improve and
modify the existing algorithm in several ways, to make it feasible
for up-to-date graphics hardware. We therefore have to take care
of data alignments, caching, parallel computing issues and do
further plan to take advantage of frame-to-frame coherencies.

t Waseda University Tokyo, GITS

X& Zt
Jun Ohya
Top-down view
screen RLE voxel-vo e

Side view

RLE voxel-volume

Fig.1. Volume traversal: The volume is RLE compressed in y-
direction. The traversal order is performed from front to back in z-
direction, as indicated by the black arrows.

3. The basic volume traversal

The algorithm processes the screen successively column by
column from left to right in x-direction and in a near-to-far
manner in z per column. For each column, one ray needs to be
casted in xz-direction, while for each xz-position, all vertical
voxel-sticks (the RLE-encoded elements) have to be visited. To
allow an early ray termination, pixels on the screen that have
been drawn are marked. If one column is marked completely, the
traversal can be stopped as no more pixels will be drawn.

The advantage of the proposed method compared to
conventional volume rendering is, that we do not have a
complexity of O(n*).The complexity is O(n*n*c), where n is the
side length of the volume cube, and ¢ the maximum complexity
in y-direction. In worst case situations, ¢ might be equal to n, but
for average 3D-scenes (especially landscapes), ¢ is a number that
is much smaller than n.

4. 6 degrees of freedom

The method explained above works well if the camera is
oriented orthogonal to the xz-layer as shown in Fig.2, resulting in
4 degrees of freedom (DOF). However, our idea of visualization
is, to allow a free camera orientation with 6 degrees of freedom.

207



FIT2007 (55 6 [A'BRBIFRMI #—3 L)

Step 1

Step 2

Render cube-map textures
6 views =6 textures

Render cube-map
around camera

Fig.2. 6 DOF by using a cube-map: The scene is rendered in six
directions in a first step, where each direction is equal to one
texture on the cube-map. In the second step, the cube-map is
rendered around the camera.

The method described in [3] therefore utilizes a two-step
approach. In the first step, the scene is rendered in columns that
are aligned to the RLE-encoded volume data to a temporary
buffer. In a second step, the temporary buffer is used as a texture
and mapped onto the screen.

We propose a different way of handling 6 DOF by storing the
rendered results achieved in section 2 temporarily in a cube-map.
For the final visualization, we have to place the cube-map as a
standard cube around the camera as demonstrated in Fig.2. This
allows a rotation invariant caching of the rendered scene.

To speed up the process and avoid rendering all cube-map
textures each time completely, it is possible to mark visible areas
in a pre-processing step.

5. Shading and Materials

In order to shade the rendered geometry, we need to have
normal vectors stored for each of the rendered volume elements.
This has to be handled a little bit special manner in our case, as
the volume is run-length encoded. In particular, elements like a
simple cube for example (see Fig.3) have to be split into multiple
parts for accurate normal vectors.

To provide even more surface details, we can apply texture
mapping by storing an additional material index in the RLE data
structure. The texture coordinates can then be computed based
on the voxel-position in 3D-space and the normal-vector
orientation, while the final color is computed using tri-planar
mapping, as described in [5].

One RLE element finally consists of 8 bytes, which are
divided into the following parts:

Start coordinate (2 bytes), run-length (2 bytes), surface normal
(3 bytes) and material index (1 byte).

6. GPU Optimizations

As we are dealing with graphics hardware, the scene is stored
in textures, as in Fig.4, rather than conventional arrays. The
scene is therefore subdivided into quadratic regions where the
amount of texture layers for each region depends on the y-
complexity. As recent graphic cards have up to 128 and more
cores, it is possible to parallelize the rendering task by assigning
one column of the screen to each core. Frame-to-frame

Initially Corrected

Fig.3. Normal vectors: As our RLE encoded volume only stores
one normal per element, we are required to split the object for
achieving accurate surface normais.

Fig.4. Memory management: The scene is stored in textures,
where each texture can store one y-layer. The textures are
indicated as grey blocks below the scene

coherency can further be employed, by caching the visible RLE
elements of the view-frustum in a texture, avoiding a complete
traversal for each xz-position.

6. Conclusions and Future Work

We have presented a volume rendering method for large voxel
volumes and proposed several ways to improve existing methods
for nowadays graphics hardware. Future work will include the
implementation of the algorithm using the CUDA programming
language and testing the method on various examples.

Acknowledgements

We would like to thank Samuel Moll of the Ludwig-
Maximilian University Munich for his support in the preparation
phase of this paper.

References

1). T.Todd Elvins, "A survey of aigorithms for volume
visualization", Computer Graphics, vol.26-3, pp.194--201, 1992

“A Fast Voxel Traversal
Eurographics Conference

2). J. Amanatides, A. Woo.
Algorithm for Ray Tracing”,
Proceedings 1987, pp. 003-010

3). Ken Silverman: Voxlap fittp://advsys.netken/voxlap.htni ,
visited 5/2007

4). NVidia Corp, Compute Unified Device Architecture

(CUDA) hutp://developer.nvidia.com/object/cuda. html

208

5). Ryan Geiss, Michael Thompson: "NVIDIA Demo Team
Secrets — Cascades", Talk at GDC2007



