A-018

Balanced (C_4, C_7) -2t-Foil Decomposition Algorithm of Complete Graphs

Kazuhiko Ushio
Department of Informatics
Faculty of Science and Technology
Kinki University
ushio@info.kindai.ac.jp

1. Introduction

Let K_n denote the complete graph of n vertices. Let C_4 and C_7 be the 4-cycle and the 7-cycle, respectively. The (C_4, C_7) -2t-foil is a graph of t edge-disjoint C_4 's and t edge-disjoint C_7 's with a common vertex and the common vertex is called the center of the (C_4, C_7) -2t-foil. In particular, the (C_4, C_7) -2-foil is called the (C_4, C_7) -bowtie. When K_n is decomposed into edge-disjoint sum of (C_4, C_7) -2t-foils, we say that K_n has a (C_4, C_7) -2t-foil decomposition. Moreover, when every vertex of K_n appears in the same number of (C_4, C_7) -2t-foils, we say that K_n has a balanced (C_4, C_7) -2t-foil decomposition and this number is called the replication number.

Note that (C_4, C_7) -2t-foil has 9t + 1 vertices and 11t edges.

It is a well-known result that K_n has a C_3 decomposition if and only if $n \equiv 1$ or 3 (mod 6). This decomposition is known as a Steiner triple system. See Colbourn and Rosa[2] and Wallis[15]. Horák and Rosa[3] proved that K_n has a (C_3, C_3) -bowtie decomposition if and only if $n \equiv 1$ or 9 (mod 12). This decomposition is known as a bowtie system.

In this sense, our balanced (C_4, C_7) -2t-foil decomposition of K_n is to be known as a balanced (C_4, C_7) -2t-foil system.

2. Balanced (C_4, C_7) -2t-foil decomposition of K_n

Theorem. K_n has a balanced (C_4, C_7) -2t-foil decomposition if and only if $n \equiv 1 \pmod{22t}$.

Proof. (Necessity) Suppose that K_n has a balanced (C_4, C_7) -2t-foil decomposition. Let b

be the number of (C_4, C_7) -2t-foils and r be the replication number. Then b = n(n-1)/22t and r = (9t+1)(n-1)/22t. Among r (C_4, C_7) -2t-foils having a vertex v of K_n , let r_1 and r_2 be the numbers of (C_4, C_7) -2t-foils in which v is the center and v is not the center, respectively. Then $r_1 + r_2 = r$. Counting the number of vertices adjacent to v, $4tr_1 + 2r_2 = n - 1$. From these relations, $r_1 = (n-1)/22t$ and $r_2 = 9(n-1)/22$. Therefore, $n \equiv 1 \pmod{22t}$ is necessary. (Sufficiency) Put n = 22st + 1, T = st. Then

(Sufficiency) Put n = 22st + 1, T = st. Then n = 22T + 1.

When T = 1, construct a balanced (C_4, C_7) -2-foil decomposition of K_{23} as follows:

 $B_i = \{(i, i+5, i+13, i+6), (i, i+1, i+3, i+7, i+10, i+20, i+9)\}\ (i=1, 2, ..., 23).$

First, consider a sequence $S: g_1, g_2, g_3, ..., g_T$. When T = 2, put $S: g_1, g_2$ with $g_1 = 21, g_2 = 10$

When T = 3, put $S : g_1, g_2, g_3$ with $g_1 = 28, g_2 = 30, g_3 = 29$.

When T = 4, put $S : g_1, g_2, g_3, g_4$ with $g_1 = 39, g_2 = 41, g_3 = 38, g_4 = 37$.

When T = 5, put $S : g_1, g_2, g_3, g_4, g_5$ with $g_1 = 51, g_2 = 47, g_3 = 49, g_4 = 48, g_5 = 46$.

When $T \equiv 2 \pmod{4}$, $T \geq 6$, put T = 4p + 2 and $S: g_1, g_2, g_3, ..., g_{4p+2}$ with $S_1: g_1, g_3, g_5, ..., g_{2p-1}$, $S_2: g_2, g_4, g_6, ..., g_{2p}$, $S_3: g_{2p+1}$, $S_4: g_{2p+2}, g_{2p+3}, g_{2p+4}, ..., g_{4p+2}$ such as $S_1: 10T-2, 10T-4, 10T-6, ..., 10T-2p+3$ $S_2: 10T+1, 10T-1, 10T-3, ..., 10T-2p+3$ $S_3: 10T-2p+1$ $S_4: 10T-2p-1, 10T-2p-2, 10T-2p-3, ..., 9T+1$.

When $T \equiv 3 \pmod{4}$, $T \geq 7$, put T = 4p + 7 and $S : g_1, g_2, g_3, ..., g_{4p+7}$ with $S_1 : g_1, g_{2p+3}, g_{4p+5}, g_{4p+6}, g_{4p+7}$, $S_2 : g_2, g_3, g_4, ..., g_{2p+2}$

, $S_3: g_{2p+4}, g_{2p+6}, g_{2p+8}, ..., g_{4p+4}$, $S_4: g_{2p+5}, g_{2p+7}, g_{2p+9}, ..., g_{4p+3}$ such as $S_1: 10T +$

1,10T-2p-3,9T+5,9T+3,9T+1 S_2 : 10T-1, 10T-2, 10T-3, ..., 10T-2p-1 $S_3:$ 10T-2p-5, 10T-2p-7, 10T-2p-9, ..., 9T+2 $S_4: 10T-2p-2, 10T-2p-4, 10T-2p-$ 6, ..., 9T + 7.When $T \equiv 0 \pmod{4}$, $T \geq 8$, put T =4p + 4 and $S : g_1, g_2, g_3, ..., g_{4p+4}$ with $S_1 :$ $g_1, g_3, g_5, ..., g_{2p-1}, S_2: g_2, g_4, g_6, ..., g_{2p+2}, S_3:$ g_{2p+1} , $S_4: g_{2p+3}, g_{2p+4}, g_{2p+5}, ..., g_{4p+4}$ such as $S_1: 10T-2, 10T-4, 10T-6, ..., 10T-2p$ $S_2: 10T+1, 10T-1, 10T-3, ..., 10T-2p+1$ $S_3: 10T-2p-1$ $S_4: 10T-2p-2, 10T-2p-$ 3,10T-2p-4,...,9T+1.When $T \equiv 1 \pmod{4}$, T \geq 9, put T = 4p + 9 and $S : g_1, g_2, g_3, ..., g_{4p+9}$ with $S_1: g_1, g_{2p+5}, g_{4p+7}, g_{4p+8}, g_{4p+9}, S_2:$ $g_2, g_3, g_4, ..., g_{2p+3}$ $S_3: g_{2p+4}, g_{2p+6}, g_{2p+8}, ..., g_{4p+6}, S_4:$ $g_{2p+7}, g_{2p+9}, g_{2p+11}, ..., g_{4p+5}$ such as $S_1: 10T +$ 1,10T-2p-3,9T+5,9T+3,9T+110T-1, 10T-2, 10T-3, ..., 10T-2p-2 $S_3:$ 10T-2p-5, 10T-2p-7, 10T-2p-9, ..., 9T+2 $S_4: 10T - 2p - 4, 10T - 2p - 6, 10T - 2p -$ 8, ..., 9T + 7.Next, construct n (C_4 , C_7)-2T-foils as follows: $B_i = \{(i, i + T + 1, i + 15T + 2, i + 2T + 15T + 15$ 1), (i, i + 1, i + 3T + 2, i + 10T + 2, i + 15T + 10T + 10 $\{3, i + 20T + 3, i + g_1\}$ $\cup \{(i, i + T + 2, i + g_1)\}$ 15T + 4, i + 2T + 2, (i, i + 2, i + 3T + 4, i + 4 $10T + 3, i + 15T + 5, i + 20T + 4, i + g_2$ \cup $\{(i, i+T+3, i+15T+6, i+2T+3), (i, i+3, i+15T+6, i+15T+6$ $3T+6, i+10T+4, i+15T+7, i+20T+5, i+g_3)$

Corollary. K_n has a balanced (C_4, C_7) -bowtie decomposition if and only if $n \equiv 1 \pmod{22}$.

 $\cup \dots \cup \{(i, i+2T, i+17T, i+3T), (i, i+T, i+17T, i+$

 $5T, i+11T+1, i+17T+1, i+21T+2, i+g_T)$

Last, decompose each (C_4, C_7) -2T-foil into s

 (C_4, C_7) -2t-foils. Then they comprise a balanced

 (C_4, C_7) -2t-foil decomposition of K_n .

References

(i = 1, 2, ..., n).

[1] C. J. Colbourn, CRC Handbook of Combinatorial Designs, CRC Press, 1996. [2] C. J. Colbourn and A. Rosa, Triple Systems, Clarendom Press, Oxford, 1999. [3] P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurations, *Ars Combinatoria*, Vol. 26, pp. 91–105, 1988. [4] C. C. Lindner, Design The-

ory, CRC Press, 1997. [5] K. Ushio, G-designs and related designs, Discrete Math., Vol. 116, 299–311, 1993. [6] K. Ushio, Bowtiedecomposition and trefoil-decomposition of the complete tripartite graph and the symmetric complete tripartite digraph, J. School Sci. Eng. Kinki Univ., Vol. 36, pp. 161-164, 2000. K. Ushio, Balanced bowtie and trefoil decomposition of symmetric complete tripartite digraphs, Information and Communication Studies of The Faculty of Information and Communication Bunkyo University, Vol. 25, pp. 19–24, [8] K. Ushio and H. Fujimoto, Balanced bowtie and trefoil decomposition of complete tripartite multigraphs, IEICE Trans. Fundamentals, Vol. E84-A, No. 3, pp. 839-844, March [9] K. Ushio and H. Fujimoto, Balanced 2001.foil decomposition of complete graphs, IEICE Trans. Fundamentals, Vol. E84-A, No. 12, pp. 3132–3137, December 2001. [10] K. Ushio and H. Fujimoto, Balanced bowtie decomposition of complete multigraphs, IEICE Trans. mentals, Vol. E86-A, No. 9, pp. 2360-2365, September 2003. [11] K. Ushio and H. Fujimoto, Balanced bowtie decomposition of symmetric complete multi-digraphs, IEICE Trans. Fundamentals, Vol. E87-A, No. 10, pp. 2769-2773, October 2004. [12] K. Ushio and H. Fujimoto, Balanced quatrefoil decomposition of complete multigraphs, IEICE Trans. Information and Systems, Vol. E88-D, No. 1, pp. 19-22, January 2005. [13] K. Ushio and H. Fujimoto, Balanced C_4 -bowtie decomposition of complete multigraphs, IEICE Trans. Fundamentals, Vol. E88-A, No. 5, pp. 1148-1154, May 2005. K. Ushio and H. Fujimoto, Balanced C_4 -trefoil decomposition of complete multigraphs, IEICE Trans. Fundamentals, Vol. E89-A, No. 5, pp. 1173–1180, May 2006. [15] W. D. Wallis, Combinatorial Designs, Marcel Dekker, New York and Basel, 1988.