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Boosting Using Classifiers with Nearly One-Sided Error

Kohei Hatano!

1 Introduction

Boosting is a powerful tool in the machine learning
literature and it has been extensively studied over a
decade. For binary classification problems, a typical
boosting algorithm works in an iterative fashion: For
each iteration £t = 1,...,T, a boosting algorithm con-
structs a distribution D; over the data, and learns a
base classifier, or a weak hypothesis hy whose error. is
slightly less than 1/2 w.r.t. D;. The final classifier
is the weighted linear combination of weak hypotheses
hi,...,h7, which is supposed to be accurate enough.

Assuming that each weak hypothesis h; have er-
ror less than 1/2 — v (0 < v < 1/2), Boost-by-
Majority algorithm [2] and other successors (e.g., Ad-
aBoost [3]) can construct a combined hypothesis with
error less than & using O((1/v%)log(1/¢)) weak hy-
potheses. In [2], it is also shown that Q(1/+2log(1/e))
weak hypotheses are necessary when a combined hy-
pothesis is represented with a majority vote of weak
hypotheses.

On the other hand, a (1 — e)-accurate classifier can
be constructed by O((1/7)log(1/¢)) weak hypotheses
when they have one-sided error, i.e., their positive pre-
dictions are always correct (Of course, one can also
consider the negative version of one-sided error) [6, 4].

Although the improvement by the factor 1/7 is non-
trivial, hypotheses with one-sided error are rarely avail-
able in practice. However, it is more likely that hy-
potheses have “nearly” one-sided error, in other words,
they might have low false-positive error. For example,
suppose that we’d like to predict whether the subject of
an article in the newspaper is economy or not by using
hypotheses associated with words. Then a hypothesis
that predicts positive if an article contains the word
“stock” would have low false positive error.

In this paper, we investigate a boosting scheme that
can take advantage of the situation where weak hy-
potheses have nearly one-sided error. We use Info-
Boost [1] (a simple version of {7]) and show that, un-
der the assumption that each weak hypothesis have
error less than 1/2 — v and its false positive er-
ror is at most 7 times its error (0 < 7 < 1/2),
one can construct a (1 — £)-accurate hypothesis us-
ing O ((r/v + (1 — 27)/4*) log(1/¢)) weak hypotheses.
This bound interpolates previous ones for the cases of
one-sided and two-sided error. We also show an appli-
cation of InfoBoost for learning a class of linear thresh-
old functions with large constant biases, which includes
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classes of boolean functions such as disjunctions and r-
of-k functions [5].

2 Preliminaries

Let X be the instance space and Y = {—1,+1} be the
set of labels. A pair (z,y) € X xY is called an example.
The learner is given a multiset S of m examples, S =
{(x1,91); -+, (Tm, ym)}, where each example (@, ;) is
drawn independently from an unknown distribution D
over X xY. A function h : X — Y is called a hypothesis
and let H' be a set of hypotheses. Given S and H’, the
learner’ goal is to output a hypothesis h € H' whose

error errp(h) def Prp{h(x) # y} is small as possible.
In particular, we assume that the learner is given
a set H of base hypotheses and outputs a hypothesis
from the set convy(H) of linear combinations of T' hy-
potheses in H for some T > 1. Based on VC-theory,
the following statement holds (See e.g., [3]): With high
probability, it holds for any h € convr(H) that

errp(h) < &tg(h) + O(/Tdw/m),

where &trs(h) % |(zi,5:) € S | h(z:) # yi}|/m, and
dy is the VC dimension of H. So, given H of fixed VC-
dimension, a strategy to get a hypothesis with small
error is to find a hypothesis whose size and the training
error is small. For any distribution D over X x Y and
any hypothesis h, let

tpp(h) & Pr{h() = +1,y = +1}
fap(h) ¥ Pr{h(@) = -1,y = +1},
top(k) ¥ Pr{h(x) = +1,y = -1}, and
tnp(h) & Pr{h(z) = -1,y = ~1}.

Note that errp(h) = fpp(h) + fup(h). Now we give a
formal definition of a weak hypothesis with low false-
positive error:

Definition 1. A hypothesis A is a (7,~)-weak hypoth-
esis w.r.t. D if fpp(h) = 7(errp(h)) and errp(h) =
1/2 — 7.

3 Our Analysis

We apply InfoBoost for the case where (7,~y)-weak hy-
potheses are available. A description of InfoBoost is
given in Figure 1. The training error of hgna output
by InfoBoost is bounded as follows:
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InfoBoost
Given: S = {(z1,91), -, (®m,Ym)};
begin
1. Di(3)=1/m (i=1,...,m);
2. Fort=1,...,T do
a) Learn hy € H w.r.t. Dy;
tpp, (he) | _ tnp, (he) .
b) at+ = 3 In 24 - = 310 FpkRy
Qp 4y, T 2 Oa
Let = ’
¢) Let a(z) 04—, ©<O0.
d) Update the distribution as follows:
_ D, (i)e= Vit (he(T:))he(Ts)
Dy (3) = i) Z ,
t
where Z; is the constant s.t. 3=, Dyy1(i) = 1;
end-for
3. Output hgnal(z) = Z;‘;l o (he(z;)) he(;);
end.

Figure 1: InfoBoost

Theorem 1 ([7, 1]).

T

étts(hana) < [ [ Z¢,
t=1

where Z; = py4/1 —72+ + (1 — p)y/1 —'73_, Pt =

PrDt[ht(iB.,;) = +1] and Y,k = EDL [yiht(mi)!ht(wi)
:f:].].

By concavity of the function g(z) = /1 — z, we obtain
the following lemma.

pevd 4 +(1—pe)vE
2 .

Lemma 1. Foranyt>1,Z; <e

By using Lemma 1 and the fact that Prp, {y; = +1} =
1/2 for t > 2, we prove the following theorem:

Theorem 2. Given that, for each t = 2,...,T, h; is
a (7¢,v¢)-weak hypothesis w.r.t. D; and 7 > « and
7¢ < 7, InfoBoost outputs hgna with érts(hfina) < €
by using T = O((t/7% + (1 — 27)/7)log(1/¢)) weak
hypotheses.

We summarize our analysis in Table 1.

4 Learning Linear Threshold Functions
With Biases

In this section, we show that InfoBoost can learn a
class of linear threshold functions with biases efficiently.
For any p and ¢ (0 < 0,p < 1), let LTFn(p,0) be
the set of the following linear threshold functions over
{=1,+1}V:

f(z) = sign(a- = +1- ),

where ||a|l1 = 1, and |- +1 - §| > p for each
xz € {-1,+1}N
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T=0 0<r<1/2

(one-sided) | (nearly one-sided) | (two-sided)
1 T 1-27 1
o(3) | o(m+2x) | o)
Table 1: Number of (r,7)-weak hypotheses sufficient
for boosting (The factor log(1/¢) is omitted).

T=1/2

Let H be the set of N boolean literals over
{~1,+1}". Then we prove the existence of (7, y)-weak
hypotheses for LT F(p, o).

Lemma 2. For any f € LTFy(p,6) and any distribu-
tion D over {1, +1}¥ for which Prp{f(z) = +1} =
1/2, there exists a (7,7)-weak hypothesis h € H w.r.t.
D and f such that (i) v > p/(24/0), or (ii) v > p/2
and 7 < 2(6 — p).

By applying Theorem 2 and Lemma, 2, we prove the
following theorem.

Theorem 3. Fix any f € LTFn(p,0). Given a
multiset S = {(z;, f(x;))} of m examples, InfoBoost
outputs hgpa with érfg(hgna) < € by using T' =
O((8/p?) log(1/€)) weak hypotheses.

Say, for 6§ = 2p, T = O((1/p)log(1/e)) are weak
hypotheses are sufficient. Our bound is better than
the one O((1/p?) log(1/€)) obtained by typical boosting
algorithms such as AdaBoost.
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