F_046

Boosting Using Classifiers with Nearly One-Sided Error

Kohei Hatano[†]

1 Introduction

Boosting is a powerful tool in the machine learning literature and it has been extensively studied over a decade. For binary classification problems, a typical boosting algorithm works in an iterative fashion: For each iteration t = 1, ..., T, a boosting algorithm constructs a distribution D_t over the data, and learns a base classifier, or a weak hypothesis h_t whose error is slightly less than 1/2 w.r.t. D_t . The final classifier is the weighted linear combination of weak hypotheses $h_1, ..., h_T$, which is supposed to be accurate enough.

Assuming that each weak hypothesis h_t have error less than $1/2 - \gamma$ (0 < γ < 1/2), Boost-by-Majority algorithm [2] and other successors (e.g., AdaBoost [3]) can construct a combined hypothesis with error less than ε using $O((1/\gamma^2)\log(1/\varepsilon))$ weak hypotheses. In [2], it is also shown that $\Omega(1/\gamma^2\log(1/\varepsilon))$ weak hypotheses are necessary when a combined hypothesis is represented with a majority vote of weak hypotheses.

On the other hand, a $(1 - \varepsilon)$ -accurate classifier can be constructed by $O((1/\gamma)\log(1/\varepsilon))$ weak hypotheses when they have *one-sided error*, i.e., their positive predictions are always correct (Of course, one can also consider the negative version of one-sided error) [6, 4].

Although the improvement by the factor $1/\gamma$ is non-trivial, hypotheses with one-sided error are rarely available in practice. However, it is more likely that hypotheses have "nearly" one-sided error, in other words, they might have low false-positive error. For example, suppose that we'd like to predict whether the subject of an article in the newspaper is economy or not by using hypotheses associated with words. Then a hypothesis that predicts positive if an article contains the word "stock" would have low false positive error.

In this paper, we investigate a boosting scheme that can take advantage of the situation where weak hypotheses have nearly one-sided error. We use Info-Boost [1] (a simple version of [7]) and show that, under the assumption that each weak hypothesis have error less than $1/2 - \gamma$ and its false positive error is at most τ times its error $(0 \le \tau \le 1/2)$, one can construct a $(1 - \varepsilon)$ -accurate hypothesis using $O\left((\tau/\gamma + (1-2\tau)/\gamma^2)\log(1/\varepsilon)\right)$ weak hypotheses. This bound interpolates previous ones for the cases of one-sided and two-sided error. We also show an application of InfoBoost for learning a class of linear threshold functions with large constant biases, which includes

classes of boolean functions such as disjunctions and r-of-k functions [5].

2 Preliminaries

Let X be the instance space and $Y = \{-1, +1\}$ be the set of labels. A pair $(x, y) \in X \times Y$ is called an example. The learner is given a multiset S of m examples, $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$, where each example (x_i, y_i) is drawn independently from an unknown distribution D over $X \times Y$. A function $h: X \to Y$ is called a hypothesis and let H' be a set of hypotheses. Given S and H', the learner' goal is to output a hypothesis $h \in H'$ whose error $\operatorname{err}_D(h) \stackrel{\text{def}}{=} \Pr_D\{h(x) \neq y\}$ is small as possible.

In particular, we assume that the learner is given a set H of base hypotheses and outputs a hypothesis from the set $\operatorname{conv}_T(H)$ of linear combinations of T hypotheses in H for some $T \geq 1$. Based on VC-theory, the following statement holds (See e.g., [3]): With high probability, it holds for any $h \in \operatorname{conv}_T(H)$ that

$$\operatorname{err}_D(h) \leq \widehat{\operatorname{err}}_S(h) + \tilde{O}(\sqrt{Td_H/m}),$$

where $\widehat{\operatorname{err}}_S(h) \stackrel{\text{def}}{=} |(\boldsymbol{x}_i, y_i) \in S \mid h(\boldsymbol{x}_i) \neq y_i\}|/m$, and d_H is the VC dimension of H. So, given H of fixed VC-dimension, a strategy to get a hypothesis with small error is to find a hypothesis whose size and the training error is small. For any distribution D over $X \times Y$ and any hypothesis h, let

$$\begin{split} \operatorname{tp}_D(h) &\stackrel{\text{def}}{=} \Pr_D\{h(\boldsymbol{x}) = +1, y = +1\} \\ \operatorname{fn}_D(h) &\stackrel{\text{def}}{=} \Pr_D\{h(\boldsymbol{x}) = -1, y = +1\}, \\ \operatorname{fp}_D(h) &\stackrel{\text{def}}{=} \Pr_D\{h(\boldsymbol{x}) = +1, y = -1\}, \text{ and} \\ \operatorname{tn}_D(h) &\stackrel{\text{def}}{=} \Pr_D\{h(\boldsymbol{x}) = -1, y = -1\}. \end{split}$$

Note that $\operatorname{err}_D(h) = \operatorname{fp}_D(h) + \operatorname{fn}_D(h)$. Now we give a formal definition of a weak hypothesis with low false-positive error:

Definition 1. A hypothesis h is a (τ, γ) -weak hypothesis w.r.t. D if $\operatorname{fp}_D(h) = \tau(\operatorname{err}_D(h))$ and $\operatorname{err}_D(h) = 1/2 - \gamma$.

3 Our Analysis

We apply InfoBoost for the case where (τ, γ) -weak hypotheses are available. A description of InfoBoost is given in Figure 1. The training error of h_{final} output by InfoBoost is bounded as follows:

[†]Department of Informatics, Kyushu University

InfoBoost

Given: $S = \{(x_1, y_1), ..., (x_m, y_m)\};$

- 1. $D_1(i) = 1/m \ (i = 1, ..., m);$
- 2. For t = 1, ..., T do

 - a) Learn $h_t \in H$ w.r.t. D_t ; b) $\alpha_{t,+} = \frac{1}{2} \ln \frac{\operatorname{tp}_{D_t}(h_t)}{\operatorname{fp}_{D_t}(h_t)}$; $\alpha_{t,-} = \frac{1}{2} \ln \frac{\operatorname{tn}_{D_t}(h_t)}{\operatorname{fn}_{D_t}(h_t)}$; c) Let $\alpha_t(x) = \begin{cases} \alpha_{t,+}, & x \geq 0, \\ \alpha_{t,-}, & x < 0. \end{cases}$ d) Update the distribution as follows:

$$D_{t+1}(i) = \frac{D_t(i)e^{-y_i\alpha_t(h_t(\boldsymbol{x}_i))h_t(\boldsymbol{x}_i)}}{7}$$

 $D_{t+1}(i) = \frac{D_t(i)e^{-y_i\alpha_t(h_t(\boldsymbol{x}_i))h_t(\boldsymbol{x}_i)}}{Z_t},$ where Z_t is the constant s.t. $\sum_{i=1}^m D_{t+1}(i) = 1;$ end-for

3. Output $h_{\text{final}}(\boldsymbol{x}) = \sum_{t=1}^{T} \alpha_t(h_t(\boldsymbol{x}_i)) h_t(\boldsymbol{x}_i)$;

Figure 1: InfoBoost

Theorem 1 ([7, 1]).

$$\widehat{\operatorname{err}}_S(h_{\operatorname{final}}) \leq \prod_{t=1}^T Z_t,$$

where $Z_t = p_t \sqrt{1 - \gamma_{t,+}^2} + (1 - p_t) \sqrt{1 - \gamma_{t,-}^2}, p_t = \Pr_{D_t}[h_t(\boldsymbol{x}_i) = +1] \text{ and } \gamma_{t,\pm} = \mathbf{E}_{D_t}[y_i h_t(\boldsymbol{x}_i) | h_t(\boldsymbol{x}_i) = +1]$

By concavity of the function $g(x) = \sqrt{1-x}$, we obtain the following lemma.

Lemma 1. For any
$$t \ge 1$$
, $Z_t \le e^{\frac{p_t \gamma_{t,+}^2 + (1-p_t) \gamma_{t,-}^2}{2}}$

By using Lemma 1 and the fact that $Pr_{D_t}\{y_i = +1\} =$ 1/2 for $t \geq 2$, we prove the following theorem:

Theorem 2. Given that, for each t = 2, ..., T, h_t is a (τ_t, γ_t) -weak hypothesis w.r.t. D_t and $\gamma_t \geq \gamma$ and $au_t \leq au$, InfoBoost outputs $h_{ ext{final}}$ with $\widehat{ ext{err}}_S(h_{ ext{final}}) \leq arepsilon$ by using $T = O((\tau/\gamma^2 + (1-2\tau)/\gamma)\log(1/\varepsilon))$ weak hypotheses.

We summarize our analysis in Table 1.

Learning Linear Threshold Functions With Biases

In this section, we show that InfoBoost can learn a class of linear threshold functions with biases efficiently. For any ρ and σ (0 < σ , ρ < 1), let $LTF_N(\rho, \sigma)$ be the set of the following linear threshold functions over $\{-1,+1\}^N$:

$$f(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\alpha} \cdot \boldsymbol{x} + 1 - \delta),$$

where $||\alpha||_1 = 1$, and $|\alpha \cdot x + 1 - \delta| \geq \rho$ for each $x \in \{-1, +1\}^N$.

au=0	$0 < \tau < 1/2$	au=1/2
(one-sided)	(nearly one-sided)	(two-sided)
$O\left(\frac{1}{\gamma}\right)$	$O\left(\frac{\tau}{\gamma^2} + \frac{1-2\tau}{\gamma}\right)$	$O\left(\frac{1}{\gamma^2}\right)$

Table 1: Number of (τ, γ) -weak hypotheses sufficient for boosting (The factor $\log(1/\varepsilon)$ is omitted).

Let H be the set of N boolean literals over $\{-1,+1\}^N$. Then we prove the existence of (τ,γ) -weak hypotheses for $LTF_N(\rho, \sigma)$.

Lemma 2. For any $f \in LTF_N(\rho, \delta)$ and any distribution D over $\{-1, +1\}^N$ for which $\Pr_D\{f(x) = +1\} =$ 1/2, there exists a (τ, γ) -weak hypothesis $h \in H$ w.r.t. D and f such that (i) $\gamma \geq \rho/(2\sqrt{\sigma})$, or (ii) $\gamma \geq \rho/2$ and $\tau \leq 2(\delta - \rho)$.

By applying Theorem 2 and Lemma 2, we prove the following theorem.

Theorem 3. Fix any $f \in LTF_N(\rho, \sigma)$. Given a multiset $S = \{(\boldsymbol{x}_i, f(\boldsymbol{x}_i))\}\$ of m examples, InfoBoost outputs h_{final} with $\widehat{\text{err}}_S(h_{\text{final}}) \leq \varepsilon$ by using T = $O((\delta/\rho^2)\log(1/\varepsilon))$ weak hypotheses.

Say, for $\delta = 2\rho$, $T = O((1/\rho)\log(1/\epsilon))$ are weak hypotheses are sufficient. Our bound is better than the one $O((1/\rho^2)\log(1/\varepsilon))$ obtained by typical boosting algorithms such as AdaBoost.

References

- [1] J. A. Aslam. Improving algorithms for boosting. In Proc. 13th Annu. Conference on Comput. Learning Theory, pages 200-207, 2000.
- [2] Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256–285, 1995.
- [3] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.
- [4] K. Hatano and M. K. Warmuth. Boosting versus covering. In Advances in Neural Information Processing Systems 16, 2003.
- [5] K. Hatano and O. Watanabe. Learning r-of-k functions by boosting. In Proceedings of the 15th International Conference on Algorithmic Learning Theory, pages 114-126, 2004.
- [6] B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kaufmann, San Mateo, CA, 1991.
- [7] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.