FIT2006 (55 5 EREMFEM I+ —5 L)

A_009

An Improved Upper Bound for the Three Domatic Number Problem

M. M. Halldérsson ; O. Watanabe ! and M. Yamamoto *

1 Introduction

In this paper we consider the following problem and
show an improved time bound for the existing algorithm
for this problem.

Three Domatic Number Problem

Instance: An undirected graph G = (V, E).
Question: Is there any partition (Vi, Vo, V3) of V
such that Vj, V5, and V5 are all dominating sets?

Tiege, etal [2] recently proposed a deterministic al-
gorithm solving this problem, and they proved that it
runs in O(2.6949™)-time for any graph with n vertices.
Here we give a better bound for this algorithm. In the
following, we call this algorithm TRSY-algorithm.

We briefly review TRSY-algorithm. Given a graph
G = (V, E) with n vertices, the algorithm first enumer-
ates all minimal dominating sets for G with size at most
n/3, which can be done in time O(1.7697™) as shown
in [1]. Secondly, for each obtained dominating set, it
checks whether there are two other dominating sets for
G. This can be regarded as the (general) satisfiability
problem: Fix a dominating set D obtained by the enu-
meration. Let N[v] be a set of neighbors of v. For each
v € V\D, generate a clause C,, = {v} U (N[v]\D) as well
as a clause Cy = {0} U{& : u € N[v]\D}; on the other
hand, for each v € D, generate a clause C, = N[v]\D
as well as a clause C; = {% : u € N[v]\D}. Let F be
a conjunction of all these 2n clauses. Then it is easy
to see that a satisfying assignment of F' determines two
other dominating sets of G. TRSY-algorithm uses Ya-
mamoto’s algorithm [3] for searching this satisfying as-
signment, which is the currently fastest algorithm for the
general CNF satisfiability problem. Since Yamamoto’s
algorithm runs in 0(1.2335™)-time for a given CNF for-
mula with m clauses, this part of TRSY-algorithm runs
in O(1.2335%") time; thus, the total running time is
O(1.7697™ * 1.23352") = O(2.6949™).

We further review Yamamoto’s algorithm, which we
call Y-algorithm in the following. A literal is called a
(4, 7)-literal if the literal positively occurs ¢ times and
negatively occurs j times. We similarly define a (32, j7)-
literal for o, 8 € {+,—}. We call a formula a (3,3)-
formula if it has no literal other than (3, 3)-literals. A
pair of literals [and !’ is coincident if there are two

*Dept. of Computer Science, Faculty of Engineering, University
of Iceland, IS-107, Reykjavik, Iceland, mmh@hi.is

TDept. of Mathematical and Computing Sciences, Tokyo Insti-
tute of Technology, Tokyo, Japan, watanabe@is.titech.ac.jp

YGraduate School of Informatics, Kyoto University, Kyoto,
Japan, masaki.yamamoto@kuis.kyoto-u.ac.jp

19

different clauses such that each clause contains [and
', and a formula is called coincident-free if it contains
no coincident pair. It is shown [3] that a coincident-free
(3, 3)-formula is the worst-case instance for Y-algorithm.

Now the crucial point for the argument in this pa-
per is that so long as a formula has either some non
(3,3)-literal, or some coincident literal pairs, then Y-
algorithm performs better. More specifically, for a given
formula with m clauses, if Y-algorithm, on any com-
putation path, can always eliminate m’ clauses before
reaching to some coincident-free (3, 3)-formula, then the
algorithm runs in O(1.221™ x 1.234™~™")-time, which
is better than its worst-case time bound 6(1.234"‘). In
this paper, we make use of this point to show a better
bound for TRSY-algorithm.

In what follows, we call a pair of clauses C, and Cj for
v € V\D a base clause pair, and call the variable v its
base variable. Note that the number n’ of base clause
pairs is at least 2n/3 since the algorithm enumerates
dominating sets of size at most n/3.

2 Bound

At each step of Y-algorithm, the algorithm selects one
variable (by a certain rule), assigns true and false to
the variable, creating two slightly simpler formulas, and
searches for a satisfying assignment recursively on these
two formulas. Clauses already satisfied by a current
partial assignment are eliminated, and the goal of Y-
algorithm is to obtain a null formula by eliminating
all clauses. We estimate the number of clauses (in the
worst-case) that are eliminated until the current formula
becomes coincident-free (3, 3)-formula.

Y-algorithm uses “resolution” for obtaining a sim-
pler formula, which produces a formula whose struc-
ture may be quite different from the original formula.
Here we keep a table T of 2n clauses that are given
originally, and analyze how these clauses are eliminated
during the execution of the algorithm. When the algo-
rithm assigns a value to some variable explicitly (which
we call an explicit assignment), we can simply assign
the value to the variable in the clauses of 7, and cross
out (i.e., eliminate) those clauses that are satisfied by
this assignment. On the other hand, when a resolu-
tion is conducted in Y-algorithm, even if it reduces the
number of clauses from the formula that Y-algorithm
maintains, we just keep its record and do not make
any change on the table. More specifically, we keep
a record (z, {C1, ..., Cy}, {D1, ..., Dy}), where Ci,...,Cy,
are clauses containing a variable z, and Ds,...,D, are

FIT2006 (555 EMEHRMERERI 2 —35 L)

those containing its negation Z, and the resolution is
conducted between Ci,...,C, and Dq,...,D, w.r.t. z.
We call this z a pivot variable. Though the resolu-
tion itself does not invoke any clause elimination on 7,
some clauses may be crossed out later due to the reso-
lution. More specifically, the following two eliminations
are possible: (1) At some poins, if all Cy,...,C, (resp.,
all Dy,...,D,) are crossed out in the table 7, then set
z = 0 (resp., £ = 1), thereby crossing out all Dy,..., D,
(resp., C1,...,Cy). (2) At some point, if all Cy,...,Cy,
but one C; = (z V 41 V ---£p) (resp., all Dy, ..., D, but
one Dj = Z V£ V---£;) are crossed out in the table 7,
then set £ = (€1 V+++V4p,) (resp., Z= ({1 V--- V),
thereby crossing out C; because it now becomes a tau-
tology. Note that at the same time, all occurrences of =
in Dy, ..., D, (resp., all occurrences of z in C4, ..., C,,) are
replaced with £1 V- --V £, (resp., £, V---V£}). These as-
signments are called symbolic assignments. Clauses that
become tautology by such symbolic assignments are also
crossed out from 7.

For an initial formula F', let F’ be a formula that Y-
algorithm obtains after making several explicit assign-
ments; that is, F’ is a formula that the algorithm yields
from F' on a path of the search tree. Following this exe-
cution, the original table 7 is changed to a table 7’. We
say that a clause (resp., a literal or a variable) is alive in
7' if it is (resp., it is in a clause) not crossed out in 7.
Between this table 7’ and the formula F’ that the algo-
rithm maintains, we can show the following relationship
by induction.

Proposition 1 For any alive clause C in T', there ex-
ists a clause C' in F' such that C' contains all literals
of C except for pivot variables.

Corollary 1 (1) For any alive literal except for pivot
literals, the number of alive occurrences of the literal in
T’ is less than or equal to the one in F'. (2) For
any alive literals z and y except for pivot literals, if they
occur in the same alive clause of T', then they occur
simultaneously in some clause of F'.

We estimate a lower bound of the number of clauses
eliminated from F (on any computation path) until
Y-algorithm encounters a coincident-free (3, 3)-formula.
By the corollary above, it suffices to show such a lower
bound for the table 7’. That is, we first fix any com-
putation path such that 7’ becomes coincident-free and
contains only (3, 3)-literals, and we estimate the num-
ber m' of clauses crossed out in 7’. Here we only focus
on base clauses, i.e., clauses C, and Cjy for v not in the
first dominating set. Recall that the number n’ of base
clause pairs satisfies n’ > 2n/3.

We classify n’ pairs of base clauses into several types
based on the status in 7’. First let Cga be the set of
clause pairs whose base variable is explicitly assigned
true or false values.
the set of clause pairs whose base variable is assigned
some value (true, false, or symbolic one) due to resolu-
tions. Clause pairs not in Cga U Cra are those with an

On the other hand, let Cra be

20

unassigned base variable, which are classified into the
following four types: (1) a clause pair C, and Cy such
that both are already crossed out, (2) a clause pair such
that C, is alive while its partner Cj; is already crossed
out, (3) a clause pair such that C; is alive while Cy, is
already crossed out, and (4) a clause pair C, and Cj
that are both alive. Let n1,ng,ns, and ny respectively
denotes the number of clause pairs of each type.

Then by using the assumption that 7' is coincident-
free and contains only (3, 3)-literals, it is easy to derive
the following relations.

Proposition 2 Every clause of type (4) clause pair
consists of its base variable and base literals from type
(1) clauses. Furthermore, we have ng < 3np.

Now we estimate a lower bound for m”. Noting n’ =
ny +nz +n3 +ng +t+ s and ng > 3ny, the following is
immediate by definition.

"

>

m 2ny+ng+ng+t+s > 2m

n4n —ng > n —2n.

Then the worst-case is the case n' — 2n; = 2n;, which,
by using a lower bound n’ > 2n/3, derives ny = n/6,
implying m” > n/3. Therefore, as explained in Intro-
duction, the total running time is

0(1.2208™3 x 1.2335*"~"/3) = O(1.5163")

Theorem 1 The three domatic number problem can be
solved in O(1.7697™ x 1.5163™) = 0(2.6834™).

This slightly beats the existing bound O(2.6949™) [2].

References

[1] F. Fomin, F. Grandoni, A. Pyatkin, and A.
Stepanov, Bounding the number of minimal domi-
nating sets: A measure and conquer approach, In
Proceedings of the 16th International Symposium on
Algorithms and Computation, pp. 573-582, 2005.

T. Tiege, J. Rothe, H. Spakowski, and M. Ya-
mamoto, An improved exact algorithm for the do-
matic number problem, In Proceedings of the Sec-
ond IEEE International Conference on Information
& Communication Technologies: From Theory to
Applications, pp. 1021-1022, 2006.

M. Yamamoto, An improved 5(1.234’")—time deter-
ministic algorithm for SAT, In Proceedings of the
16th International Symposium on Algorithms and
Computation, pp. 644-653, 2005.

