FIT2005 (55 4 BIRRMZFRETI 2 —5 L)

D-007

Tree-based Parallel Algorithms with

Reduced Inter-Processor Communication for Association Rule Mining

NGUYEN VIET ANH', SHIGERU OYANAGIT, AND KATSUHIRO YAMAZAKI'

1 Introduction

In this paper we present two parallel algorithms for mining
association rules that are well suited for distributed memory
parallel computers. The algorithms are developed based on
FP-growth method [3]. The first algorithm is a task parallel
formulation using a static load balancing technique. The sec-
ond algorithm improves upon the first algorithm by dynami-
cally balancing the load when the static task assignment leads
to load imbalance. We use the count matrix technique to
compute the weight of tasks and to distribute tasks to proces-
sors. This technique also helps to reduce the time needed to
scan the trees and to reduce communication cost. We also use
the hash tree technique to group similar prefix-paths extracted
from the tree, and thus can greatly reduce the amount of in-
formation exchanged among processors. Qur experiments
show that the algorithms are capable of achieving very good
speedups, and of substantially reducing the amount of time
when finding frequent patterns in very large databases.

2 Initial database partitioning

If p 1s the total number of processors, the original database
is initially partitioned into p equal-size parts, each one then
assigned to different processor. Each processor scans the da-
tabase once and enumerates the local occurrences. All proces-
sors then obtain frequent items by exchanging local counts
with all other processors using a global sum-reduction opera-
tion. These frequent items are sorted in support descending
order to form L, list of frequent items. Note that L is identical
for all processors. Each processor scans its local data to build
the local FP-tree in exactly the same way with serial FP-tree
algorithm [3].

ID Items (Ordered) Freq Items | Processor
1 ABCDE BAD
FBDEG BDFG
3| BDAEG BADG Po

Item |Count

Figure 1. Database partitioning and local FP-trees

To understand this process, let’s examine the example in
Figure 1. Suppose we have 3 processors. The transactional

FGraduate School of Science and Engineering, Ritsumeikan University

database is described in the table. The minimum support in
this example is set to 5.

Building the local FP-trees is not a final goal but a means to
discover all frequent patterns without any additional database
scan. According to FP-growth method, in order to mine all
frequent patterns concerning item i (in header table) we need
to construct i’s conditional pattern base and then i’s condi-
tional FP-tree 7;. The branches that contain item i/ may reside
in multiple local FP-trees, and we need to collect them from
all possessing processors to form #’s conditional base. We do
not prove the correctness of this approach because of the
length limitation of this paper but focus on how to distribute
the works evenly among all processors and reduce the work
load imbalance.

3 Static Load Balancing Algorithm (SLB)

The key idea behind this algorithm is to calculate the
amount of computation for each item in the header table of
the first FP-tree (the tree constructed from the original data-
base) and then to divide those items into p equal parts and
assign each part to a processor. When processing item i we
first build 7’s conditional pattern tree and recursively generate
subsequent conditional pattern bases and subsequent FP-trees
until all frequent patterns are mined. The number of iterations
is exponentially proportional to the height of i’s conditional
FP-tree that is bounded by number of items in its header table.
Therefore, the length of the header table of the conditional
FP-tree of item i can be used to measure i’s computation cost.

In FP-growth method, for each item 7 in the header of the
FP-tree Ty, two traversals of T are needed for constructing
the conditional FP-tree 7, The first traversal constructs
header table of the new tree by finding all frequent items in
the conditional pattern base of i. The second traversal con-
structs the new tree 7;. In parallel environment, after scanning
the trees, all processors need to communicate with each other
to form the global information. Note that the support for an
item j in the conditional pattern base of i is, in fact, the num-
ber of transactions that contain both j and i. If we have an
array that store the count of all pair items, we can get the
header table directly from that count array, and therefore, the
first tree scan and information exchanging can be omited.
Figure 2 shows how the count matrix is used to calculate the
weight of item G.

Al 6 weight of Gis 3
Item | Count
D| 7|5 n
=1 i
e P
SEIOEIC OB
BlAID|F G’s array

Figure 2. Using count matrix to measure item weight

After having the computation weight of all items, we use
the bin-packing algorithm to pack them into p equal-sized
buckets. Each bucket is then assigned to one processor.

The count matrix contains the count arrays of all items in
database. It is stored in a file and is loaded each time the pro-

FIT2005 (58 4 OMBEMFRMTT +—35 L)

gram runs. Only count arrays for frequent items are extracted
by simply reading first n-1 rows of the file into allocated ar-
rays, with » is the number of frequent items. The count matrix
is built in a preprocessing step and is maintained during the
life time of the database. By using count matrix we can also
reduce the time for second Fp-tree scan because we can ne-
glect all infrequent items when examining the paths from
nodes in node-links up to the root of the tree.

Now let us examine the conditional bases exchanging issue.
For an item in the header table, millions of prefix-paths can
be found from the tree, and thus lead to a huge amount of
information needed to be exchanged among processors. How-
ever, in fact, paths with the form i,—i,—...—i, may appear
many times, and only differ in the support counts. What we
need to do is to sum up all the counts and send it with the path
ij—i,—»...—i, only once. In our algorithm this problem is
solved by using hash tree technique.

4 Dynamic Load Balancing Algorithm (DLB)

This algorithm monitors the load of processors and redis-
tributes the work between processors when the static task
assignment leads to the load imbalance.

The algorithm works as follows. The early period of this
algorithm is similar to SLB. However, processors will not
process independently until all patterns are mined. When a
processor finishes its portion of allocated work, it selects a
donor processor and sends it a request for work. If the donor
processor does not contain enough work, it will send a rejec-
tion; otherwise it will send part of its work to requesting
processor. Upon receiving new work the processor starts
processing newly received work until it becomes idle again. A
control process is used to maintain the rank of the process to
which the next request will be sent, and when a process run
out of work, it get the rank from the control process. This
process continues until every processor completely processed
all items assigned to it. Each processor manages a local stack
whose stack node contains an item and its corresponding con-
ditional pattern base. Dijkstra-Scholten termination detection
algorithm [2] is used to detect whether all processors finished
their work and there was no message in transition, and thus
the overall computation have finished.

One key issue in the dynamic load balancing approach is
managing the task granularities. If the weight of this task is
too small, the amount of communication may increase. Oth-
erwise, if the weight of this task is too large, it will take a
significant amount of time before a processor can service
work requests. In both cases the overall performance can be
decreased. To deal with this problem we use a parameter
named maxload. When processing an item with the weight
greater than maxload, if a subsequent conditional pattern base
has the weight smaller than maxload, it will be processed until
completion. All subsequent conditional pattern bases having
weight greater than maxload will be put into local stack and
will be processed in the next iterations.

We have carried out several optimizations to increase the
performance of the algorithm, namely, the control of servic-
ing time, the order of items to be processed, and avoiding
blocking when exchanging conditional pattern bases.

5 Experimental Results

All experiments were performed on the PC Cluster that
consists of 16 nodes. Each node has 2 processors Intel Xeon
2.8GHz, 2 GB of memory, and 80 GB of hard disk. The nodes
are connected by 1Gbs Ethernet network. For performance
evaluation we use different synthetic datasets generated using
procedure described in [1].

18

Figure 3 compares the scalability of SLB and DLB as the
minimum support decreases from 0.2% to 0.08%. The ex-
periments are performed on an 8 node configuration on two
datasets, T25110D2000K and T25120D1000K.

100 [--4--- SLB-T2510D2000K | .

§ % - DLB-T2SHOD2000K| 4

-l B e SLB-T25120D1000K |/

E 60— .s.. DLB-T25120D1000K A

b /

2 40 el ik

g ™ W__,:,M;f;//

['4 0 T T T T !
02 015 0.1 0.09 0.08

Minimum support (%)

Figure 3: Scalability with minimum support

SLB scales almost equally with DLB on T25110D2000K.
However, DLB scales much better than SLB on
T25120D1000K. This is because with T25120D1000K, when
the minimum support goes down, the number of long frequent
itemsets increase dramatically compared with dataset
T25110D2000K, and thus likely lead to the load imbalance.

Figure 4 shows the speedups obtained for two algorithms
on the dataset T25120D1000K when minimum support is set
to 0.1%. Both SLB and DLB have very good speedup per-
formance. When the number of processors increases, DLB
run a little bit better than SLB. This is because the load im-
balance tends to increase with bigger numbers of processors.

~
o

o

& D
o

[
o O O O O

Response time (sec)
o [

Number of processors

Figure 4: Speedup
6 Conclusion and future works

We propose two parallel algorithms for mining association
rules based on FP-growth method. In many situations, the
algorithms can reduce the communication required to ex-
change the conditional bases. Our experiments confirms that
both SLB and DLB achieve very good performance and good
speedup in large databases. Our future research will explore
the parallel aspects of these algorithms in more details.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In 20th VLDB Conf., 1994

[2] E. W. Dijkstra, W. H. Seijen, and A. J. M. Van Gasteren.
Derivation of a termination detection algorithm for a dis-
tributed computation. Information Processing Letters, 1983

[3]1 J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proc. of the ACM SIGMOD Conf.
on Management of Data, 2000

