FIT2004 (35 3 EIBEHRBZRMT I+ —5 L)

C-030

Superscalar Microprocessor Design in a Hardware Software Co-learning System

HOANG ANH TUAN ¥ KOICHIRO NAKAMURA? KATSUHIRO YAMAZAKI | AND SHIGERU QYANAGT

Graduate School of Science and Engineering, Ritsumeikan University.

1. Introduction

The hardware software co-learning system helps the users to un-
derstand the structural design of processors as well as the interac-
tion between processor architecture and software development. To
achieve these objectives, the system should contain Compiler,
Variable processor simulator and several designs of the processors
[17 [2]. This paper describes the design and implementation of a
superscalar processor for the co-learning system, and explains the
instruction policy, the technique, and the mechanism that is used to
design this superscalar processor.

2. Hardware software co-learning system

Software = '} f

improvement Compilgr dgsign
estimationi. & optimization
Software o -
development g Processor
#{ Assembly} architecture |
orC understanding

/

Figurel: Hardware software co-learning system overview

Verification

Figure 1 shows the Co-learning system. It can help the users eas-
ily to understand the interactions between the hardware and soft-
ware design in a computing system, be able to work with SoC or
embedded projects. The four microprocessor architectures (single
cycle, multi-cycle, pipeline, and superscalar architectures) will be
implemented in the system, located in the Variable Processor Simu-
lator and FPGAs board computer.

The instructions used here is the MONI instruction set [2] with
42 instructions, and support for the three operand (two sources and
one destination) operations. The instruction is 16 bits length with
the first five bits for OPCODE. The operand is identified by three
bits each, be able to name one among eight internal registers. The
set is divided in to four types of instructions: R-type, IS-type,
I8-type and J-type [2]. It has three addressing modes: immediate,
register, and register indirect addressing modes

3. Design of the superscalar microprocessor

3.1 Datapath

Figure 2 shows diagram design of the processor with the
datapath for fetch, pre-decode, decode and execute the instructions,
two instructions at a clock cycle. The design contains Arbitrator,
decoder, ALU, register file, SP controller, PC controller, and in-
struction cache. Core of the microprocessor is single cycle archi-
tecture processor with decoder and ALU. To crack the computa-
tional resources conflict, increasing the machine parallelism, the
resources duplication technique has been used with two functional
units, unit A and B.

289

64,¢ Instruction Functional unit { { Functional unit 18
Atbitrator} 32/ - w2 o L Bpld
: - r r <" |Register
nstruction v A\ 4 > file
window *‘"’“‘l Decoder Decoder F
y y, A B Rt
‘:, by 4 l
% SR | N I SO
PCCon- | 16, i} l 64
troller |~7 ' - G4 <
I(j,/ vy A vanar-yil 2
= ALU L\ ALU 6
% § | dout dout vd)_a.tf;
2§ 3 1 i
2 Q
q. = Data
SP Con- 16 address
................. b S R
= = = Instructionbus =" st Address bus

— - = Control signals Data bus

Figure 2: Block diagram of Superscalar microprocessor

The instructions are fetched into the arbitrator at the positive
edge of the clock while the Data memory access happens at the
negative edge. After that, the register write back operation will
occur at the following positive edge of the clock. By that, an in-
struction can be executed in the time of a clock cycle, forms the
single cycle architecture for the core of the microprocessor. In the
two functional units, unit A has higher priority than unit B. Sup-
porting for the computing ability, the data bus is designed to trans-
fer four data (64 bits) out and two data (32 bits) in of register file.
Instruction cache has transparently included by widening the in-
struction bus between Instruction memory and Arbitrator to four
instructions (64 bits), increasing the ability of fetching up to four
instructions simultaneously.

Operations and datapart of the microprocessor is as follows. The
instruction memory is active and releases four instructions simulta-
neously to the Arbitrator for pre-decode at the positive edge of the
clock. The Arbitrator depends on its instruction window, takes two
instructions among the four received, analyses them in order to find
the data dependency as well as the resources conflict if available,
and decide if the low priority instruction can be executed. The re-
sult then used to generates two instructions and control signal to the
functional units A, B and PC controller. At the two functional units,
the instructions are decoded and the control signals are sent to the
ALUs, register file, data memory, SP controller to contro! the com-
puting process as well as the data write back action. If the data
dependency occurs, the output data from unit A will be forwarded
to its destination register and be forwarded to the input of unit B. At
the negative edge of the clock, data will be written to the memory
(if necessary). The register file is active at the next positive edge of
the clock for data write.

3.2 Arbitrator

The role of the arbitrator is executing condition analysis. It de-
cides the instruction issue and the parallelism of processor. In this
design, the Arbitrator checks the data dependency, resources con-

FIT2004 (8 3 EMGHMRIERH T+ —5 L)

2 { PCin 64/£ Instructions in
Instruction Instruction
window selection

32 ,
Vd

v

* v
Data depend-j [Control haz- Resources
ency analysis ard analysis conflict

! I]

)

v 16, Instruction to unit A‘
Instructions > »
generation 16, Instruction to unit B
and hazard 7 »
controller Control signals

Figure 3: Design of the Arbitrator

flict, and generates instructions as well as control signals for the
two functional units. As shown in Figure 3, it has an instruction
window, controlled by two least significant bits from the instruction
address, used to identify the two necessary instructions among the
input of fours. Those instructions will be analyzed to recognize if
the data dependency, resources conflict or control hazard occur.
Then, control signals will be given to PC controller, two acceptable
instructions and some control signals too will be given to the func-
tional units. If any conflict occurs, unit B will be dismissed (by
taking the no operation instruction, generated by the Arbitrator).
Rules that apply to analyze data dependency, resources conflict are
followed.

- Control hazard is determined by comparing the opcode of in-
struction in unit A with opcode of jump and call operations. If the
condition meets, the instruction in the next address cannot be exe-
cuted. Unit B will receive and execute the no operation instruction.

- Destination conflict is met if the comparison between the des-
tination registers of functional units A and B gives the positive
result. If it occurs, data that generated from unit B will over write
the data generated by unit A, achieved by disable the write enable
signal from the decoder of unit A.

- Data dependency analysis is performed by comparing the des-
tination of unit A with the sources of unit B. If they are equal, data
dependency occurs and be solved by data forwarding technique, in

which, output of unit A will immediately forward to input of unit B .

Results generated by the two units then be written at the same time.

- Storage conflict happens if the opcode of the two instructions
are load or store opecode. The external data bus, with its limitation
of 16 bits width, allows only one word transfer through. The higher
priority instruction in unit A will take advantage and completes in
that cycle, while the unit B executes the nop operation.

- Instruction cache miss is the situation that the Arbitrator cannot
find the corresponding instruction to execute in functional unit B,
occurs when instruction window get the binary 11 value. It occurs
as a bad effect of the virtual instruction cache policy. If it happens,
unit A takes the instruction identified by the instruction window,
while the nop instruction will be generated by the Arbitrator for the
functional unit B.

3.3

Other units

Decoder decodes the instructions given by the Arbitrator, and
gives the control signals to other parts of the processor to make
them work correctly as the requirement of the instruction.

ALU receives immediate data given from the instruction or
Register file, and control signals from the decoder, generates

290

the output data with some arithmetic or logic operations. The
output then sent to the data bus for writing to its destination.
Register file contains 8 registers, 16 bits each. The location of
one register can be identified through three bits address. It can
simultaneous give out four data (64 bits), two for one func-
tional unit, and write back two data (32 bits) from the internal
data bus depends on the input addresses and the control signals
from the decoders.

Stack Pointer (SP) controller is used to support for the
sub-routine operations (push, pop, call and return instructions).
SP shows the top of the stack.

Program Counter (PC) controller is used to control the fetching
sequence of instructions from the Instruction memory to exe-
cute in the processor.

4. Implementation and simulation result

The design has been written in Verilog HDL with behavior de-
scription model, then synthesized and simulated using Foundation
ISE and ModelSim tools, implemented on a RC100 FPGAs board.
It is written in one and a half month with around 1000 lines. Table 1
shows the hardware evaluation of the design.

Table 1: Hardware cost evaluation

Number| Number of | Number | Number of
of gates | Flip Flops | of LUTs TBUFs
Arbitrator 9949 14 221 0
Decoder 4592 0 96 0
Register file 27381 128 618 0
ALU 32143 0 672 0
PC controller 5697 24 122 0
SP controller 3401 24 74 0
All MPU 106292 213 2379 186

The clock cycle reduction in simulation with “Bubble sort”, “Se-
lection sort” and “Sum up” programs ranged from 36% to 40%
depends on the hazard of each program. The bottle-neck occurs
mostly in branching and instruction cache misses.

This design will be used for the learners to study processor de-
sign with HDL in the co-learning system. They can use the avail-
able code and design partly or fully in their own learning project.

5. Conclusion and future work

The superscalar microprocessor design has contributed to the
variable processor simulator and FPGAs board computer in the
hardware software co-learning system. The in-order issues with
out-of-order completion instruction policy, resources duplication
and data forwarding techniques have been introduced through the
design; helps the leamers to understand how to implement those
techniques in a superscalar processor. The design should be simu-
lated with some more programs, and be upgraded with cache to
increase the cache hit rate. Moreover, the Simulator for the super-
scalar microprocessor will be written.

References
Mutsumi Oyagi et al. “Design of a Variable Processor Simulator in a
Hardware/Software Co-Leaming System”, Proceeding 66™ Informa-
tion Processing Society of Japan Record, 5T-6, 2004.

(1

[2] Nobuhisa Ikeda et al. “Design of a FPGA Board Computer in a
Hardware/Software Co-Learning System”, Proceeding 66" Informa-
tion Processing Society of Japan Record, 5T-5, 2004.

[3] Koichiro Nakamura et al. “Development of the FPGA board com-
puter system for processor architecture education”, submitted to FIT,

2004.

