
Design and Evaluation of Designated Event-based Stream Processing
Yan Wang† Hiroyuki Kitagawa‡

1. Introduction

Recently, the amount of stream data is growing rapidly like

network packets, stock trades and sensor data. It becomes more

and more important to deal with the stream data efficiently.

Many stream processing engines are developed to process the

stream data like STREAM[1], S4[2], Discretized Streams[3] and

Storm[4]. The traditional stream processing scheme is that

whenever data comes from any information sources, the relevant

queries are supposed to be evaluated and the query results are

generated. However, this is not what users always want.

Sometimes, users want to get query results only when data

comes from some particular streams. For example, considering

there are two streams, one is a network connection stream, the

other is a system failure stream. The administrator may want to

know the network condition only when some failure occurs. So

the stream processing engine would generate the query result

only when data comes from the particular stream which is the

system failure stream. We define such processing scheme as

“designated event-based stream processing scheme” and we call

the triggering streams “master streams”.

In this paper, we show the designated event-based stream

processing scheme and its efficient execution scheme. We have

implemented the execution scheme on our stream processing

engine called JsSpinner and we describe the evaluation of it by

experiments.

2. Data model

The data model of JsSpinner is JSON document. It is semi-

structured and semi-structured data is an important part of the

big data today. It is much more lightweight than XML so it is

easy for machines to parse and generate. It has nested values

and its expression power is more than just key-value pairs.

Some stream processing engines like STREAM[1] have

relational data models, and stream processing engines like

Storm[4] support user defined types and do not support

processing JSON data natively. JsSpinner is more friendly to

query JSON stream data.

3. Query

Figure 1 A query example

Jaql[5] is a query language for querying JSON data but it is not

designed for querying stream data. We make an extension of the

Jaql query to support querying JSON stream data. JsSpinner

allows users to register such queries.

A simple join query is shown in Figure 1. This query intents

for a join operation on the latest document from Stream1 and the

latest 100 documents from Stream2 on A attribute. Stream1 is a

master stream and Stream2 is a non-master stream.

4. Traditional Stream Processing Model

Figure 2 An example query plan tree

A query is usually translated into a query plan tree. For

example, the query in Figure 1 is translated into a query plan

tree in Figure 2. It contains three kinds of operators.

The window operators are responsible for ‘cutting’ the

infinite input streams into a finite number of documents

according to the window size. We call the finite number of

documents collection. Then the algebraic operators like join and

aggregation can work on the collections and generate collections.

In the traditional stream processing engine, a query is

supposed to be executed whenever new documents arrive at the

system. It is easy to know that whenever a new document arrives

at the system, the window operator responsible for accepting it

would generate a new collection which possibly has a large

overlapping with the previous one. It is the same with other

operators. It is not a wise way to always output the query results

which have a large overlapping. Usually, we want to output the

new documents in the current output and that is what an Istream

operator does.

5. Designated Event-based Stream Processing

In our designated stream processing, the query is supposed to

be evaluated only when documents come from master streams.

We emphasize that the traditional stream processing scheme is a

special case of our scheme. Just specify all streams as master

streams, then the results of our scheme are the same as the

traditional one.

6. Incremental Execution Scheme

Whenever a new document comes to the window operator, the

output collection of the window operator would possibly have a

large overlapping with the previous one. As for implementation,

it is not wise to output the whole collection on each input

document. Since a collection is changing in a timestamp order

including newly arriving documents and excluding obsolete

documents, it is more efficient to do incremental computation.

† Department of Computer Science, Graduate School of
Systems and Information Engineering, University of Tsukuba

‡ Faculty of Engineering, Information and Systems, University
of Tsukuba

FIT2014（第 13 回情報科学技術フォーラム）

Copyright © 2014 by
The Institute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 141

D-026

第2分冊

We borrowed the idea from CQL[6] and append each document

with a plus tag or a minus tag. A plus tag represents for a newly

arriving document and a minus tag represents for an obsolete

document.

7. Naive Execution Scheme

We first present a naive execution scheme for implementing

the designated event-based processing. The whole query plan

tree is evaluated on the arrival of documents coming from any

stream sources. We change the behavior of the outer-most

operator which is the Istream operator.

In order to know which documents are triggered by master

streams, each document is given a master mark to tell whether

this document is originated by a master stream or not. The value

of master mark is true or false. If a document has a true master

mark, it means this document is originated by master streams.

Our Istream operator always outputs the new documents

triggered by the arrivals of documents with true master marks.

When a document comes from a master stream, some

documents which have arrived from non-mater streams may

have reached beyond the given window and are obsolete.

However, they are processed in the naive execution scheme and

generate useless intermediate documents, while they do not

contribute to query results.

8. Smart Execution Scheme

The naive execution scheme may generate many useless

intermediate query results. The smart execution scheme address

this problem. We change the behavior of the window operator.

We introduce the smart window operator for non-master streams.

When a document comes from a non-master stream, a smart

window operator accepts it. Then, it buffers the document and

does not output it. When a document comes from a master

stream, all buffered documents in the smart window operator

should be output.

When a document is buffered in the smart window operator,

the number of documents in the window operator may exceed

the window size and the oldest document should be deleted. If

the oldest document was already output, the window operator

should output the corresponding minus document. If the oldest

document is not yet output, it can be deleted from the buffer

directly without generating any plus or minus documents. Thus

the useless intermediate documents are not generated.

9. Experiment

Figure 3 Processing rate

Figure 4 Average processing time

We have implemented both the naive and the smart execution

schemes of the designated event-based processing.

We show experimental results using two streams: stream1 is

a master stream and stream2 is a non-master stream. The query

is the one presented in Figure 1. The incoming rate of stream1 is

1/1000 of stream2. We changed the incoming rate of stream2

from 100,000 tuples/s to 1,000,000 tuples/s. We executed the

query for 5 minutes and observed the processing rate as well as

the average processing time of each document for both the naive

approach and the smart approach.

The processing rate is shown in Figure 3 and the average

processing time is shown in Figure 4. We can see the smart

approach can deal with more input documents than the naive

approach when the input rate is between 300,000 and 800,000

tuples/s. The average processing time of smart approach is less

than the naive approach because many useless intermediate

documents are not generated.

10. Conclusion and Future Work

We have proposed designated event-based stream processing

and proposed its efficient execution scheme. We have developed

a stream processing engine implementing the proposed

execution scheme, and shown its advantages by experiments.

Future research issues include the parallel execution of

multiple queries in the designated event-based stream

processing.

Acknowledgement

This research was partly supported by the program "Research

and Development on Real World Big Data Integration and

Analysis" of the Ministry of Education, Culture, Sports, Science

and Technology, Japan.

Reference

[1] A. Arasu, et al. STREAM: The Stanford Data Stream

Management System, 2004.

[2] L. Neumeyer, et al. S4: distributed stream computing

platform. In KDCloud, 2010.

[3] M. Zaharia, et al. Discretized Streams: An Efficient and

Fault-Tolerant Model for Stream Processing on Large Clusters.

In HotCloud, 2012.

[4] http://storm-project.net/

[5] https://code.google.com/p/jaql/

[6] A. Arasu, et al. CQL: A Language for Continuous

Queries over Streams and Relations. In Proc. of the Ninth Intl.

Conf. on Database Programming Languages, September 2003.

FIT2014（第 13 回情報科学技術フォーラム）

Copyright © 2014 by
The Institute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 142

第2分冊

