
Secure Indexes for Keyword Searches in Cloud Storage !
Wanasit Tanakitrungruang
The University of Tokyo

wanasit@aida.t.u-tokyo.ac.jp !
Nutcha Taneepanichskul

Chulalongkorn
nutcha.tae@student.chula.ac.th !

Hitoshi Aida
The University of Tokyo
aida@aida.t.u-tokyo.ac.jp  

  
Abstract !
The investigating challenge of this paper is to enable keyword
queries on an encrypted cloud storage. We introduce a secure
index design based on the work of Hore et al [1] and Eu-Jin Goh
[2]. Our color indexing technique yields similar security level to
the Hore et al’s but allows users to adjust the security level
dynamically on each query. A statistical analysis and experiment
are also conducted to evaluate the efficiency of color indexing
against real-world large datasets. !
1. Introduction !
Encryption technologies are the fundamental of keeping
information secure outside organizations. Encrypting all data
before sending it to the cloud, users can ensure the
confidentiality of sensitive information. However, the encryption
could disable searching and indexing features of the cloud
service. If the size of data grows larger, it becomes impractical to
download large portion of the data and perform search on the
client side. Such a described approach would work well only
with a small size or a small number of documents. !
Therefore, the investigating challenge of this paper involves
creating ‘secure indexes’ or an auxiliary data structure that
enable the server to lookup documents containing a given
keyword without disclosing the data inside the documents. !
2. Color Indexes !
We use a secure pseudo random function to select a set of !
unique colors from a large set of ! colors to represent word ! .
We call the set of colors selected for word ! as ! ’s color code
or ! . If a document ! consist of keywords ! ,
a color index of ! or ! will be created by combining all
color codes of its keywords:

! !
The color index ! can be stored in the cloud with encrypted
content of ! . Note that the index building process is one-way
operation. If the pseudo random function is truly secure, it will
be difficult for the server to guess which words a color represent.
Therefore, the server cannot guess the original content easily just
by observing the colors of ! . !
In spite of being secure, ! enables the server to do a keyword
lookup on the encrypted collection. To lookup a keyword ! ,
we simply recompute ! and send ! ! randomly
selected colors of ! to the server. Then, let the server
return all the documents of which color index contains all those
! colors. !

Since all color codes of ! ’s keywords have been added to !
when the index was created, if ! is indeed one of ! ’s
keywords, ! must contain all colors of ! and !
must be included in the returned results. However, there is also a
chance that a combination of color code from some other words
creates the set of colors that similar to ! . Thus, a number
of wrong documents will be included in the returned results. We
have to finalize the search on the client side by decrypting the
returned documents and filtering out those false positive errors. !
Those incorrect results naturally spoil the efficiency of
documents lookup. They waste network bandwidth and
computing resources. However, at the same time, they also
provide a crucial benefit for the user security as they help hiding
documents access pattern. The user can balance this trade-
off between the performance and security level by adjusting
value of ! . !
2.1 Comparison to the Previous Works !
The color indexing technique was originally from Hore et al [1].
The advantage of their design comparing to other previous works
is its controllability. The users can adjust trade-off between
the performance and security level by adjusting three parameters
when creating an index — number of possible colors (C),
number of colors computed for a keyword (S), and number of
colors selected for a keyword (S'). !
Our design takes this concept further by allowing the users to
adjust the number of colors used for a query (Q) instead of S'.
This alteration enables the user to dynamically decide the
security level on each query; therefore, provides even more
flexible control. !
Hore et al. have not described the implementation details of the
indexes. We implement the color indexes by adapting the work
of Eu-Jin Goh [2]. We found that, after implemented, the color
indexes have the structure similar to Eu-Jin Goh's Bloom filters.
Our error rate analysis also uses a statistical model resembling
probabilistic efficiency of Bloom filter. !
2.2 Error Rate Analysis !
Consider when building an index, for each word, we randomly
pick an S-size subset from C possible colors. Thus, the
probability that a ! contains a certain color is equal to S/
C. We repeat this selection for all words in the document. If the
document has ! unique terms, the probability that the
document’s color index contains a certain color will be
! . The document will match the query when its
index contains all the query colors. Suppose we submit a query
with Q (!) colors, the probability that a document will be
returned to the submitted query is: !

S
C w

w w
code(w) d w1,w2 ,...,wn

d I (d)

I (d) = code(w1)∪ code(w2)∪ ...∪ code(ww)

I (d)
d

I (d)

I (d)
′w

code(′w) Q ≤ S
code(′w)

Q

d I (d)
′w d

I (d) code(′w) d

code(′w)

Q

code(w)

n

1 - (1 - S / C)n

≤ S

FIT2014（第 13 回情報科学技術フォーラム）

Copyright © 2014 by
The Institute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 77

D-004

第2分冊

!
! !

To calculate the error rate of a given C, S, Q setting, the
distribution of the document size in the collection need to be
measured. If we know the probability that a document in the
collection will have ! unique keywords or ! . The expected
error rate can be calculated as: !

!

!
Hore et al. and other previous works normally assume each
document in the collection has equal or around the same number
of keywords ! , therefore ! ! ! .
Unfortunately, as shown in the experiment, this assumption is not
always true. !
3. Experiment !
Our experiment is conducted on English Wikipedia dataset. An
important statistic that related to the index efficiency is the
number of unique terms per each article. Thus, for each article,
we count the number of unique terms and plot the histogram of
the counting results in Figure 1. !!!!!!!!!!!
 !! !!!!!!!!!!!!!!!!
Figure 1. The histogram of unique terms count in normal scale (Top).

In log-log scale (Bottom).

As described in Section 2.2, because the distribution is visibly
skew, simply using the average number of terms per document
(!) to estimate the expected error (! !
!) will result in an inaccurate estimation. For
example, the calculated error from ! , ! , ! is
less than ! , however, real error rate from the experiment is
around ! (80,000 false articles from 4.4 million collection).

!
We measure real color indexes’ error rate by querying random
keywords that do not exist in the dataset. Those queries should
yield empty results in non-encrypted collection, therefore, the
returned documents is entirely the false positive error. !
We built color indexes for Wikipedia articles using different
number of colors (! = 2048, 4096 and 8192) and color code size
(! = 4, 6 and 8). On each of those prepared indexes, we queried
for random non-exist words with the minimum (!) and
maximum (!) accuracy query configuration. !

!
Table 1: Average error rate for 5 queries on different indexes’

configurations. !!
4. Discussion and Future Works !
In the experiment, we have discovered that, practically,
documents in the collection do not always have the same number
of keywords. The document size distribution can have very
skewed characteristic and seems to follow power law distribution
which conflict with most cryptography literatures’ assumption
that indexing keywords are evenly distributed. For this reason,
many analysis introduced in previous works produce inaccurate
estimations. !
To correctly predict the color indexes error on a collection, we
need to find the! that fit the distribution of document sizes.
In practice, however, we can also introduce a sampling technique
to estimate the error with reasonably accurate results. !
The perceived query efficiency also depends on the keyword. For
example, if a user queries for a word ‘world’ (807,955 referred
articles), having ten thousands of errors would be reasonable. In
contrast, if the user lookups ‘tokyo’ (46810 referred articles), the
user would not satisfy with the same error rate. The current
design has not taken advantage of our improvement by adjusting
Q for each query. !
References: !
[1] Hore, B., E.C. Chang, M. H. Diallo, S. Mehrotra. “Indexing
Encrypted Documents for Supporting Efficient Keyword
Search.” Secure Data Management Lecture Notes in Computer
Science Volume 7482, pp 93-110, 2012. !
[2] Goh, Eu-Jin. “Secure Indexes”. IACR Cryptology ePrint
Archive, 2003.

Phit (C,S,Q,n) = (1− (C − S
C

)n)Q

n P(n)

Error(C,S,Q) = Phit (C,S,Q,n)× P(n)[]
n
∑

n ≈ n Error(C,S,Q) ≈ Phit (C,S,Q,n)

n ≈197.2 Error(C,S,Q) ≈
Phit (C,S,Q,n)

C = 8192 S = 8 Q = 8
10−6

0.018

C
S

Q = 1
Q = S

S=4 S=6 S=8

Q=1 Q=S Q=1 Q=S Q=1 Q=S

C=2048 26% 4.5% 34% 5.7% 41% 7.1%

C=4096 15% 1.2% 21% 1.4% 26% 1.8%

C=8192 8.5% 0.2% 12% 0.2% 15% 0.3%

P(n)

Number of unique terms

N
um

be
r o

f d
oc

um
en

ts

×103

×105

≈

Number of unique terms

N
um

be
r o

f d
oc

um
en

ts

FIT2014（第 13 回情報科学技術フォーラム）

Copyright © 2014 by
The Institute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 78

第2分冊

